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Abstract. Let Pµ represent the class of analytic functions ℘(z) defined in the open unit disc ∆ = {z :

|z| < 1} with ℘(0) = 1 and ∣∣∣∣℘(z)− 1

℘(z) + 1

∣∣∣∣ < µ.

In this paper, we introduce two new subclasses Lu,v(α, β, µ) and Lλ
u,v(α, β, µ) of the class of close-to-star

functions that satisfy the conditions:(
α
(Lu,vf(z))′

g′(z)
+ β

Lu,vf(z)

g(z)

)
∈ Pµ

and (
α
((Lu,vf(z))′)λ

(g′(z))λ
+ β

(Lu,vf(z))λ

(g(z))λ

)
∈ Pµ,

respectively. Functions f in the new classes are normalized analytic functions defined in the unit

disc ∆ such that g is starlike and Lu,v is the Carlson-Shaffer operator. Some reported results for

f ∈ Lu,v(α, β, µ) include the integral representation formula, some coefficient estimates, Fekete-Szegö
estimates for real and complex parameters, and some inclusion properties. All the results are sharp.

Again, some early coefficient estimates for functions f ∈ Lλ
u,v(α, β, µ) are investigated. Furthermore,

a number of remarks to show the relationship between the new classes and some existing classes are
clearly discussed.

2020 Mathematics Subject Classification. 30C45, 30C55.
Keywords. Close-to-star function, starlike function, Carlson-Shaffer operator, integral representation,

coefficient estimate, Fekete-Szegö estimate, inclusion property.

1. Introductory Statement

Let A denote the class of complex-valued functions of the infinite series type

f(z) = z + a2z
2 + a3z

3 + · · · (1)

which are analytic in the unit disc

{z : z ∈ C and |z| < 1} = ∆

and normalized by the conditions: f(0) = 0 = f ′(0)− 1.
The image domain f(∆) of an analytic-univalent function f describes a number of nice geometries and

geometric characterizations of the function f . A geometric function is a complex-valued function whose
image domain is a description of some certain geometries such as star, close-to-star, convex, close-to-
convex, spiral, etc. The study of such functions is known as the Theory of Geometric Functions; a branch
of Complex Analysis that explains the characteristics of geometric properties of the image domain f(∆).
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A function g ∈ A of the infinite series type

g(z) = z + b2z
2 + b3z

3 + · · · (z ∈ ∆) (2)

is called a starlike function if and only if

ℜ
(
zg′(z)

g(z)

)
> 0 (z ∈ ∆).

We shall let S⋆ represent the class of such functions.
Another class of interest is the class P of functions analytic in ∆ and having positive real parts in the

open-right-half-plane of the complex number space. An analytic function ℘ of the infinite series type

℘(z) = 1 + p1z + p2z
2 + p3z

3 + · · · (3)

is in P if it satisfies the conditions: ℘(0) = 1, ℜ℘(z) > 0, and z ∈ ∆. Functions in class P are well-known
to play significant role in the establishment of many properties of analytic functions. Further, let Pµ

represent the class of functions ℘ of type (3) that satisfy the conditions:∣∣∣∣℘(z)− 1

℘(z) + 1

∣∣∣∣ < µ (0 < µ ≦ 1, z ∈ ∆).

From geometric viewpoint, ℘ ∈ Pµ if and only if, ℘(0) = 1 and

℘(∆) =

{
ω : ω ∈ C and

∣∣∣∣ω − 1 + µ2r2

1− µ2r2

∣∣∣∣ < 2µr

1− µ2r2
, 0 < r < 1

}
such that the image domain ℘(∆) is an open symmetric disc whose center is at a point where x =
1+µ2r2

1−µ2r2 > 0 on the real axis. This disc has diameter endpoints d1 = ℘(−r) = (1 − µr)/(1 + µr) and

d2 = ℘(r) = (1 + µr)/(1− µr) such that 0 < d1 < 1 < d2. Obviously, Pµ ⊆ P. See Goodman [9, p.111]
and Thomas et al. [25, p.23] for more information.

1.1. The Class of Close-to-star Functions. A function f ∈ A is said to be close-to-star if and only
if it satisfies the conditions:

ℜ
(
f(z)

g(z)

)
> 0 (g ∈ S⋆, z ∈ ∆).

The class of close-to-star functions was introduced by Reade [20] and notably, it is not necessary that
close-to-star functions are univalent in ∆. The class of close-to-star functions and some of its subclasses
have been investigated by many authors such as in [7, 13, 15, 21]. One may refer to the standard text of
Goodman [9, pp.97-99] for more information.

