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Abstract 

 

This study analyzes the detection of security attacks on smart vehicles using the Exponentially Weighted Moving Average 

(EWMA) algorithm. We employed synthetically generated datasets, consisting of 80% non-attack and 20% attack scenarios. 

Various smoothing parameters (α\alphaα) were tested within the EWMA framework, specifically at values of 0.8, 0.7, and 0.6, 

with 0.7 yielding the most promising results. In our analysis, we normalized the selection function in the EWMA algorithm based 

on expert evaluations to establish the impact of different factors on anomaly detection. Specifically, we assigned weights of 24% 

to RPM, 40% to speed, and 18% each to fuel quantity and accelerator pedal position. The results demonstrate that the EWMA 

algorithm can effectively issue warnings for vehicles under potential attack, enabling proactive measures to mitigate security 

risks. This research contributes to enhancing the safety and reliability of smart vehicles by facilitating timely responses to 

detected security threats. 
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1.  INTRODUCTION 

Security attacks pose a significant threat, particularly to 

smart devices, which are increasingly interconnected 

through the Internet of Things (IoT). As the importance of 

security in modern applications grows, ensuring the safety of 

smart vehicles has become paramount. This study examines 

smart vehicles, focusing on their communication protocols, 

infrastructure, and the various attack scenarios, causes, and 

consequences they may encounter. 

The literature on smart vehicle security highlights critical 

areas such as Vehicle-to-Vehicle (V2V) communication 

frameworks, the challenges inherent in V2V data 

transmission, and the cybersecurity vulnerabilities present in 

these systems [1-2]. Research indicates that smart vehicles 

can be attacked both directly and indirectly through their 

Control Area Network (CAN) and via radio frequencies [3]. 

A comprehensive understanding of these attack types, as 

well as the classification of cyber threats, is essential for 

developing effective security measures. 

In this context, the Exponentially Weighted Moving Average 

(EWMA) algorithm has been identified as a promising tool 

for detecting anomalies in vehicle data. Although the 

EWMA algorithm has historical significance, emerging 

studies suggest its growing analytical value in cybersecurity 

applications [4-5]. This algorithm is particularly effective in 

identifying subtle changes in data, making it suitable for 

detecting security attacks in smart vehicle systems [6]. 

To validate the applicability of the EWMA algorithm in 

smart vehicle security, experiments were conducted using 

two synthetically generated datasets: one comprising 80% 

non-attack data and 20% attack data, and the other consisting 

of 70% non-attack and 30% attack data. The simulated 

datasets represented either normal operating conditions or 

data subjected to various attack types, as detailed in the 

literature [7-8]. 

The findings reveal that the EWMA algorithm can 

successfully identify security attacks by monitoring the CAN 

network of smart vehicles. The algorithm achieved a high 

success rate in detecting anomalies, but further 

improvements could be realized by optimizing key 

parameters such as rpm, speed, throttle, and fuel 

consumption, as well as exploring alternative algorithms for 

comparison. 

2.  LITERATURE REVIEW 

Research on vehicle-to-vehicle (V2V) communication has 

gained significant traction in recent years, particularly in the 

context of transmitting vehicle information effectively [9-
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10]. Methods for disseminating this information generally 

fall into two categories: centralized and decentralized 

systems. Centralized systems involve infrastructure-to-

vehicle (I2V) communication or mobile communications, 

where vehicles collect and relay information through 

roadside units or mobile terminals, respectively [11]. 

Conversely, decentralized V2V communication allows for 

direct information exchange between vehicles, which is 

particularly beneficial in emergency situations, eliminating 

the need for additional infrastructure like roadside units and 

base stations [12]. Traditional centralized systems often 

impose significant burdens on communication infrastructure 

and data centers, prompting a shift toward decentralized 

models. Vehicle identification data obtained through these 

mechanisms can be leveraged to support Driving Safety 

Support Systems, potentially alleviating congestion and 

enhancing road safety. However, existing identification 

distribution systems face challenges such as limited-service 

areas, low delivery efficiency, and delays in data 

transmission [13]. 

