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Highlights

e A novel extension of the unit Gompertz distribution is presented.

e (Certain statistical characteristics of the new distribution are obtained.

e Six practical estimation techniques are considered for the estimation problem.

e Through simulation, several estimates are compared, and an actual data analysis is investigated.

Article Info Abstract

Despite the availability of numerous statistical models for describing real-world data, the need
Received: 02 Sep 2024 remains for flexible distributions capable of accurately capturing diverse spread patterns,
Accepted: 22 Apr 2025 particularly within the unit interval. This study introduces the Kavya-Manoharan (KM)-unit

Gompertz (KM-UGo) distribution, a novel model tailored for data confined to the unit interval.
By combining the unit Gompertz distribution and the KM transformation, the KM-UGo

Keywords distribution is an improved version of the existing unit-Gompertz distribution, offering more

K“‘fya and Manoharan adaptability and the possibility of better model fit in a a wider range of data with diverse spread

g”” Gompertz patterns. This enhances its ability to model various hazard rate shapes, including J-shaped,

Pmmp Y measures bathtub, increasing, inverted bathtub, and decreasing. The paper delves into the mathematical

arameter estimation . . . . .. ..

Goodness of it tests properties of .the KM-UGo (Ehstrlbutlon, deriving k?y characteristics su_ch as moments,
probability-weighted moments, incomplete moments, residual and reversed residual life, quantile
function, and entropy measures. Classical estimation techniques, including maximum likelihood,
least squares, maximum product spacing, Cramér-von Mises, Anderson-Darling, and weighted
least squares are employed to determine the distribution's parameters and the results are assessed
using a Monte Carlo method. The study's findings showed that the maximum likelihood and
maximum product spacing estimation methods offer more accurate and reliable parameter
estimates. Furthermore, as demonstrated in simulation studies, larger sample sizes produce better
parameter estimates, which are characterized by lower bias and higher accuracy. To illustrate its
practical application, the KM-UGo distribution is applied to two real-world datasets residing
within the unit interval.

1. INTRODUCTION

Many researchers have all through the last years conducted studies and offered different strategies for
developing new distributions that start with the baseline distributions. Novel transformations have been
applied to the continuous distribution to create new lifetime models. A major development in the field of
data analysis and distribution transformations is the Kavya-Manoharan (KM) statistical transformation
introduced by [1]. Its significance lies in its capacity to efficiently reshape data distributions, thus
empowering researchers and analysts to derive deeper insights. The KM transformation is a valuable tool
for creating new lifetime distributions without increasing the number of parameters. This is significant
because additional parameters not only increases the variance but also increases the complexity and number
of potential issues in estimating parameters. Also, this transformation can improve data fitting to match
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data more accurately than conventional models. This can lead to more accurate statistical inferences and
improved decision-making.

The following are the definitions of the KM transformation's probability density function (PDF), denoted
by f(x;0), and cumulative distribution function (CDF), denoted by F(x;®), as follows:

(€)=~ g(x0)e ;xR (1)
e —
and
F(x;:0)=——[1-e GO | xeR, @)
e—1
where O is the set of parameters. The G(x;0) is the CDF of the base-line distribution and g(x;®) is the
PDF of the the base-line.

In several domains, modeling data sets constrained within the range (0, 1) has gained importance recently
as a means of addressing product failure and survival rates. Therefore, due to its versatility when dealing
with such probabilistic models, various unit distributions limited in the interval (0, 1) appear. Furthermore,
there is an urgent demand for these sorts of distributions in several domains, including the medical,
actuarial, and financial sciences. Previous research has shown the importance of flexible distributions. Most
modern unit distributions are created by transforming existing distributions through suitably modified

schemes. For example, if a random variable X has a lifetime distribution, the transformations U, = ix’
X X » . o
U, = Ty U, = X and U, =¢ ¥, are popularly used to derive a distribution with support (0,1). Reference

[2] proposed a transformation called Dinesh-Umesh-Sanjay (DUS) transformation. An exponentiated
generalization of the DUS transformation called the power generalized DUS transformation was introduced
by [3]. Then a new transformation called KM transformation was introduced. This study suggests a unit
distribution based on the KM transformation as an alternate transformation to the well known
transformations U,, U,, U;, and U,.

In the literature, numerous scholars have therefore suggested unit distributions using the well known
transformation mentioned earlier. Notable examples, the unit-Gompertz distribution and unit inverse power
Lomax distribution.presented respectively by [4, 5] using the transformation U, =¢*. The one-parameter

unit Lindley and unit power Lindely distributions were proposed, respectively, by [6, 7] using the

tranformation U, :%. The unit-Weibull (UW) distribution and the unit Burr XII distribution were

proposed, respectively, using the transformation U, =e™* by [8, 9]. Unit half-logistic geometric (UHLG)
distribution and unit-exponentiated half-logistic distribution using the transformation U,=¢*, were

presented respectively, by [10, 11]. Unit xgamma distribution using the transformation U, = x and unit

Teissier distribution using the transformation U, =e™*

were provided, respectively, by [12, 13]. The unit
exponentiated Lomax and the unit inverse exponentiated Weibull distributions, were suggested
respectively, using the transformation U, =¢ ™, by [14, 15]. The power unit Burr XII and the unit power

Burr X distributions, were introduced, respectively by [16, 17]. The unit exponential Pareto and Unit

Gamma-Lindley distributions were proposed respectively by [18, 19], using the transformation U; = %

Reference [20] introduced the unit power Lomax (UPL) distribution using the transformation U, =™ .

Other notable unit distributions have been proposed in the literature (see [21-27]).
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Some newly modified distributions have been constructed based on the KM transformation.. Reference [28]
introduced an improved Burr X distribution based on the KM transformation, with parameters estimated
using ranked set sampling. The KM transformation was utilized to give an enhanced version of the log-
logistic distribution by [29]. The KM generalized inverted Kumaraswamy distribution presented by [30].
The KM unit exponentiated half logistic distribution provided by [31].

We consider here the unit-Gompertz (UGo) distribution with (0, 1) as support. It can be viewed as an
alternate model for reliability studies where distributions with finite support are owing to physical
constraints like the design life of the system or a constrained power supply. The PDF and CDF, denoted by
g(»;0), and G(y;0), respectively, ® = (u,17), of the UGo distribution are as follows:

g(1;0) = uny=(rhe=#1=D; 0< y<1; p,n>0, (€)
and,
G(y;0)=eH#(T-1), (4)
where # and 77 are two shape parameters. When modelling skewed data that is not adequately
characterized by other widely used distributions, the UGo distribution is quite helpful.