In 1991, Sudharsan et al. [23] introduced the subclass CS(α, β, µ) of close-to-star functions. A function
f ∈ A belongs to the class CS(α, β, µ) if it satisfies the conditions:(

α
f ′(z)

g′(z)
+ β

f(z)

g(z)

)
∈ Pµ (z ∈ ∆),

0 < µ ≦ 1, α ≧ 0, β > 0 and g ∈ S⋆. Likewise, Babalola et al. [3] studied the class C⋆
λ which contains

functions f ∈ A that satisfy the conditions:

ℜ

(
(f(z))

λ

(g(z))λ

)
> 0 (z ∈ ∆),

where λ is a positive real number and g ∈ S⋆. Some generalized subclasses of the class of close-to-star
functions involving operators such as Carlson-Shaffer linear operator, Opoola differential operator, and
Srivastava-Attiya operator, were respectively studied in [1, 14,22].
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1.2. The Carlson-Shaffer Linear Operator. In [6], the Carlson-Shaffer linear operator Lu,v : A −→
A is defined by the relation

Lu,vf(z) = δ(u, v; z) ⋆ f(z) = z +

∞∑
s=2

(k)s−1asz
s, (4)

where the notation ’⋆’ means Hadamard product (see [9, 24,25] for definition),

(k)s =
(u)s
(v)s

, u ∈ C, v ∈ C \ {0,−1,−2, . . .},

and the function

δ(u, v; z) = z +

∞∑
s=2

(u)s−1

(v)s−1
zs

is known as the incomplete beta function. More so, the term (γ)s is the Pochhammer symbol which can
be expressed in terms of gamma function

(γ)s =
Γ(γ + s)

Γ(γ)
=

{
1 (s = 0),

γ(γ + 1)(γ + 2) · · · (γ + s− 1) (s ∈ N).
(5)

We however, recommend the work of Oyekan and Opoola [16, Lemma 2.5] for some simplifications and
applications of the gamma function in (5).

2. New Subclasses of Close-to-star Functions

Motivated by the aforementioned works, we therefore, introduce two new subclasses Lu,v(α, β, µ) and
Lλ
u,v(α, β, µ) of the class of close-to-star functions using the Carlson-Shaffer operator introduced in [6]

and applied in [1, 16].

Definition 1. A function f ∈ A is said to belong to the class Lu,v(α, β, µ) if(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
∈ Pµ (6)

and it is said to belong to the class Lλ
u,v(α, β, µ) if(

α
((Lu,vf(z))

′)λ

(g′(z))λ
+ β

(Lu,vf(z))
λ

(g(z))λ

)
∈ Pµ (7)

where 0 < µ ≦ 1, α ≧ 0, β > 0, α + β = 1, g ∈ S⋆, λ is a positive real number, and Lu,vf(z) is as
defined by (4). In addition, the power λ is meant as principal determinations only.

Remark 1. Some earlier known subclasses of classes Lu,v(α, β, µ) and Lλ
u,v(α, β, µ) are enumerated as

follows.

(1) L1,1(0, 1, 1) is the class of close-to-star functions introduced by Reade [20].
(2) L1,1(α, 1− α, 1) is the class CS(α) of α-close-to-star functions studied by Kasi [12].
(3) L1,1(α, 1− α, µ) is the class CS(α, µ) introduced by Kasi [11].
(4) Lλ

1,1(0, 1, 1) is the class C∗
λ introduced by Babalola et al. [3].

(5) Lu,v(0, 1, 1) is the class CS⋆
u,v introduced by Akbarally et al. [1].

(6) L1,1(α, β, µ) is the class CS(α, β, µ) introduced by Sudharsan et al. [23].

3. A Set of Lemmas

Let g and ℘ be as defined in (2) and (3), respectively. More so, let

w(z) = w1z + w2z
2 + · · · ∈ W

be an analytic function such that w(0) = 0, |w(z)| < 1 and z ∈ ∆. The class W is known as the class of
Schwarz (or unit bounded) functions. We shall need the following lemmas in proving our results.

Lemma 1 ( [9, 19,25]). Let g ∈ S⋆, then

|bs| ≦ s, ∀s ≧ 2.
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Lemma 2 (Jack’s Lemma, [10]). Let w be an analytic and a non-constant function in ∆ such that
w(0) = 0. If |w(z)| attains its maximum value at the point z0 with |z0| = r, then

z0w
′(z0) = kw(z0), ∀k ≧ 1.

Lemma 3 ( [5]). Let w ∈ W, then
|w2| ≦ 1− |w1|2.

Lemma 4. ( [18, Lemma 2]). Let ℘ ∈ Pµ, then

|ps| ≦ 2µ, ∀s ≧ 1, and 0 < µ ≦ 1.

The result is sharp for the function ℘0(z) =
1− µzs

1 + µzs
.

Lemma 5 ( [12,17]). Let ℘ ∈ Pµ, then there exists a function w ∈ W such that

℘(z) =
1− µw(z)

1 + µw(z)
, 0 < µ ≦ 1, and z ∈ ∆.

Lemma 6. Let ℘ ∈ Pµ and 0 < µ ≦ 1.

(1) Then, ∣∣∣∣p2 − p21
2

∣∣∣∣ ≦ 2µ− |p1|2

2µ
. (8)

(2) If η ∈ R, then

∣∣∣∣p2 − η
p21
2

∣∣∣∣ ≦


2µ2(1− η) for η ≦ µ−1
µ ;

2µ for µ−1
µ ≦ η ≦ µ+1

µ ;

2µ2(η − 1) for η ≧ µ+1
µ .

