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ABSTRACT. Let P, represent the class of analytic functions p(z) defined in the open unit disc A = {z :
|z| < 1} with (0) =1 and

p(z) =1
p(z) +1
In this paper, we introduce two new subclasses Lo, v (v, 8, p) and Ea’v(a, B, i) of the class of close-to-star
functions that satisfy the conditions:

(olen O | pFend(@))

‘<u.

70 a(2)
and (Lo f O (Luwf ()
(O‘ PIE) RO, )EP‘“

respectively. Functions f in the new classes are normalized analytic functions defined in the unit
disc A such that g is starlike and %%, is the Carlson-Shaffer operator. Some reported results for
f € Lu,v(e, B, 1) include the integral representation formula, some coefficient estimates, Fekete-Szegd
estimates for real and complex parameters, and some inclusion properties. All the results are sharp.
Again, some early coefficient estimates for functions f € Lﬁyv(a, B, 1) are investigated. Furthermore,
a number of remarks to show the relationship between the new classes and some existing classes are
clearly discussed.
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1. INTRODUCTORY STATEMENT
Let A denote the class of complex-valued functions of the infinite series type
f(2) =2z4as2® +az® +--- (1)
which are analytic in the unit disc
{z:z€Cand |z|<1}=A

and normalized by the conditions: f(0) =0= f'(0) — 1.

The image domain f(A) of an analytic-univalent function f describes a number of nice geometries and
geometric characterizations of the function f. A geometric function is a complex-valued function whose
image domain is a description of some certain geometries such as star, close-to-star, convex, close-to-
convex, spiral, etc. The study of such functions is known as the Theory of Geometric Functions; a branch
of Complex Analysis that explains the characteristics of geometric properties of the image domain f(A).
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A function g € A of the infinite series type
g(2) =2+ b2 +b32° + -+ (z€ A) (2)

is called a starlike function if and only if

%(?é?)>0 (z € A).

We shall let S* represent the class of such functions.
Another class of interest is the class P of functions analytic in A and having positive real parts in the
open-right-half-plane of the complex number space. An analytic function p of the infinite series type

p(2) =1+ p1z+paz? +p32® + -+ (3)

is in P if it satisfies the conditions: p(0) = 1, Rp(z) > 0, and z € A. Functions in class P are well-known
to play significant role in the establishment of many properties of analytic functions. Further, let P,
represent the class of functions p of type that satisfy the conditions:

p(z) — 1

LA 0<u<1, z€A).
S| < 0<ustzes)
From geometric viewpoint, p € P, if and only if, (0) =1 and

14 p2r?
1= 22

2ur

p(A):{w:we(Cand ‘w—

O<r<1
1—pr?’ }

such that the image domain p(A) is an open symmetric disc whose center is at a point where x =
2 2

1312:2 > 0 on the real axis. This disc has diameter endpoints dy = p(—r) = (1 — pr)/(1 4+ pr) and

dy = p(r) = (14 pr)/(1 — pr) such that 0 < d; < 1 < da. Obviously, P, C P. See Goodman [9, p.111]

and Thomas et al. [25, p.23] for more information.

1.1. The Class of Close-to-star Functions. A function f € A is said to be close-to-star if and only
if it satisfies the conditions:
%(ﬂ@>>0 (g eS8, z€ A).
9(2)

The class of close-to-star functions was introduced by Reade [20] and notably, it is not necessary that
close-to-star functions are univalent in A. The class of close-to-star functions and some of its subclasses
have been investigated by many authors such as in [7,13}|15,21]. One may refer to the standard text of
Goodman [9, pp.97-99] for more information.

In 1991, Sudharsan et al. [23] introduced the subclass CS(a, 3, u) of close-to-star functions. A function
f € A belongs to the class CS(a, 8, 1) if it satisfies the conditions:

FG) ) )
(‘“g%z) T8 g<z>> € (2e ),

O<p=s1 az20, >0and g € S*. Likewise, Babalola et al. [3| studied the class C} which contains
functions f € A that satisfy the conditions:

R (U(Z))A) >0 (z€A4),

(9(x))*

where )\ is a positive real number and g € §*. Some generalized subclasses of the class of close-to-star
functions involving operators such as Carlson-Shaffer linear operator, Opoola differential operator, and
Srivastava-Attiya operator, were respectively studied in [1,(14}22].
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1.2. The Carlson-Shaffer Linear Operator. In [6], the Carlson-Shaffer linear operator %, , : A —
A is defined by the relation

Luwf(z) =00(u,v;2)* f(z —Z+Z s—10s2°, (4)

where the notation '+’ means Hadamard product (see [9,24,25] for definition),

(k)s = EZ; weC, veC\{0,-1,-2,...},

and the function

is known as the incomplete beta function. More so, the term (v)s is the Pochhammer symbol which can
be expressed in terms of gamma function

_Thy+s) )1 (s =0),
N ] {7(7+1)(7+2)~-(7+81) (s € N). ®)

We however, recommend the work of Oyekan and Opoola [16, Lemma 2.5] for some simplifications and
applications of the gamma function in .
2. NEW SUBCLASSES OF CLOSE-TO-STAR FUNCTIONS

Motivated by the aforementioned works, we therefore, introduce two new subclasses L, ., (o, 8, ) and
Eﬁ_yv (a, B, ) of the class of close-to-star functions using the Carlson-Shaffer operator introduced in (6]
and applied in [1}/16].