In high-traffic environments, V2V communication facilitates 

efficient information exchange among vehicles. For 

instance, when the number of vehicles falls within a 

specified range, V2V communication is employed using 

Geocast techniques. Geocast refers to location-based data 

transmission in an ad-hoc network, replacing traditional 

node IDs with geographic information [14]. Key factors 

influencing communication between nodes in such networks 

include the target node’s location and the selected 

transmission path. 

I2V communication is particularly useful in densely 

populated areas or at traffic intersections, where roadside 

units are deployed. When a vehicle is within a predetermined 

distance from a roadside unit, I2V communication is 

activated. The roadside unit's location information is derived 

from digital maps, allowing the ego vehicle to assess its 

position relative to the roadside unit to determine the 

appropriate communication mode [15]. 

Mobile communication serves in scenarios with low vehicle 

density or where direct V2V communication may lead to 

network congestion. In cases where the number of nearby 

vehicles is below a specified threshold or exceeds a certain 

limit, mobile communication becomes the preferred option. 

This mode is particularly suitable for delivering non-urgent 

information and operates over 3G networks, enabling 

extensive coverage and the flexibility of pull-type 

communication based on driver needs [16]. 

3.  MATERIALS AND METHODS 

The Exponentially Weighted Moving Average (EWMA) 

algorithm was first introduced under the name Geometric 

Moving Average (GMA) [17]. Initially, it saw limited 

application outside a few studies [18-19]. However, its 

analytical significance began to grow in the latter half of the 

1980s, leading to its adoption in various fields [20-21]. 

EWMA has proven effective in detecting changes of varying 

magnitudes in diverse processes, functioning as a smoothing 

technique to mitigate noise in time series data [22]. 

For the implementation of EWMA, an initial target value is 

selected, typically calculated as the average of the 

observations [18]. The formula for EWMA can be expressed 

as formula 1. 

E(t) = α ⋅ X(t) + (1 − α) ⋅ E(t − 1)        (1) 

where E(t) represents the EWMA value at time t, X(t) is the 

observed value at time t, and α is the smoothing parameter  

(0 < α ≤ 1). This formulation illustrates how the influence of 

the initial observation E(0) diminishes exponentially over 

time, with its effect approaching zero as α dictates the rate of 

decay [23]. 

In anomaly detection, if the calculated EWMA value 

deviates from the target value by k times, it exceeds a 

predefined threshold, indicating an outlier [24]. In the 

context of this study, we focus exclusively on upward 

deviations within the scope of bio surveillance, monitoring 

only increases. If downward changes were to be considered, 

the following equation would also require evaluation: 

E(t) − kσ           (2) 

where σ represents the standard deviation. For a 

comprehensive exploration of selecting the threshold k, refer 

to Lucas's seminal work [25]. 

When using EWMA, a data set was first created regarding 

normal vehicle movements in the test data and vehicles that 

may have been attacked, in order to understand whether there 

was an attack on the CAN Network. There are 25 cases in 

this data set and 6 cycle logs in each case. Each of these 

examined logs consists of 4 lines. The information examined 

and its log equivalent are as follows: 

• 410D40 = 410D makes it clear that this data is the 

current speed data. 40 gives the numerical value of the 

speed as hexadecimal. 4*16+0=64 km. 

• 410C0A20 = 410C indicates that this data is the current 

rpm data. 0A20 gives the rpm value of the engine in 

hexadecimal. 0*16^3+10*16^2+16*2+0 =2592. 

• 412FC8 = 412F makes it clear that this data is the 

current percentage fuel amount data. Multiplying the 

hexadecimal equivalent of C8 by 100/255 gives the 

percentage value. 

• 411195 = 4111 makes it clear that this data is the 

amount of pressing the accelerator pedal as a 

percentage at that moment. Multiplying the 

hexadecimal equivalent of 95 by 100/255 gives the 

percentage value. 