(9)

(3) And if η ∈ C, then ∣∣∣∣p2 − η
p21
2

∣∣∣∣ ≦
{

2µ for |1− η| ≦ 1
µ ;

2µ2|1− η| for |1− η| ≧ 1
µ .

(10)

In another way, ∣∣∣∣p2 − η
p21
2

∣∣∣∣ ≦ 2µmax
{
1, µ|1− η|

}
. (11)

Proof. Since ℘ ∈ Pµ, then by Lemma 5 we can write

℘(z) =
1− µw(z)

1 + µw(z)
= (1− µw(z))(1 + µw(z))−1 (12)

or
1 + p1z + p2z

2 + · · · = 1− 2µw1z + 2µ(µw2
1 − w2)z

2 + · · · .

Comparing corresponding coefficients means

p1 = −2µw1 =⇒


p2
1

2 = 2µ2w2
1

w1 = p1

−2µ

|w1|2 = |p1|2
4µ2

(13)

and
p2 = 2µ(µw2

1 − w2) = 2µ2w2
1 − 2µw2. (14)

Considering (13) and (14) implies that ∣∣∣∣p2 − p21
2

∣∣∣∣ ≦ 2µ|w2|

and the application of Lemma 3 means∣∣∣∣p2 − p21
2

∣∣∣∣ ≦ 2µ(1− |w1|2). (15)
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Some simplifications after putting the third result in (13) into (15) gives inequality (8).
Also, considering a real number η shows that∣∣∣∣p2 − η

p21
2

∣∣∣∣ = ∣∣∣∣p2 − p21
2

+
p21
2

− η
p21
2

∣∣∣∣ ≦ ∣∣∣∣p2 − p21
2

∣∣∣∣+ |p1|2

2
|1− η| (16)

and using (8) in (16) means that∣∣∣∣p2 − η
p21
2

∣∣∣∣ ≦ (2µ− |p1|2

2µ

)
+

|p1|2

2
|1− η|

or ∣∣∣∣p2 − η
p21
2

∣∣∣∣ ≦ 2µ− |p1|2

2µ
(1− µ|1− η|). (17)

So, setting (1− µ|1− η|) ≧ 0 =⇒ µ−1
µ ≦ η ≦ µ+1

µ which shows that inequality (17) has the least upper

bound of 2µ. This is the second result in (9). On the other hand, setting (1−µ|1−η|) ≦ 0 =⇒ η ≦ µ−1
µ

or η ≧ µ+1
µ which shows that the least upper bound of inequality (17) can be expressed as 2µ2|1 − η|.

This is the first and third results in (9).
To prove inequality (10), observe that for η ∈ C in (17), setting (1− µ|1− η|) ≧ 0 =⇒ |1− η| ≦ 1

µ or

|1− η| ≧ 1
µ . For |1− η| ≦ 1

µ the least upper bound is 2µ and for |1− η| ≧ 1
µ the least upper bound can

be expressed as 2µ2|1− η| and the proof is complete. □

Remark 2. Setting µ = 1 in (8) gives the result of Pommerenke [19, p.165] and setting µ = 1 in (9)
and (10) gives the results of Babalola and Opoola [4, Corollary 2.5].

4. The Main Results

In this paper, we obtain the integral representation formula, some sharp early coefficient estimates,
the Fekete-Szegö estimates (for real and complex parameters) and some inclusion relations for functions
f ∈ Lu,v(α, β, µ). Further, we feature the early coefficient estimates for functions f ∈ Lλ

u,v(α, β, µ).

4.1. Integral Representation of f ∈ Lu,v(α, β, µ).

Theorem 1. A function f in (1) is in the class Lu,v(α, β, µ) if and only if there exists a function g ∈ S⋆

and a function ℘ ∈ Pµ such that

Lu,vf(z) =
1

α(g(z))
β
α

∫ z

0

(g(t))
β
α g′(t)℘(t)dt (18)

where (α+ β) = 1 and the powers appearing in the formula are meant as principal values only.

Proof. Let f ∈ Lu,v(α, β, µ) so that for g ∈ S⋆,(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
= ℘(z). (19)

Multiplying both sides of (19) by 1
αg

′(z)(g(z))
β
α yields

(Lu,vf(z))
′(g(z))

β
α +

β

α
(g(z))

β
α−1g′(z)Lu,vf(z) =

1

α
(g(z))

β
α g′(z)℘(z)

where an equivalence relation gives

d

dz
(Lu,vf(z)(g(z))

β
α ) =

1

α
(g(z))

β
α g′(z)℘(z).

The integration of both sides with respect to z from 0 to z yields the representation formula (18). We
obtain the converse from the fact that Lu,vf(z) given by (4) has a Taylor’s series type

Lu,vf(z) = z + (k)1a2z
2 + · · · .