This study aims to provide the Kavya-Manoharan unit-Gompertz (KM-UGo) distribution, a novel two-
parameter distribution from the UGo distribution. The KM-UGo distribution offers potential improvements
over the UGo distribution with the same number of parameters. This model is derived by merging the KM
transformation with the UGo distribution, which builds on the advantages of both parent distributions. The
KM-UGo distribution exhibits remarkable flexibility, characterized by a hazard rate function (HF) that can
assume various shapes, including increasing, decreasing, bathtub, and upside-down bathtub. This versatility
makes it adaptable to a wide range of real-world data scenarios. Due to its inherent flexibility, the KM-UGo
distribution holds the potential to provide superior data fitting capabilities compared to the UGo distribution
and other well-known distributions. Furthermore, the KM-UGo distribution possesses a tractable closed-
form quantile function (QF). This valuable property facilitates the straightforward calculation of various
statistical characteristics, such as quantiles, percentiles, and moments, and enables efficient random number
generation. We are motivated to present the following:

a) To challenge the existing bounded distributions, a brand-new two-parameter distribution termed
the KM-UGo distribution is proposed, which is specified on (0,1).

b) The density function exhibits several possible forms, such as symmetric, unimodal, reversed J-
shaped, and left- and right-skewed. Furthermore, J-shaped, bathtub, up-side-down, decreasing, and
increasing HF plots of the KM-UGo distribution are possible.

c) The statistical features that are derived include incomplete moments (IMs), QF, moments,
probability-weighted moments (PWMs), residual and inverted residual lifetimes, and entropy
measures.

d) The values of parameter estimates for the KM-UGo distribution are evaluated and compared using
six standard estimation techniques. These techniques include the least squares (LS), the maximum
product spacing (MPS), the Cramér-von Mises (CvM), the weighted LS (WLS), the Anderson-
Darling (AD), and the maximum likelihood (ML).

e) To assess the accuracy of the various estimates, a simulation study is conducted. The utility of the
KM-UGo distribution is assessed against several other models using two actual data sets.

This is the structure of the article: section 2 provides an overview of the formation of the KM-UGo
distribution. Section 3 discusses the KM-UGo distribution's statistical properties. In section 4, the model
parameter estimators utilizing different techniques of estimation are generated. To illustrate the findings in
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section 5, a simulation study is conducted. In section 6, two real data sets are used to demonstrate the
importance of the KM-UGo distribution model. Section 7 provides the conclusion.

2. THE KM-UGO DISTRIBUTION

This section introduces the KM-UGo distribution, a new two-parameter model developed by applying the

KM transformation to the UGo distribution. The CDF of the KM-UGo distribution is obtained by inserting
Equations (3) and (4) in Equations (1) and (2), as below:

F(y;@)=—=[1-¢"0 J:0<y <l 17 >0, 5)

(v —
where 0(y;0)=e M l), 0= (ﬂ,?]) is the set of parameters, 1 and 77 are shape parameters. The PDF
of the KM-UGo distribution is given by:

(2= [ uny 1D 5(:©)e 00O | 0<y<l. (©6)
e —

The survival function and the HF of the KM-UGo distribution, for O < y < 1, are given, in that order, by

S(y;@)=1— e:[l_e—m;@)}

and,
epny "V S(r; @) ()
e—1- e(l —e0U® )

h(y;0)=

Figure 1 represents the PDF plots of the KM-UGo distribution for selected parameter values (PVs). It
demonstrates the symmetric, unimodal, reversed J-shaped, left-and right-skewed characteristics of the
KM-UGo distribution. Also, for certain PVs have increasing, J-shaped, bathtub, declining, and inverted
bathtub HF graphs of the KM-UGo distribution. The key gap between the UGo and the KM-UGo
distribution lies in its flexibility and applicability. The UGo distribution has limitations in capturing diverse
shapes of data distributions, particularly those with complex skewness patterns. Also, it might not be
suitable for modeling data with certain hazard rate shapes, such as bathtub-shaped or increasing-decreasing
patterns. By incorporating the KM transformation, the KM-UGo gains significant flexibility. This
transformation allows it to model a wider range of data shapes more effectively.
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Figure 1. The KM-UGo distribution's PDF and HF
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The QF of a random variable Y say y = Q(q) = F'(g), where g~ uniform (0,1), is obtained as follows:

e —p(y~1-1)
= 1—exp| — .
q o 1 |: exp[ e j:|

Then, the QF of the KM-UGo distribution takes the following form

ot (=]

Setting ¢ = 0.25, 0.5 and 0.75 in Equation (7), we obtain, respectively, the first quartile (0, ), the median
(0, ), and the third quartile (Q5).

3. SOME STATISTICAL PROPERTIES

This section determines a number of statistical characteristics of the KM-UGo distribution, including
moments, PWM, IMs, and moments of residual.

3.1. Moments Measures

The rth moment of the KM-UGo distribution is easily obtained from PDF (6) as follows:
1
EQYT =] %[ﬂﬂy’y‘(”“) 5(y;0) e-5(:0) |dy
ve—

= Ai,j(y)B(i+1,i—i—1J,
7

=0

_NJjt+i( 7 | j+1
where B(.,.) is the beta function and 4; ; (1) ( ° 1) D/ l(],:__l')l () .
’ e— JAR2
For some specified PVs, Table 1 lists numerical values for the mean (,Ul'), variance (0'2 ), skewness (a3),

kurtosis (¢4 ), and the coefficient of variation (CV).

Table 1. Values of the KM-UGo distribution's moments

yZ n 41 o? (0)% a, a,

1 0.646 0.031 0.048 0.092 2.13
1.5 1.5 0.715 0.025 0.035 -0.144 2.191
2 0.759 0.020 0.027 -0.307 2.328
1 0.716 0.022 0.031 -0.032 2.169
1.5 2 0.774 0.017 0.022 -0.251 2.295
2 0.811 0.013 0.016 -0.403 2.467
1 0.796 0.013 0.016 -0.163 2.259
1.5 3 0.84 0.009 0.011 -0.365 2.442
2 0.868 0.007 0.008 -0.506 2.645
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As illustrated in Table 1, the value of K increases while maintaining the value of 77 fixed, then the mean

and kurtosis values rise while the values of other measures decline. It can be concluded that, as the value
of 77 rise while the value of 4 remain fixed, the values of the mean and kurtosis rise, while the values of

other measures decline. Additionally, the values of skewness indicate that the distribution is skewed to the
left and right. Finally, according to values of a, , the KM-UGo distribution is platykurtic.