With this formula, the average value is found and values that 

are not within the specified range are considered anomaly. In 

other words, those that are not within the appropriate range 

can be said to be an attack. Studies on the data were carried 

out by using the 𝛼 value as 0.7 in this formula. This 𝛼 value 
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was chosen this way because it was the value that gave the 

best results in the tests. In addition, the value specified as X 

is expressed as sign value, and that value consists of the 

ratios of the 4 elements mentioned above and examined in 

CAN logs. Those ratios were taken into account as 24 

percent for rpm, 40 percent for speed, and 18 percent each 

for fuel amount and accelerator pedal pressing. The results 

according to the data sets to which the EWMA algorithm is 

applied are included in the following headings. While 

choosing these values, the decision was made by testing the 

ratios given as a result of interviews with experts. 

The flow diagram of the application of this algorithm is 

given below. As can be seen here, the values calculated in 

EWMA are calculated as a lambda ratio with the previous 

EWMA value and it is stated that if they exceed the standard 

values by 3 times, they are considered an error. These errors 

constitute an attack for this system. 

 
Figure 1. EWMA algorithm flow diagram 

4.  RESULTS 

EWMA algorithm: Data set 1, which contains 80% non-

attack and 20% attack; The results obtained with data set 2, 

which includes 70% non-attack and 30% attack situations, 

are included in this section. In addition, the results with the 

values of 𝛼 in EWMA selected as 0.6 and 0.8 are also 

included in this section. 

Data Set 1: This data set was examined on 80% normal data, 

20% of which was attack. 

 
Figure 2. EWMA no-attack plot data set 1 

The graph above shows that the EWMA algorithm makes the 

correct decision by detecting that there is no attack in 95% 

of cases, and detects that it is under attack in 5% of cases, 

even if there is no attack. Here it can be seen that the EWMA 

algorithm is the situation it detects in a certain period with 

the value of 0.7 𝛼. In this case, the 𝛼 value was determined 

according to the best result of the tests. The EWMA 

algorithm, with a value of 0.8 𝛼, indicates that it makes the 

correct decision by detecting that there is no attack in 91% 

of the cases where there is no attack, and that it detects that 

it is under attack even if there is no attack in 9% of the cases. 

The EWMA algorithm, with a value of 0.6 𝛼, indicates that 

it makes the correct decision by detecting that there is no 

attack in 87% of cases, and 13% of the time it detects that it 

is under attack even if there is no attack. 

 

Figure 3. EWMA attack states graph data set 1 

The graph above shows that the EWMA algorithm makes the 

correct decision by detecting an attack in 80% of cases, and 

detects that there is no attack in 20% of cases, even if there 

is an attack. Here it can be seen that the EWMA algorithm is 

the situation it detects in a certain period with the value of 

0.7 𝛼. In this case, the 𝛼 value was determined according to 

the best result of the tests. The EWMA algorithm, with a 

value of 0.8 𝛼, indicates that it makes the correct decision by 

detecting that there is an attack in 73% of cases, and that it 

detects that there is no attack even if there is an attack in 27% 

of cases. The EWMA algorithm, with a value of 0.6 𝛼, 

indicates that it makes the correct decision by detecting that 

there is an attack in 70% of cases, and that it detects that there 

is no attack even if there is an attack in 30% of the cases. 
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Figure 4. EWMA overall success rate chart data set 1 

As can be seen in the graph above, for the EWMA algorithm, 

the attack detection success rate was found to be 80%, the 

success rate to detect non-attack situations was 95%, and in 

the light of all these, the overall success rate was found to be 

92%. The actual result and produced result rates as a result 

of testing 6 cycles of test steps with the EWMA algorithm in 

each test step with the produced data set are as follows. 

Table 1. EWMA algorithm results for data set 1 

 Real Positive  Real Negative 

Test Result Positive 19 1 

Test Result Negative 1 4 

Results details: 

• Sensitivity: 19/20 = 95%, 

• Specificity: 4/5 = 80%, 

• Positive Predictive Value: 19/20 = 95%, 

• Negative Predictive Value: 4/5 = 80%, 

• Success Rate: 23/25 = 92%. 