□
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Remark 3. It is known that the extremal functions in S⋆ and Pµ are g0(z) =
z

(1− z)2
and ℘0(z) =

1 + µz

1− µz
, respectively. Hence, following from (18), we get

Lu,vf(z) =
1

α
( √

z
(1−z)

) 2β
α

∫ z

0

( √
t

(1− t)

) 2β
α (1 + t)(1 + µt)

(1− t)3(1− µt)
dt (20)

as the extremal function in the class Lu,v(α, β, µ). Some other examples of functions in Lu,v(α, β, µ) are
reported as follows.

Example 1. Take gs(z) = z + szs ∈ S⋆ and ℘(z) = 1 ∈ Pµ, then from (18) we get

Lu,vf(z) =
1

α(gs(z))
β
α

∫ z

0

(gs(t))
β
α g′s(t)℘(t)dt

=
1

α(z + szs)
β
α

∫ z

0

(t+ sts)
β
α (1 + s2ts−1)dt

= z +
s

α
(1− β)zs (s ≧ 2, α > 0, α+ β = 1). (21)

Observe that we can harvest infinitely many functions from (21) by varying values for s, α and β. Clearly,
the class Lu,v(α, β, µ) is non-void of functions.

4.2. Coefficient Estimates for f ∈ Lu,v(α, β, µ).

Theorem 2. Let the function f in (1) belong to the class Lu,v(α, β, µ), then for (α+ β) = 1,

|a2| ≦
2 [3− (α+ 2β) + µ]

(2α+ β)|(k)1|
(22)

and

|a3| ≦
(2α+ β){12 + 14µ− 3(α+ 3β)} − 8µ

(2α+ β)(3α+ β)|(k)2|
. (23)

The results are sharp for the extremal function in (20).

Proof. Since f ∈ Lu,v(α, β, µ) and (α+ β) = 1, then we can write (6) as(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
= ℘(z)

or

α(Lu,vf(z))
′g(z) + βLu,vf(z)g

′(z) = ℘(z)g(z)g′(z). (24)

Putting (2), (3), and (4) into (24) simplifies to

z + {(α+ 2β)b2 + (2α+ β)(k)1a2}z2

+ {(α+ 3β)b3 + 2(k)1b2a2 + (3α+ β)(k)2a3}z3 + · · ·
= z + {3b2 + p1}z2 + {4b3 + 2b22 + 3b2p1 + p2}z3 + · · · . (25)

The comparison of both sides of (25) means

a2 =
[3− (α+ 2β)]b2 + p1

(2α+ β)(k)1
(26)

and

a3 =
4− (α+ 3β)

(3α+ β)(k)2
b3 +

3(2α+ β)− 2

(2α+ β)(3α+ β)(k)2
b2p1 +

1

(3α+ β)(k)2
p2. (27)

From (26),

|a2| ≦
|[3− (α+ 2β)]||b2|+ |p1|

(2α+ β)|(k)1|



552 R.S. SRINIVASAN, R. EZHILARASI, A.O. LASODE, T.V. SUDHARSAN

so that the use of inequalities |ps| ≦ 2µ (Lemma 4) and |bs| ≦ s (Lemma 1) yields (22). More so, from
(27) we get

|a3| ≦
|4− (α+ 3β)|
(3α+ β)|(k)2|

|b3|+
|3(2α+ β)− 2|

(2α+ β)(3α+ β)|(k)2|
|b2||p1|+

1

(3α+ β)|(k)2|
|p2|

and using the inequalities |ps| ≦ 2µ (Lemma 4) and |bs| ≦ s (Lemma 1) yields (23). □

Remark 4. We observe the following existing results.

(1) When α = 0 and u = v = µ = β = 1, then (22) and (23) will reduce to the estimates:

|a2| ≦ 4 and |a3| ≦ 9

which are the results of Reade [20, Theorem 4].
(2) When u = 1 = v and β = 1− α, then (22) and (23) will reduce to the estimates:

|a2| ≦ 2

(
1 + µ+ α

(1 + α)

)
and |a3| ≦

6α2 + α(14µ+ 9) + 6µ+ 3

(1 + α)(1 + 2α)

which are the results of Kasi [11, Theorem 4].
(3) When u = v = µ = 1 and β = 1− α, then (22) and (23) will reduce to the estimates:

|a2| ≦ 2 +
2

(1 + α)
and |a3| ≦

α(6α+ 23) + 9

(1 + α)(1 + 2α)

which are the results of Kasi [12, Theorem 3.1.4].
(4) When α = 0 and β = 1 = µ, then (22) and (23) will reduce to the estimates:

|a2| ≦
4

|(k)1|
and |a3| ≦

9

|(k)2|
which are the results of Akbarally et al. [1, Theorem 2.1].

(5) When u = 1 = v, then (22) and (23) will reduce to the estimates:

|a2| ≦
2 [µ+ 3− (α+ 2β)]

(2α+ β)

and

|a3| ≦
2µ(10α+ 3β) + 4(4α− β) + 2α2 + 7β2 + 3αβ

(3α+ β)(2α+ β)

which are the results of Sudharsan et al. [23, Theorem 2] although with an erratum for the bound
on |a3|.