Furthermore, the rth IM of the KM-UGo distribution is obtained by using PDF (6) as follows:

X
@ (x) = % [ un 8(y;0) yr=(1+D) ¢=0(»:0) gy,
—1o

* r
= > AI’J(ILI)B i+1,——i-1,x7 |,
J,i=0 n

where B(.,., y) is an incomplete beta function.

3.2. The PWM of the KM-UGo Distribution

Reference [32] originally proposed the PWM for the generalized distributions expressible in inverse form.
The PWM of a random variable Y for s and r are positive integers is defined by

= T W [FO] fO)dy. ®)

Using PDF (6) and CDF (5) in Equation (8), the PWM of the KM-UGo distribution is produced in the
following form,

r1
Vs,r:( ilj j/u}]é‘(y @)ys (7+1) 6_5(y 0) |:1 6_5()/ ®)j| d

= z Mj,i,k B(k+1’£_k_1]’

i=0 n

where Mz = 3 ”[ e )r (—1)JHR (1) ( + DF gkt
7 k=0 i \e—1 ]'k'

3.3.Residual and Reversed Residual Life’s

Residual life and reversed residual life are often used terms in risk analysis. Thus, among other relevant
statistical functions, [33] investigated the survival function, mean, and variance. The residual life is the
amount of time that elapses between time (#) and the time of failure of the conditional random variable. The
following defines the rth moment of the residual life, let's say /; (¢):

“® ﬂ@ni}mqﬂm@@ )

Additionally, by comblnmg PDF (6) into Equation (9), the rth moment of residual life of the KM-UGo
distribution can be obtained as follows:

1 r r e |
I.(H)= —yrnl e [ un 8(y; @)y (rtl) ¢=0(y:0)g
r () ﬂm»gf) [J el{ﬂ(y e y,

1()=

f(»:®)dy=
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where, S(¢;®) is the survival function. After some manipulation, the /. (¢) takes the following form

. n .
I(t)= Wn— ey B[Hl, ;—z—l, (1 —¢1 )J

where li,j,n =(=1)r=" [ ]tr " Z 4 i (p).
J,i=0
Further, the rth moment of reversed residual life of the KM-UGo distribution is derived as follows

t —y)Y f(»;0) d
(0= 50 @)j< W (30) dy
1 " e ! .
(rn 5(1;0 n—(n+l) o=36(y;0)yg ,
F(l‘®)2( ) () e—1£”77 (1:0)y e ly
which is the incomplete beta function, and takes the following form
r no.o..
& ()= U?':j,,,B[—l—l,Hl, tn J
F( ;0) n=0 n

r o0
where U}, =(-1)" [njtr —n Z 4, j(1), and B(.,.,x) is the incomplete beta function.
,i=0

3.4.Some Entropy Measures

For studies on reliability and risk assessment, entropy measures are crucial. It has been applied in a variety
of biological applications in addition to those in the physical and medicinal fields. Entropy quantifies the
variance of the uncertainty associated with the random variable Y distribution. The Tsallis, Arimoto, Havrda
and Charvat (HC), and Rényi entropies of the KM-UGo distribution are presented here. The following
defines the Rényi entropy of the KM-UGo distribution

1 0
R;,zl—log{ | f(y;®)7dy]; y>0and y #1. (10)
The Rényi entropy of the KM-UGo distribution is obtained by using PDF (6) in Equation (10) as follows:

1 v —
R log {I [:j prn? y e T D g,

}/_1—]/ Oe

Thus, the KM-UGo distribution's Rényi entropy has the following structure

1
Ry=— log ZDJ,(@,y)B(Hly(”]7 D i—lﬂ,
J,i=0

T (=) prtinrlyd (y + j)
it '

e
where D;(0,7) :(e—lj

As stated by [34], the HC measure is a helpful expanded measure for Shannon's entropy. The HC of the
KM-UGo distribution is given from PDF (6) as shown below.
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I SWAULL
= Y D ;@,Bli+,2TT) 1|1,
v -y _1 jé() ./J( 7) [ n

Reference [35] proposed an extension of Shannon's entropy. The following formula can be used for
calculating the KM-UGo distribution's Tsallis entropy from PDF (6) utilizing the technique that was
previously mentioned

1 - ) +1) .
T, :E{l— > D;i(©,7) B[1+1,7’(’7—)—z—1ﬂ.

7,i=0 n
An alternative for the Shannon entropy measure, the Arimoto's entropy was introduced by [36] and has

comparable characteristics. Using PDF (6), which follows is a method to get Arimoto's entropy of the KM-
UGo distribution.

1
- . +1) .
Ayzl_L ZDJ-J(Q,}/)B[1+1,M—1—1J ~1).
7| 7o n

Table 2 shows certain predefined PVs for different entropy measurements of the KM-UGo distribution.

Table 2. Some of the KM-UGo distribution's entropy measurements

/4 n 7 R}, T}, HC, A},
0.5 1 -0.0277 -0.0273 0.0529 0.0245
2 2 -0.4896 -0.3959 0.7679 0.1098
0.1 5 3 -1.3062 -0.7681 1.4896 0.1111
7 4 -1.7315 -0.8772 1.7011 0.1111
9 5 -2.0751 -0.9394 1.8218 0.1111
11 6 -2.3632 -0.9787 1.8978 0.1111
0.5 1 -0.1239 -0.1202 0.2052 0.1166
2 2 -0.7355 -0.6154 1.0505 0.5207
0.5 5 3 -1.7244 -1.1555 1.9726 0.8217
7 4 -2.2266 -1.3431 2.2927 0.8921
9 5 -2.6259 -1.4619 2.4957 0.9276
11 6 -2.9572 -1.5441 2.6359 0.948
0.5 1 -0.2119 -0.2097 0.3131 0.2094
2 2 -0.8144 -0.7821 1.1679 0.7786
0.9 5 3 -1.8538 -1.6921 2.5268 1.6754
7 4 -2.379 -2.1172 3.1616 2.0906
9 5 -2.7944 -2.4379 3.6405 2.4022
11 6 -3.1377 -2.6931 4.0216 2.6492

The values of Table 2 indicate that 7 and R}/ fall while the values of the other measures rise when the
values of » while maintaining 77 and A fixed. Thus, it follows that when 77 and 4 increase for fixed

values of y , T y and R}, values decrease and the values of the other measures increase.
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4. PARAMETER ESTIMATION OF KM-UGO DISTRIBUTION

This section investigates six different parameter estimation techniques that are utilized for the KM-UGo
distribution model. The examined techniques are the ML, LS, CvM, WLS, AD, and MPS. For estimating
the model parameters of the KM-UGo distribution, each of these techniques offers a unique strategy. The
analysis will include an evaluation and comparison of various strategies' performances.