Data Set 2: This data set was examined on 70% normal data, 

30% of which was attack. 

 

Figure 5. EWMA no-attack plot data set 2 

The graph above shows that the EWMA algorithm makes the 

correct decision by detecting that there is no attack in 85% 

of the cases where there is no attack, and detects that it is 

under attack in 15% of the cases, even if there is no attack. 

Here it can be seen that the EWMA algorithm is the situation 

it detects in a certain period with the value of 0.7 𝛼. In this 

case, the 𝛼 value was determined according to the best result 

of the tests. The EWMA algorithm, with a value of 0.8 𝛼, 

indicates that it makes the correct decision by detecting that 

there is no attack in 82% of the cases, and 18% of the time it 

detects that it is under attack even if there is no attack. The 

EWMA algorithm, with a value of 0.6 𝛼, indicates that it 

makes the correct decision by detecting that there is no attack 

79% of the time, and 21% of the time it detects that it is under 

attack even if there is no attack. 

 

Figure 6. EWMA attack states graph data set 2 

The graph above shows that the EWMA algorithm makes the 

correct decision by detecting an attack in 80% of cases, and 

detects that there is no attack in 20% of cases, even if there 

is an attack. Here it can be seen that the EWMA algorithm is 

the situation it detects in a certain period with the value of 

0.7 𝛼. In this case, the 𝛼 value was determined according to 

the best result of the tests. The EWMA algorithm, with a 

value of 0.8 𝛼, indicates that it makes the correct decision by 

detecting that there is an attack in 75% of the cases, and that 

it detects that there is no attack even if there is an attack in 

25% of the cases. The EWMA algorithm, with a value of 0.6 

𝛼, indicates that it makes the correct decision by detecting 

that there is an attack in 73% of cases, and that it detects that 

there is no attack even if there is an attack in 27% of the 

cases. 

 

Figure 7. EWMA overall success rate chart data set 2 

As seen in the graph above, for the EWMA algorithm, the 

attack detection success rate was found to be 80%, the 

success rate to detect non-attack situations was 85%, and in 
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the light of all these, the overall success rate was found to be 

84%. The actual result and produced result rates as a result 

of testing 6 cycles of test steps with the EWMA algorithm in 

each test step with the produced data set are as follows. 

Table 2. EWMA algorithm results for data set 2 

 Real Positive Real Negative 

Test Result Positive 17 3 

Test Result Negative 1 4 
 

Results details: 

• Sensitivity: 17/20 = 85%, 

• Specificity: 4/5 = 80%, 

• Positive Predictive Value: 17/20 = 85%, 

• Negative Predictive Value: 4/5 = 80%, 

• Success Rate: 21/25 = 84%. 

5.  CONCLUSIONS 

In this study, primarily the information regarding inter-

vehicle communication in the literature is discussed. 

Additionally, the commands used in the CAN network and 

the values corresponding to these commands were examined. 

These commands used in the CAN network are tested with 

the algorithm determined in the light of this information. 

Test data was produced by outputting the hexadecimal 

values of attack and non-attack situations in the CAN 

network. There are two data sets used in this study. In each 

of these data sets, there is a moment when the 6-cycle vehicle 

is running, and there are 5 of these 6 cycles in each test step. 

In this way, there are 25 test cases in each data set. Out of 

these 25 data sets, 80% of them are non-attack and 20% are 

attack data. Data set 2 includes 70% non-attack and 30% 

attack cases. These data sets were tested in the EWMA 

algorithm and the results were evaluated. 

As a result, when analyzing security attacks in smart 

vehicles, it can be determined whether there is an attack on 

the vehicle by listening to the CAN Network using the 

EWMA algorithm. In the tests performed, it is seen that the 

EWMA algorithm can achieve successful results in this 

regard. The ratios found can be further improved by 

changing the effect and calculation logic of the 4 elements 

mentioned above, rpm, speed, throttle and fuel, and by 

changing the 𝛼 values in this algorithm, or better results can 

be found by testing with other algorithms.   
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