4.3. Fekete-Szegö Estimtates. Another well investigated type of coefficient problems of functions f
in (1) is the Fekete-Szegö functional defined by

F(ξ, f) = |a3 − ξa22| (28)

where a2 and a3 are coefficients of f in (1), and ξ is a real (or complex) parameter. The functional (28)
was initiated by Fekete and Szegö [8] and it has been considered for several subclasses of A. One may
explore the works in [2, 13,14] for more information.

Theorem 3. Let the function f in (1) belong to the class Lu,v(α, β, µ) and let (α+β) = 1. If ξ and (k)s
are real parameters, then

|a3 − ξa22| ≦



Λα
β(µ, k1, k2, ξ)−

0α
β(µ, k1, k2, ξ)

(3α+ β)|(k)2|
for ξ ≦ (µ− 1)Ωα

β(µ, k1, k2);

Λα
β(µ, k1, k2, ξ) +

2µ

(3α+ β)|(k)2|
for (µ− 1)Ωα

β(µ, k1, k2) ≦

ξ ≦ (µ+ 1)Ωα
β(µ, k1, k2);

Λα
β(µ, k1, k2, ξ) +

0α
β(µ, k1, k2, ξ)

(3α+ β)|(k)2|
for ξ ≧ (µ+ 1)Ωα

β(µ, k1, k2);

(29)
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where

Λα
β(µ, k1, k2, ξ) =

3(2α+ β){4− (α+ 3β)}+ 4µ{3(2α+ β)− 2}
(2α+ β)(3α+ β)|(k)2|

+
4|ξ|{3− (α+ 2β)}{2µ+ [3− (α+ 2β)]}

(2α+ β)2|(k)1|2
, (30)

0α
β(µ, k1, k2, ξ) =

2µ2{2(3α+ β)(k)2ξ − (2α+ β)2(k)21}
(2α+ β)2(k)21

, (31)

and

Ωα
β(µ, k1, k2) =

(2α+ β)2(k)21
2µ(3α+ β)(k)2

. (32)

Proof. Let f ∈ Lu,v(α, β, µ), then putting (26) and (27) into (28), and using the fact that (α + β) = 1
with some groupings and simplifications, we get∣∣a3 − ξa22

∣∣ = ∣∣∣∣∣4− (α+ 3β)

(3α+ β)(k)2
b3 −

[3− (α+ 2β)]2

(2α+ β)2(k)21
ξb22

+

{
3(2α+ β)− 2

(2α+ β)(3α+ β)(k)2
− 2[3− (α+ 2β)]

(2α+ β)2(k)21
ξ

}
b2p1

+
1

(3α+ β)(k)2

{
p2 −

2(3α+ β)(k)2ξ

(2α+ β)2(k)21
× p21

2

} ∣∣∣∣∣
or ∣∣a3 − ξa22

∣∣ ≦ 4− (α+ 3β)

(3α+ β)|(k)2|
|b3|+

[3− (α+ 2β)]2

(2α+ β)2|(k)1|2
|ξ||b2|2

+

{
3(2α+ β)− 2

(2α+ β)(3α+ β)|(k)2|
+

2[3− (α+ 2β)]

(2α+ β)2|(k)1|2
|ξ|
}
|b2||p1|

+
1

(3α+ β)|(k)2|

∣∣∣∣p2 − 2(3α+ β)(k)2ξ

(2α+ β)2(k)21
× p21

2

∣∣∣∣ . (33)

From (33), consider the expression∣∣∣∣p2 − 2(3α+ β)(k)2ξ

(2α+ β)2(k)21
× p21

2

∣∣∣∣ = ∣∣∣∣p2 − η
p21
2

∣∣∣∣
for

η =
2(3α+ β)(k)2ξ

(2α+ β)2(k)21
.

Now, taking the first inequality in (9) (Lemma 6) implies∣∣∣∣p2 − η
p21
2

∣∣∣∣ ≦ 2µ2(1− η) = 2µ2

(
1− 2(3α+ β)(k)2ξ

(2α+ β)2(k)21

)
= −0(α, β, µ, k, ξ) (34)

in (31) and

η ≦
µ− 1

µ
=⇒ 2(3α+ β)(k)2ξ

(2α+ β)2(k)21
≦

µ− 1

µ
=⇒ ξ ≦ (µ− 1)Ω(α, β, µ, k) (35)

in (32). Also, taking the second inequality in (9) (Lemma 6) implies∣∣∣∣p2 − η
p21
2

∣∣∣∣ ≦ 2µ (36)

and

µ− 1

µ
≦ η ≦

µ+ 1

µ
=⇒ µ− 1

µ
≦

2(3α+ β)(k)2ξ

(2α+ β)2(k)21
≦

µ+ 1

µ

so that

(µ− 1)Ω(α, β, µ, k) ≦ ξ ≦ (µ+ 1)Ω(α, β, µ, k) (37)
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in (32). Lastly, taking the third inequality in (9) (Lemma 6) implies∣∣∣∣p2 − η
p21
2

∣∣∣∣ ≦ 2µ2(η − 1) = 2µ2

(
2(3α+ β)(k)2ξ

(2α+ β)2(k)21
− 1

)
= 0(α, β, µ, k, ξ) (38)

in (31) and

η ≧
µ+ 1

µ
=⇒ 2(3α+ β)(k)2ξ

(2α+ β)2(k)21
≧

µ+ 1

µ
=⇒ ξ ≧ (µ+ 1)Ω(α, β, µ, k) (39)

in (32). Putting (34 – 39) into (33), using Lemmas 1 and 4, and further simplification give the result in
(29).