4.1. Maximum Likelihood Estimator

Using the ML approach, the unknown parameters of the KM-UGo distribution are estimated here.
Assuming a random sample y1, ...y, of size m from the KM-UGo distribution, the log-likelihood function,
indicated by In L, is given by

e m m _ m
InL=mln(-—)+mln(x)+min(p) -+ DL ny, ~u L O T-)- X 8(y,:0).
- r=1 r=1 r=l
Equating the following non-linear equations with zero and solving them via package optim using R program
yields the ML estimators of the parameters ¢ and 77

omL m m _
== =X (3 "-D(1-6(y©))=0,
ou Ho o=l
and
olmL m m m _
P S In(y,)+ X wyy Tin(y, )1+ 6(,50)) =0,
n /| r=l

where, 8(y,;0)=e#r™1-D),

4.2.Least Squares and Weighted Least Squares

Let yi,y5,....,¥,, be a random sample of size m from the KM-UGo distribution. Suppose that
y(l) < y(z) <..< y(m) denotes the corresponding ordered sample. The LS and WLS estimators of unknown

parameters of the KM-UGo distribution are obtained by minimizing the error of sum squares.

m 2
[¥(®) = Z[ﬁ[l—e_5(y(r)§®)}—L} . (11)
r=1LC ™

m+1

Equating the following non-linear equations with zero and solving them via package optim using R program
yields the LS estimators of the parameters x, and 7

oL*(©) m 50: =
{ )=Z[ - |:1—e 5(y(r>a®)}_ﬁ} E1(3:0)=0,

ou r=1Le—1
and,
oL'(®) m| e —5(¥(;):© r :|__
= 1— y(r)’ ) — = ;@ :0,
on Eie_l[ ¢ } m+1 201:©)
where

=) o) | € . -n_

E1(Vr):09)= (e _Jc? Vi) Oy =D,
: (12)

—_ e _

E2(¥(r):0) = —(Zjﬂy(;; (In y4))6(y(r):0)
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Similar to the LS estimators, the following function is minimized to yield the WLS estimators of £ and
n

_mmt)m+DA[ e [ _5(y0) —LT
WL(®)_F§1 r(m—r+1) ‘:e_1|:1 e :| m+1 .

The following non-linear equations are solved by employing an iterative method, yielding the WLS
estimators of x, and 7

6WL(®):’Z”:(m+2)(m+1)2[ e [l_e,g(y(r);@)}_ ro ]
ou =1 r(m—r+1) |[e-1 m+1 |

E1()():©)=0,

and

o1 E2(V():©)=0,

8WL(®): m (m+2)(m+1)2{ e l—l—e_g(y(’);@)}— ro
on =1 r(m—-r+l1) m+1]

where E1()(1);0) and E2()();®) are defined in Equation (12).

4.3. Anderson-Dalring Estimators

Minimizing the following function yields the CvM estimators of the given parameters ® = (z,77)7

2

m ) _
C(®) :L_l_ 5 {L[l_e—é(m),@)}_ﬁ} .
12m -l e— 2m

The following non-linear equations are solved for zero by employing an iterative method, yielding the CvM
estimators of the parameters ,7, using R program.

oC(®) m| e -5(1(;):0) 27’—1} _
= — 1= Hr)> - = ;0)=0,
ou El [ e—1 [ ¢ ] 2m 1V0):9)

and,

oC(®) m| e -5( :0) 27’—1:| _
= 1— y(}")’ — = ,® = 0,
on El[e—l[ ¢ ] 2m 200):0)

where E1()():0) and E3(Y(,);0©) are defined in equation (12).
Similarly, minimizing the following function provides the AD estimators of the given parameters
®=(umr,
m _ . .
4@ =-m—3 " log [ ¢ [1—e5(y(r)’®)ﬂ+10g[l—i[l—e6(y(m+1r)’®)ﬂ |
r=1 M 1 1

e— e—

The following non-linear equations are solved by employing an iterative method, yielding the ADEs of the
parameters y and 77

04*©) 7 2r-1| Z1(301:0) E1(¥(m-1):0)
= Z - :O,
ou r=l M F(y(r);®) S(y(r+m—1);®)
and,
04°(©) _ 5 2r—lrz (y(r);@) B (y(r+m—1);®)] o

on 2 m | F(y0):0)  S(yem1):0)
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where Z1(V(m+1-r):©) and E2(Y(m+1-r):®) are defined in Equation (12) by replacing () with (m +1—7r)

4.4. Maximum Product of Spacings

The ML approach can be replaced by the MPS method, which approaches the Kullback-Leibler information
metric. Although ML estimation is the most popular and extensively used approach, it does not work well
in some situations involving big samples and complex continuous distributions. Reference [37] introduced
the MPS approach as a substitute for the ML method. Numerous disciplines have used MPS, including
econometrics, hydrology, statistics, pure mathematics, and magnetic resonance imaging. The distance
between the CDF values at subsequent data points serves as the foundation for the MPS approach. Let Y
<Y<...< Y be the ordered statistics from the distribution with sample size m, and y) <y)<...< ym) be
the ordered observed values. The uniform spacings can be defined as follows, based on a random sample
of size m from the KM-UGo distribution

Dr (@) = F(y(r) |®) _F(y(r—l) |®) , r=12,...m+1,
where F(y(o) |®) =0, F(y(mﬂ) |®) =1 and millDr (©)=1.