□

Theorem 4. Let the function f in (1) belong to the class Lu,v(α, β, µ) and let (α+β) = 1. If ξ or (and)
(k)s are complex parameters, then∣∣a3 − ξa22

∣∣ ≦ Λα
β(µ, k1, k2, ξ) +

2µ

(3α+ β)|(k)2|
max

{
1, φ

}
(40)

where

φ = µ

∣∣∣∣1− 2(3α+ β)(k)2ξ

(2α+ β)2(k)21

∣∣∣∣ = µ
|2(3α+ β)(k)2ξ − (2α+ β)2(k)21|

(2α+ β)2|(k)1|2

and Λα
β(µ, k1, k2, ξ) is as defined in (30).

Proof. Using Lemmas 1 and 4; and inequality (11) (Lemma 6) in (33) yields the result in (40). □

4.4. Inclusion Relations for the Class Lu,v(α, β, µ). For convenience, let Lu,v(α, β, 1) = Lu,v(α, β).
Hence we establish the following theorems.

Theorem 5. Let f ∈ A and g ∈ S⋆ with f(0) = f ′(0)− 1 = g(0) = g′(0)− 1 = 0. If

ℜ
(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
> 0 (z ∈ ∆),

α ≧ 0, β > 0, and (α+ β) = 1, then

ℜ
(

Lu,vf(z)

g(z)

)
> 0 (z ∈ ∆).

Proof. Firstly, let α > 0, β > 0 and consider the function

ϕ(z) =

(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
(z ∈ ∆).

It can easily be observed that ℜϕ(0) = α + β > 0 and ℜ
(

Lu,vf(z)

g(z)

)
= 1 > 0. Secondly, if we let

α = 0, β > 0 and z ∈ ∆ \ {0}, then ℜϕ(z) > 0 implies ℜ
(
β

Lu,vf(z)

g(z)

)
> 0. Now to prove that

ℜ
(

Lu,vf(z)

g(z)

)
> 0, consider the analytic function

Lu,vf(z)

g(z)
=

1− w(z)

1 + w(z)
(z ∈ ∆)

for w(z) ̸= −1 and w(0) = 0. So, it suffices to prove that |w(z)| < 1 (z ∈ ∆), otherwise, by Jack’s lemma
(Lemma 2) there exists z0 ∈ ∆ such that |w(z0)| = 1 and

z0w
′(z0) = kw(z0), k ≧ 1.

That is

ϕ(z0) =
1− w(z0)

1 + w(z0)
− 2αkw(z0)

(1 + w(z0))2
× g(z0)

z0g′(z0)
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with |w(z0)| = 1. Since ℜ
(
1− w(z0)

1 + w(z0)

)
= 0, ℜ

(
g(z0)

z0g′(z0)

)
> 0, and

w(z0)

(1 + w(z0))2
is real and positive,

then ℜϕ(z0) ≦ 0 which is a contradiction to the fact that ℜϕ(z) > 0, ∀z ∈ ∆. Therefore,

ℜ
(

Lu,vf(z)

g(z)

)
> 0 (z ∈ ∆).

□

Remark 5. From Theorem 5, it is easily seen that

Lu,v(α, β) ⊂ Lu,v(0, 1).

Theorem 6. Let α ≧ 0 and β > 0, then

CS(α) ⊂ Lu,v(α, β)

if α+ β > 1, and
Lu,v(α, β) ⊂ CS(α)

if 0 < α+ β < 1.

Proof. Firstly, observe that(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
=

(
α
(Lu,vf(z))

′

g′(z)
+ (1− α)

Lu,vf(z)

g(z)

)
+ (α + β − 1)

Lu,vf(z)

g(z)
. (41)

Case 1. Let α+ β = 1 =⇒ β = (1− α) and if f ∈ CS(α), then we have

ℜ
(
α
(Lu,vf(z))

′

g′(z)
+ (1− α)

Lu,vf(z)

g(z)

)
> 0 (z ∈ ∆).

Since CS(α) consists of close-to-star functions (see [12, Theorem 3.1.1]), then

ℜ
(

Lu,vf(z)

g(z)

)
> 0.

So, α+ β = 1 in (41) implies

ℜ
(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
> 0.

Therefore, f ∈ Lu,v(α, β, µ) =⇒ CS(α) ⊂ Lu,v(α, β) when α+ β = 1.