The MPS estimator for the KM-UGo distribution is given by maximizing the geometric mean of the
spacings

1 m+1 1 m+l e 5 ® _5 ©
§*@©)=—— 3 InD (@)z—Zln[—[ 1—e 000 ) _(1 = 00G—)©) ﬂ
l+m 5 : l+m 5 ( ) ( )

e f—
The following non-linear equations are solved for zero by employing an iterative method, yielding the MPS
estimator of the parameters g and 77

os* @) 1 | (E106):0)+Ei (-1 9))
ou I+m .5 D,(0)

=0,

and
os* @) 1 | (E106):0)+Ei(v-1:9))
o lim = D, (©)

where Z] (y(r—l) :0) and Z) (J’(r—l) :0) are defined in Equation (12) by replacing () with (+—1).

5. NUMERICAL STUDY

The performance of various estimates was evaluated and compared in this section, using a numerical
analysis concerning their relative absolute biases (RAB), chosen PVs, and mean squared errors (MSEs) for
various sample sizes. The numerical procedures are described through the following steps.

Step 1: Generate a random sample from the KM-UGo distribution by using the inverse transformation (7)
with sample sizes m = (50, 75, 100, 125 and 150).

Step 2: Some PVs are selected as below.
Set1=(7=1,2=0.1) Set 2=(n7 =1, =0.5)
Set3= (17=1.5,4=0.3) Setd=(n =1.5,4=0.7)



1551

Amal HASSAN et al. / GU J Sci, 38(3): 1540-1564 (2025)

Set5=(r7 =2, 14=0.8) Set6=(n7 =2, =1)
Set 7=(17 = 2.5, 11 = 0.6) Set8=(77 =2.5,14=0.9)

Step 3: Obtain the parameter estimates of 7 and & using the provided estimation methods for the selected

sample sizes.

Step 4: The first three steps are 1000 times repeated for every sample size and chosen PV. Afterwards, the
MSEs and RABs of various estimates of of 77 and iz are calculated. The MSEs and RABs have the

following formulas

1000|@, — 1000, . 2
rape)- "SI0 O 0y LS, oy
1000 45| © 1000 4o

Step 5: The numerical results of the simulation study are listed in Table 3.

The findings obtained regarding the behavior of the estimated parameters from the KM-UGo distribution
are as follows:

i.

ii.

iii.
iv.

vi.

vii.

viii.

The RABs of all estimates decrease with increasing sample sizes based on different estimation
techniques (see Table (3)).
The MSEs for the y and 77 estimate increase as the value of the parameter the 4 increases for all

estimation methods.
The MSEs for the ¢ and 77 estimate rise as the PVs of 77 rise for all methods of estimation.

The MSEs of all estimates based on different methods decline as the sample size increases for
different selected PVs (see Figures 2 and 3).
The maximum likelihood estimate (MLE) and maximum product estimate (MPE) of u have the

smallest MSE compared to other estimates at values of set 5 and set 8 (Figure 4).

The MLE and ADE of 77 are the best method among all other methods at values of set 6 and set 7
(Figure 5).

When compared to other approaches assessed, the MLE and MPSE procedures typically yield more
precise and reliable parameter estimates. Moreover, regardless of the estimation technique employed,
simulation studies consistently demonstrate that larger sample sizes result in improved parameter
estimates, characterized by reduced bias and increased precision.

The study discovered that, regardless of the estimation method employed, the RABs of all parameter
estimates reduced by increasing sample size, which is in line with statistical theory. This illustrates
the anticipated pattern, which states that larger datasets typically result in parameter estimates that
are more accurate and less RABs.
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MSE of ADE for set (6)

2
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0,5
0
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—

50 75 100 125 150

Figure 2. The MSEs of the AD estimates and Cramér-von Mises estimates of the KM-UGo distribution
for all m values
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Figure 3. The MSEs of the LS estimates and WLS estimates of KM-UGo distribution for all m values
4 N N
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Figure 4. The MSEs of different u estimates of KM-UGo distribution for all m values
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MSEs for 1 for set 6 MSEs for n for set 7
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Figure 5. The MSEs for different 1 estimates of KM-UGo distribution for all m values
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PVs m ML MPS LS WLS AD CvM

JZi [/l MSE RAB MSE RAB MSE RAB | MSE RAB | MSE RAB | MSE RAB
T (PP 0.003 0.005 0.002 0.165 0.006 0.209 | 0.004 0.137 ] 0.004 0.123 ] 0.005 0.089
n 0.028 0.045 0.043 0.17 0.038 0.006 | 0.032 0.009 ]0.03 0.013 ] 0.041 0.0345
T 0.002 0.007 0.002 0.119 0.003 0.138 ] 0.002 0.086 | 0.002 0.082 | 0.003 0.061
n 0.017 0.028 0.024 0.079 0.024 0.004 ] 0.019 0.007 ]0.019 0.007 | 0.025 0.022

0.1 )z 100 0.001 0.007 0.001 0.097 0.002 0.107 ] 0.0018 [ 0.066 | 0.0018 | 0.064 | 0.002 0.05
n 0.013 0.022 0.017 0.062 0.018 0.004 [ 0.015 0.005 ]0.014 0.005 ]0.019 0.016
)z 125 0.001 0.002 0.001 0.086 0.0017 ] 0.081 [ 0.001 0.046 | 0.001 0.047 1 0.0015 | 0.036
7 0.01 0.018 0.013 0.052 0.014 0.002 ] 0.012 0.006 | 0.012 0.005 ]0.015 0.014
7 150 0.0008 | 0.0005 ] 0.0008 | 0.076 0.0014 | 0.066 | 0.001 0.039 ] 0.001 0.039 | 0.001 0.029

1 n 0.008 0.015 0.011 0.044 0.012 0.002 ] 0.01 0.005 | 0.009 0.004 | 0.012 0.011

I (P 0.072 0.006 0.056 0.161 0.291 0.31 0.171 0.193 10.171 0.182 ] 0.261 0.171
n 0.065 0.076 0.101 0.185 0.098 0.012 ] 0.081 0.013 ] 0.076 0.018 ] 0.105 0.053
T 0.045 0.009 0.038 0.115 0.124 0.192 10.077 0.115 ] 0.078 0.112 ] 0.096 0.102
n 0.039 0.047 0.056 0.125 0.063 0.01 0.051 0.009 | 0.047 0.009 ] 0.066 0.033

0.5 U 100 0.035 0.009 0.03 0.093 0.082 0.146 | 0.056 0.086 | 0.056 0.087 ] 0.068 0.082
n 0.029 0.036 0.039 0.098 0.048 0.009 ]0.038 0.007 ] 0.036 0.006 | 0.049 0.023
)z 125 0.026 0.004 0.024 0.083 0.057 0.108 | 0.039 0.061 | 0.039 0.064 | 0.049 0.059
n 0.024 0.03 0.031 0.083 0.038 0.005 ] 0.031 0.009 | 0.029 0.007 | 0.039 0.021
)z 150 0.02 0.0009 | 0.019 0.075 0.044 0.087 10.03 0.048 | 0.031 0.052 | 0.039 0.047
n 0.019 0.025 0.025 0.071 0.032 0.004 | 0.025 0.008 | 0.024 0.005 ]0.033 0.017
T 0.023 0.002 0.019 0.159 0.068 0.243 [ 0.043 0.152 [ 0.043 0.141 ] 0.049 0.114
n 0.103 0.061 0.159 0.153 0.149 0.009 [0.125 0.011 [0.118 0.015 ] 0.159 0.044
1| s 0.015 0.006 0.013 0.114 0.032 0.154 [ 0.023 0.094 | 0.023 0.091 |0.026 0.075
n 0.063 0.038 0.089 0.104 0.096 0.008 ] 0.078 0.008 ] 0.073 0.008 ] 0.1 0.028

03 U 100 0.012 0.006 0.01 0.092 0.023 0.119 ]0.017 0.072 ] 0.017 0.071 |0.019 0.06

1.5 [# 0.048 0.029 0.063 0.081 0.072 0.007 | 0.059 0.006 | 0.056 0.005 | 0.074 0.019

U 125 0.009 0.002 0.008 0.082 0.016 0.089 |0.012 0.051 ]0.012 0.052 ] 0.015 0.044
n 0.038 0.024 0.049 0.068 0.058 0.004 | 0.047 0.007 | 0.045 0.006 | 0.059 0.017
)z 150 0.007 0.0004 | 0.006 0.073 0.013 0.072 1 0.009 0.039 | 0.009 0.043 ] 0.012 0.036
n 0.031 0.02 0.039 0.058 0.048 0.003 | 0.039 0.006 | 0.037 0.005 ] 0.049 0.014

0.7 u [ 50 10.165 0.015 0.119 0.163 1.02 0.407 ] 0.669 0.259 ] 0.659 0.251 ]0.591 0.216
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PVs m ML MPS LS WLS AD CvM
yZi Ui MSE RAB MSE RAB MSE RAB | MSE RAB | MSE RAB [ MSE RAB
7 0.193 0.089 0.302 0.216 0.301 0.014 | 0.247 0.016 | 0.228 0.019 ]0.322 0.062
T 0.101 0.015 0.081 0.118 0.421 0.249 10.199 0.142 ] 0.205 0.141 | 0.289 0.141
n 0.116 0.055 0.168 0.146 0.193 0.012 ] 0.153 0.011 ]0.141 0.009 |0.202 0.038
)z 100 0.077 0.013 0.063 0.096 0.225 0.182 ] 0.136 0.106 | 0.138 0.107 ] 0.179 0.109
n 0.089 0.043 0.119 0.114 0.146 0.011 ] 0.115 0.008 ] 0.108 0.006 | 0.15 0.026
)z 125 0.057 0.007 0.049 0.086 0.147 0.134 ] 0.091 0.075 ] 0.094 0.078 10.123 0.079
n 0.071 0.036 0.092 0.097 0.118 0.006 | 0.093 0.01 0.088 0.008 | 0.122 0.024
U 150 0.044 0.003 0.039 0.078 0.11 0.107 ] 0.07 0.058 ] 0.073 0.063 | 0.096 0.062
n 0.058 0.03 0.074 0.083 0.098 0.005 ]0.077 0.009 ] 0.073 0.006 | 0.099 0.019
1 0.238 0.021 0.165 0.165 1.358 0.435 1 0.8 0.266 | 1.005 0.278 |0.997 0.252
7 0.386 0.096 0.607 0.231 0.611 0.015 ] 0.499 0.017 ] 0.459 0.021 | 0.655 0.066
T 0.142 0.019 0.111 0.119 0.632 0.273 ] 0.309 0.158 ]0.324 0.158 | 0.533 0.168
n 0.232 0.059 0.337 0.156 0.394 0.013 ] 0.31 0.012 ] 0.285 0.009 0411 0.041
0.8 U 100 0.107 0.015 0.086 0.097 0.359 0.205 ] 0.202 0.117 ] 0.206 0.119 10.278 0.125
n 0.177 0.046 0.238 0.122 0.298 0.012 ] 0.233 0.009 ]0.218 0.007 | 0.306 0.028
U 125 0.078 0.009 0.067 0.087 0.224 0.149 ]0.131 0.082 ] 0.136 0.086 | 0.185 0.089
n 0.142 0.038 0.186 0.103 0.241 0.007 ] 0.189 0.011 ]0.177 0.008 | 0.248 0.025
7 150 0.059 0.004 0.054 0.079 0.167 0.119 ]0.101 0.064 ] 0.105 0.069 |0.143 0.071
) i 0.115 0.032 0.148 0.089 0.199 0.006 | 0.155 0.009 ]0.167 0.006 | 0.204 0.021
I P 0.467 0.035 0.287 0.166 3.717 0.558 | 1.69 0.332 | 1.759 0.313 | 1.862 0.304
n 0.479 0.109 0.759 0.26 0.771 0.017 ] 0.629 0.02 0.575 0.023 | 0.831 0.076
I 0.262 0.027 0.192 0.121 1.367 0.339 10.779 0.202 ] 0.904 0.206 | 0.841 0.196
n 0.288 0.068 0.419 0.175 0.5 0.015 ] 0.391 0.013 | 0.357 0.011 ]0.523 0.046
1 U 100 0.192 0.022 0.147 0.099 0.955 0.265 | 0.431 0.144 | 0.442 0.148 ] 0.665 0.167
n 0.219 0.053 0.296 0.138 0.379 0.014 ] 0.294 0.009 | 0.273 0.007 ] 0.39 0.032
7 125 0.138 0.014 0.115 0.089 0.506 0.186 | 0.252 0.099 ]0.268 0.105 ] 0.399 0.117
7 0.175 0.044 0.231 0.117 0.308 0.008 | 0.238 0.012 ] 0.223 0.007 ]0.316 0.029
U 150 0.104 0.007 0.092 0.082 0.364 0.146 |0.19 0.077 1 0.204 0.084 10.3 0.092
7 0.143 0.037 0.184 0.1004 | 0.254 0.006 | 0.194 0.011 ]0.184 0.006 | 0.259 0.023
T 0.111 0.01 0.084 0.163 0.53 0.351 [ 0.323 0.221 [ 0.323 0.211 ]0.363 0.188
06 |25 |g 0.369 0.083 0.732 0.201 0.722 0.013 ] 0.594 0.015 ] 0.55 0.019 10.773 0.058
u |75 [0.069 0.012 0.067 0.117 0.225 0.218 ] 0.127 0.127 10.128 0.126 | 0.167 0.119
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PVs m ML MPS LS WLS AD CvM