Case 2. Let 0 < α+ β < 1, then from (41), we get the relation

ℜ
(
α
(Lu,vf(z))

′

g′(z)
+ (1− α)

Lu,vf(z)

g(z)

)
= ℜ

(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
+ (1− α− β)ℜ

(
Lu,vf(z)

g(z)

)
. (42)

Let f ∈ Lu,v(α, β), then

ℜ
(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
> 0

and by Theorem 5, we have ℜ
(

Lu,vf(z)

g(z)

)
> 0. Thus, if 0 < α+ β < 1, then (42) implies

ℜ
(
α
(Lu,vf(z))

′

g′(z)
+ (1− α)

Lu,vf(z)

g(z)

)
> 0.

Therefore, f ∈ CS(α) =⇒ Lu,v(α, β) ⊂ CS(α) when 0 < α+ β < 1.

□

Remark 6. If α+ β = 1, then Lv,v(α, β) = CS(α).

Theorem 7. Let α ≧ 0 and β > 0, then

(1) Lu,v(α, β) ⊂ Lu,v(α
′, β′) for 0 ≦ α′ < α, and 0 < β ≦ β′.
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(2) Lu,v(α, β) ⊂ Lu,v(α, β
′) for β′ > β.

(3) Lu,v(α, β) ⊂ Lu,v(α
′, β) for β > 0 and 0 ≦ α′ < α.

Proof. Let f ∈ Lu,v(α, β).

(1) Consider the relation

ℜ
(
α′ (Lu,vf(z))

′

g′(z)
+ β′Lu,vf(z)

g(z)

)
=ℜ

(
α′

α

(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

))
+

(
β′ − α′β

α

)
ℜ
(

Lu,vf(z)

g(z)

)
.

Now, if 0 ≦ α′ < α and 0 < β ≦ β′, then 0 ≦ (α′/α) < 1 and
(β′ − α′β/α) = β(β′/β − α′/α). Therefore, if f ∈ Lu,v(α, β), then using Theorem 5, implies

ℜ
(
α′ (Lu,vf(z))

′

g′(z)
+ β′Lu,vf(z)

g(z)

)
> 0.

Therefore, f ∈ Lu,v(α
′, β′) =⇒ Lu,v(α, β) ⊂ Lu,v(α

′, β′).
(2) Consider the relation

ℜ
(
α
(Lu,vf(z))

′

g′(z)
+ β′Lu,vf(z)

g(z)

)
=ℜ

(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
+ (β′ − β)ℜ

(
Lu,vf(z)

g(z)

)
.

If f ∈ Lu,v(α, β) and β′ > β, then we have

ℜ
(
α
(Lu,vf(z))

′

g′(z)
+ β′Lu,vf(z)

g(z)

)
> 0.

Therefore, f ∈ Lu,v(α, β
′) =⇒ Lu,v(α, β) ⊂ Lu,v(α, β

′).
(3) Consider the relation

ℜ
(
α′ (Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
= ℜ

(
α′

α

(
α
(Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

))
+ β

(
1− α′

α

)
ℜ
(

Lu,vf(z)

g(z)

)
.

If f ∈ Lu,v(α, β), β > 0, and 0 ≦ α′ < α, then α′/α and β(1− α′/α) are positive values, hence,

ℜ
(
α′ (Lu,vf(z))

′

g′(z)
+ β

Lu,vf(z)

g(z)

)
> 0 (z ∈ ∆).

Therefore, f ∈ Lu,v(α
′, β) =⇒ Lu,v(α, β) ⊂ Lu,v(α

′, β).

□

4.5. Coefficient Estimates for f ∈ Lλ
u,v(α, β, µ).

Theorem 8. Let f in (1) belongs to Lλ
u,v(α, β, µ), then for (α+ β) = 1,

|a2| ≦
2

λ(2α+ β)|(k)1|
[µ+ λ|3− (α+ 2β)|] (43)

if λ > 0;

|a3| ≦
1

(3α+ β)λ|(k)2|

{
2µ+ 2µ2 (4α+ β)

(2α+ β)2
(1− λ)

λ
+ 3λ|4− (α+ 3β)|

+ 4λµ

∣∣∣∣3− [E − (1− λ)

λ
F

] ∣∣∣∣+ 4

∣∣∣∣λ[(1− λ)(α+ 4β) + (9λ− 5)]

2

−
(
E − (1− λ)

2λ
F

)
λ2[3− (α+ 2β)]

∣∣∣∣
}

(44)



SUBCLASSES OF CLOSE-TO-STAR FUNCTIONS OF ORDER µ AND TYPE (α, β) 557

if 0 < λ ≦ 1; and

|a3| ≦
1

(3α+ β)λ|(k)2|

{
2µ+ 3λ|4− (α+ 3β)|+ 4λµ

∣∣∣∣3− [E +
(λ− 1)

λ
F

] ∣∣∣∣
+ 4

∣∣∣∣λ[(9λ− 5)− (λ− 1)(α+ 4β)]

2
−
(
E +

(λ− 1)

2λ
F

)
λ2[3− (α+ 2β)]

∣∣∣∣
}

(45)

if λ ≧ 1. Note:

E =
2

2α+ β
and F =

(4α+ β)[3− (α+ 2β)]

(2α+ β)2
.

Proof. Since f ∈ Lλ
u,v(α, β, µ) and (α+ β) = 1, then we can write (7) as(

α
((Lu,vf(z))

′)λ

(g′(z))λ
+ β

(Lu,vf(z))
λ

(g(z))λ

)
= ℘(z)

or

α((Lu,vf(z))
′)λ(g(z))λ + β(Lu,vf(z))

λ(g′(z))λ = ℘(z)(g(z))λ(g′(z))λ. (46)

Putting (2), (3), and (4) into (46) simplifies to

αzλ(1 + A1z + A2z
2 + · · · ) + βzλ(1 + B1z + B2z

2 + · · · ) = zλ(1 + C1z + C2z
2 + · · · ) (47)

where

A1 = λb2 + 2λ(k)1a2,

A2 = λb3 +
λ(λ− 1)

2
b22 + 2λ2(k)1a2b2 + 3λ(k)2a3 + 2λ(λ− 1)(k)21a

2
2,

B1 = 2λb2 + λ(k)1a2,

B2 = 3λb3 + 2λ(λ− 1)b22 + 2λ2(k)1a2b2 + λ(k)2a3 +
λ(λ− 1)

2
(k)21a

2
2,

C1 = p1 + 3λb2,

and

C2 = p2 + 3λb2p1 + 4λb3 +
(9λ− 5)λb22

2
.

Equating the coefficients implies

(2α+ β)λ(k)1a2 = [p1 + 3λb2]− (α+ 2β)λb2 (48)

and

(3α+ β)λ(k)2a3 = p2 +
(4α+ β)(1− λ)

(2α+ β)2λ
× p21

2
+ [4− (α+ 3β)]λb3 +D1b2p1 +D2b

2
2, (49)

where

D1 = λ

[
3−

(
E − (1− λ)

λ
F

)]
and

D2 =
λ[(1− λ)(α+ 4β)− (5− 9λ)]

2
−
(
E − (1− λ)

2λ
F

)
λ2[3− (α+ 2β)].

Using Lemmas 1 and 4 in (48) and (49) gives the inequalities (43) and (44). Now, if λ ≧ 1, we write

(3α+ β)λ(k)2a3 = p2 −
(4α+ β)(λ− 1)

(2α+ β)2λ
× p21

2
+ [4− (α+ 3β)]λb3 +D1b2p1 +D2b

2
2

or

(3α+ β)λ|(k)2||a3| ≦
∣∣∣∣p2 − (4α+ β)(λ− 1)

(2α+ β)2λ
× p21

2

∣∣∣∣+ |4− (α+ 3β)|λ|b3|+ |D1||b2||p1|+ |D2||b22|.
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Now, consider the expression ∣∣∣∣p2 − (4α+ β)(λ− 1)

(2α+ β)2λ
× p21

2

∣∣∣∣ = ∣∣∣∣p2 − η × p21
2

∣∣∣∣
where

η =
(4α+ β)(λ− 1)

(2α+ β)2λ
≧ 0

with λ ≧ 1. Using Lemmas 1, 4 and 6 yields the results in the Theorem. □

Remark 7. Setting u = v = µ = β = 1, and α = 0 in (43), (44) and (45) gives

|a2| ≦ 2

(
1 +

1

λ

)
and |a3| ≦

 3 +
2(2λ+ 1)

λ2 (0 < λ ≦ 1),

3
(
1 + 2

λ

)
(λ ≧ 1).

which are the results of Babalola et al. [3, Theorem 1].

5. Conclusion

In this study, we introduced and studied some interesting properties of two subclasses of close-to-
star functions. The classes were represented by the notations: Lu,v(α, β, µ) and Lλ

u,v(α, β, µ); and their
definitions incorporated the idea of the use of the well-known Carlson-Shaffer linear operator, set theory,
and the linear combination of two geometrical conditions, where one of the conditions is for a close-to-
starlikeness.

Using various approaches, we were able to determine the integral representation formula which shows
that class Lu,v(α, β, µ) is non-empty, the extremal function for the class, some sharp upper coefficient
estimates, the Fekete-Szegö estimates both for real and complex parameters and several inclusion relations
for the functions f in the class Lu,v(α, β, µ). Afterwards, some upper coefficient estimates for functions
f in the class Lλ

u,v(α, β, µ) were established.

Astoundingly, several subclasses of the new classes Lu,v(α, β, µ) and Lλ
u,v(α, β, µ) were reported in

many of the remarks. These show that the new classes generalized several existing and new subclasses
of analytic functions.

We earnestly hope that these results will motivate researchers for further studies on close-to-star
functions and many of its generalizations involving the use of other known (or new) (q-)operators in the
theory of analytic-univalent functions.
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