)Zi MSE RAB MSE RAB MSE RAB | MSE RAB | MSE RAB [ MSE RAB
n 0.283 0.051 0.407 0.136 0.464 0.011 ] 0.369 0.01 0.341 0.009 | 0.484 0.036
)z 100 0.053 0.011 0.045 0.095 0.138 0.163 | 0.089 0.096 | 0.089 0.096 |0.113 0.094
n 0.216 0.039 0.288 0.106 0.35 0.105 ] 0.278 0.008 ] 0.261 0.006 | 0.36 0.025
)z 125 0.039 0.006 0.035 0.084 0.093 0.12 0.061 0.068 | 0.062 0.07 0.079 0.068
n 0.173 0.033 0.225 0.089 0.283 0.006 | 0.226 0.009 ] 0.212 0.007 ] 0.291 0.022
)z 150 0.031 0.002 0.028 0.076 0.071 0.096 | 0.047 0.053 ] 0.049 0.057 | 0.062 0.055
n 0.141 0.028 0.179 0.077 0.234 0.005 | 0.185 0.008 ] 0.176 0.006 | 0.239 0.018
T 0.333 0.027 0.221 0.165 2.485 0.519 | 0.958 0.285 [ 1.293 0.293 1417 0.278
n 0.675 0.103 1.065 0.46 1.078 0.016 [ 0.88 0.019 | 0.806 0.022 ] 1.158 0.071
T 0.194 0.023 0.147 0.119 0.798 0.294 ] 0.484 0.178 ] 0.52 0.179 10.738 0.183
7 0.406 0.064 0.589 0.166 0.697 0.014 ] 0.546 0.012 1 0.5 0.01 0.728 0.044

0.9 )z 100 0.145 0.018 0.114 0.098 0.576 0.232 ] 0.296 0.129 ] 0.302 0.132 ] 0.428 0.144
n 0.309 0.049 0.417 0.13 0.527 0.013 ] 0.411 0.009 | 0.383 0.007 ] 0.543 0.029
U 125 0.105 0.011 0.089 0.088 0.337 0.166 | 0.184 0.09 0.193 0.095 10.273 0.103
n 0.247 0.041 0.325 0.11 0.427 0.007 | 0.333 0.012 ] 0.312 0.009 ] 0.439 0.027
U 150 0.079 0.006 0.071 0.08 0.247 0.132 1 0.139 0.07 0.148 0.077 10.208 0.081
n 0.201 0.035 0.259 0.095 0.353 0.006 [ 0.273 0.011 | 0.258 0.006 ] 0.361 0.023
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6. APPLICATIONS TO REAL DATA

This section presents a data analysis aimed at evaluating the KM-UGo distribution's goodness-of-fit in
comparison to five other models, including the Kumaraswamy (Kum) distribution, the Topp-Leone (TL)
distribution, the unit Gamma/Gompertz (UG/Go) distribution [38], the UGo distribution, the unit log-
logistic (ULL) distribution [39], and the new power function (NP) distribution [40].

6.1. First Data Set

The first real data set was previously used by Reference [41] recorded the data as

0.68879  0.50813 0.66621 0.74526  0.86947 0.88076  0.84688 0.91463  0.75655
0.55329  0.79042  0.82429 092593 0.80172 0.79042  0.83559  0.68879  0.74526
0.80172  0.93722  0.85818 0.98238  0.29359 0.99368 0.67751 0.80172  0.93722
0.63234  0.64363  0.73397 0.89205 0.64363 0.77913  0.41779 0.58717  0.88076
0.91463  0.80172  0.68879  0.72267 0.90334 0.76784  0.93722  0.51454  0.38392

The summary of these datasets has been discussed as follows: 01 = 067751, 0> =0.79042, O3 = 0.0.8808,
mean= 0.7480, 3 =-1.17406 and a4 =4.185955. The MLEs and standard errors (SEs) for all models are

given in Table 4. The measures of fit statistic using the maximized log-likelihood (-2logL), Akaike
information criterion (£)), Bayesian information criterion (£>), the correct Akaike information criterion
(E3), Hannan-Quinn information criterion (£4), the Kolmogorov Smirnov test (KST) statistic values along
with P-value, Cramér-von Mises test (CvMT) and Anderson-Dalring test (ADT) are calculated in Table 5.
The best model to match the data can be determined by looking at the models with the lowest values for -

2logl, E1, E», Es, E4, KST, CvMT, ADT, and the biggest P-value.

Table 4. MLEs and SEs of all model parameters for the first data

Distributions
paramefers UG uw KM-UGo NP UHLG
M 13.274 8.848 29.059
SE (29.15) (1.319) (64.485) T T
n 0.214 0.128 0.901
SE (0.428) T (0.273) (0.051) T
A 2.246 7.471
SE T T _ (0.863) (1.743)
Table 5. The statistics measures for the first data

Measures Distribution

UG TL KM-UGo NP UHLG
2log L -19.954 -14.101 -20.452 -17.969 -15.329
2 -35.908 -26.202 -36.903 -31.938 -28.658
E, -32.295 -24.395 -33.289 -28.325 -26.851
Es -35.623 -26.109 -36.617 -31.653 -28.565
Ey -34.562 -25.528 -35.556 -30.592 -27.985
KST 0.125 0.183 0.095 0.142 0.159
P-value 0.484 0.1 0.807 0.321 0.201
CvMT 0.07 0.081 0.07 0.093 0.501
ADT 0.475 0.544 0.419 0.606 0.438
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Figure 6. Nonparametric plots for the first data of the KM-UGo distribution
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Figure 7. The CDF plot (vight) with empirical line, fitted PDF plot (left) for the first data of the KM-

KM-UGo distribution offers a noticeably better fit than the other four models, according to the data. The
panel of Figure 6 shows that the box plot is left-skewed. Also, the total test on time (TTT) plot exhibits a
concave shape initially and then transitions to a convex shape suggesting a unimodal HF. Figure 7 presents

UGo distribution

the empirical findings for the KM-UGo distribution.

6.2.Second Data Set

The second dataset consists of 48 rock samples from a petroleum reservoir, as reported in [42]. These
samples represent twelve core specimens taken from the reservoir, with each core being analyzed across
four cross-sections. For each core sample, permeability was measured, and each cross-section was
evaluated based on three variables: the total pore area, the total pore perimeter, and the pore shape. The

dataset is recorded as follows:

0.090
0.204
0.204
0.281
0.198
0.329

0.149
0.162
0.263
0.179
0.327
0.230

0.183
0.151
0.200
0.192
0.154
0.464

0.117
0.148
0.145
0.133
0.276
0.420

0.122
0.229
0.114
0.225
0.177
0.201

0.167
0.232
0.219
0.341
0.439
0.263

0.190
0.173
0.240
0.312
0.164
0.128

0.164
0.153
0.162
0.276
0.254
0.200
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The summary of these datasets has been listed: 01 =0.1600, 0> =0.1990, Qs =0.2562, mean=0.2155, a3 =
1.215241 and a4 =4.234513. The MLEs and SEs for all models are given in Table 6 The measures of fit

statistic including -2logL, £, E,, E;, E,, KST values along with P-value, CvMT and ADT are calculated

in Table 7. The model with minimum values for -2logL, Ei, E», E3, Es, KS, CvMT, ADT, and largest P-
value can be chosen as the best model to fit the data. The KM-UGo distribution offers a noticeably better

Amal HASSAN et al. / GU J Sci, 38(3): 1540-1564 (2025)

fit than the other four models, according to the data.

Table 6. MLEs and SEs of all model parameters for the second data

Frequency

T
0.0

T T T
0.1 0z 0.3 0.4

0.5

Parameters Distributions
UGo Kum KM-UGo UG/Go ULL
H 0.008 0.013 2.783 7.417
SE (0.004) e (0.007) (0.385) (0.901)
7 2.731 42.93 2.62 1.678 1.596
SE (0.263) (16.62) (0.281) (0.779) (0.054)
A 2.67 134.207
SE T (0.286) T (52.05) _
Table 7. The statistical measures for the second data
Measures Models
UGo Kum KM-UGo UG/Go ULL

2log L -56.913 -52.507 -57.105 -52.768 -55.458
E; -109.82 -101.01 -110.21 -99.537 -106.92
E, -106.08 -97.271 -106.47 -93.923 -103.175
E; -109.56 -100.75 -109.94 -98.992 -106.651
E, -108.41 -99.599 -108.79 -97.415 -105.503
KST 0.082 0.142 0.067 0.164 0.097
P-value 0.906 0.287 0.982 0.1501 0.756
CvMT 0.028 0.205 0.017 0.028 0.112
ADT 0.218 1.293 0.209 0.289 0.708

Histogram Kernel Density Violin Plot

02 03 04

01

Sample Quarties
01 02 03 04

Theoretical Quantiles

Figure 8. Nonparametric plots for the second data of the KM-UGo distribution
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Fitted PDF Empirical vs Fitted CDF
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Figure 9. The CDF plot (right) with empirical line, fitted PDF plot (left) for the first data of the KM-
UGo distribution

Figure 8 illustrates the positive skewness of the box plot which indicate that most rock samples have lower
permeability values, with a few samples having significantly higher permeability, while the panel displays
the concave, or rising, TTT plot meaning that permeability have an increasing failure rate, with most
samples exhibiting lower values and a few samples showing significantly higher values. This could reflect
heterogeneity in the reservoir and the presence of rare but influential characteristics. Figure 9 presents the
empirical findings for the KM-UGo distribution percentage of rock samples from a petroleum reservoir
reported in Table 6. Real-data applications suggest that the KM-UGo distribution offers a more flexible
alternative to the UGo distribution as a baseline distribution. Analyses performed using two distinct real-
world datasets demonstrate the practical utility of the model, indicating that the KM-UGo model provides
a better fit than other unit distributions for these datasets.

Subsequently, various estimates for the KM-UGo distribution were derived utilising the recommended
estimation techniques for both real datasets. The Broyden—Fletcher—Goldfarb—Shanno (BFGS)
optimization algorithm was employed to determine the optimal parameter estimates. This quasi-Newton
method is widely recognized for its efficiency and robustness in solving unconstrained nonlinear
optimization problems, making it particularly suitable for maximizing likelihood functions or minimizing
objective functions in statistical estimation. We note that parameter estimation via the MPS method is
impossible with these datasets, as they contain equal values. Table 8 presents the parameter estimates and
their SEs for the KM-UGo distribution obtained using various estimation methods for both datasets.

Table 8. The parameter estimates using various estimation techniques of KM-UGo

Parameter Data ML LS WLS AD CvM

H First data 32.00215 2.711166 3.501802 12.0881 2.057336
n 0.116236 1.215248 0.963418 0.304979 1.528709
H Second 0.013115 0.012899 0.011791 0.010484 0.011747
n data 2.618305 2.643862 2.690002 2.757091 2.702258

7. CONCLUDING REMARKS

In this paper, a new heavy-tailed distribution which is called KM-UGo distribution is suggested and
presented. Moments, incomplete moments, PWM, residual and reversed residual life’s, quantile function,
and entropy measures of the KM-UGo distribution are obtained. Six estimation methods are used in
estimating the unknown parameters of the new KM-UGo distribution. A simulation study examined the
asymptotic behavior of the KM-UGo distribution's parameter estimates. From the simulation study, it can
be noted that the MSEs and RABs of the parameter estimate decrease with increasing sample size. Also,
the MPS method is the best for g estimate, and the ML method is the best for 77 estimate compared to
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other methods. Finally, the applicability of the suggested KM-UGo distribution in lifetime data analysis
was demonstrated using two real datasets. The outcomes made it obvious that the KM-UGo distribution
provides a superior fit than the other compared distributions. The current model has some limitations.
Notably, parameter estimation for the KM-UGo distribution currently relies on classical methods, which
are primarily applicable to complete datasets. Future research directions include implementing Bayesian
estimation methods for the KM-UGo distribution's parameters. Additionally, extending the model to handle
censored data and conducting broader real-world applications are recommended to assess its practical
utility.
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