Definition 1. A function f € A is said to belong to the class Ly . (c, B, 1) if

(Zuwf(2) | ZLunf(2)
(5 5T ) e )
and it is said to belong to the class L) (o, B, 1) if
(Luwf () | (Luwf ()
(R + R ) < v

where 0 < p <1, 20, >0, a+ 8 =1, g € S*, X is a positive real number, and 2, ,f(z) is as
defined by . In addition, the power X is meant as principal determinations only.

Remark 1. Some earlier known subclasses of classes Ly(a, B, p1) and L3 (v, B, 1) are enumerated as
follows.

) L1,

) L11(a,1 — 1) is the class CS(a) of a-close-to-star functions studied by Kasi [12].
) L11(a,1—a,p) is the class CS(e, p) introduced by Kasi [11)].

) £3,(0,1,1) is the class C5 introduced by Babalola et al. [3].

) L4.,(0,1,1) is the class CS}, ,, introduced by Akbarally et al. [1].

) L1a

u,v

(e, B, ) is the class CS( , B, 1) introduced by Sudharsan et al. [25].

3. A SET OF LEMMAS
Let g and p be as defined in and , respectively. More so, let
w(z) = w1z +we2® +--- €W

be an analytic function such that w(0) =0, |w(z)] <1 and z € A. The class W is known as the class of
Schwarz (or unit bounded) functions. We shall need the following lemmas in proving our results.

Lemma 1 ( [9,/19,25]). Let g € S*, then
|bs| <'s, Vs = 2.
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Lemma 2 (Jack’s Lemma, [10]). Let w be an analytic and a non-constant function in A such that
w(0) = 0. If lw(z)| attains its maximum value at the point zo with |zo| = r, then

zow'(z0) = kw(zg), Vk = 1.
Lemma 3 ( [5]). Let w € W, then
jwal £ 1= un 2.
Lemma 4. (18, Lemma 2]). Let p € P, then
|ps| £ 2u, Vs 21, and 0 < p < 1.

1— s
The result is sharp for the function po(z) = iy
1+ pzs
Lemma 5 ( [12,]17]). Let p € P,,, then there exists a function w € W such that
1—
(z):ﬂ, O<p=1, and z € A.
1+ pw(z)
Lemma 6. Let p € P, and 0 < pp = 1.
(1) Then,
2
Pi| < |1 |
71 2 . 8
‘pz 5| S o (8)

(2) If n € R, then

o
2
p _
P2 =1y | = 2u for MR <ps 9)
200 > ptl
2p(n—1) for nz 57
(3) And if n € C, then
AP 20 for [1-nl= s (10)
P2 —N—| =
2 2031 —n| for [1—nlz .
In another way,
2
p
pe = 12| < 2umax {1, ul1 ~ nl}. (11)
Proof. Since p € P, then by Lemma we can write
1 — pw(z) -1
=———==(1- 1 12
(2) = T = (1= pE) (1 + () (12
or
L4+piz+pez® 4+ =1 —=2uwiz + 2u(pw? — wy)z® + - -
Comparing corresponding coefficients means
2
o= 2,70}
= —2pw = wr =T (13)
2
fwn? = 525
and
P2 = 2p(pw? — wo) = 2pPw? — 2pws. (14)
Considering and implies that
2
p
p2 — 31 = 2pfws|
and the application of Lemma [3| means
2
p
P2 — 51 < 2u(1 — Jwi ). (15)
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Some simplifications after putting the third result in into gives inequality .
Also, considering a real number 7 shows that

2 2 2 2 2 2
by b1 | P17 Pi| « b1 |p1
LA R [P R o Y 4 Q17 8 i e B 16
P2 =15 25t 772_‘]92 2+2| | (16)
and using in (16) means that
2 2 2
P < 1| 1|
Pl < (g~ 1L 'y I
p2 =15 _(u o )T
or
2 2
P < 1|
—n—=|=2u— —(1 —p|l —n|). 17
‘pz g | = 2= (L= =) (17)

So, setting (1 — p|l — 7)) 20 = “Tfl <p< "TH which shows that inequality has the least upper
bound of 2u. This is the second result in @D On the other hand, setting (1—p|l—n]) £0 = n < %

orn 2 “l—fl which shows that the least upper bound of inequality can be expressed as 2u%|1 — 7|
This is the first and third results in @D
To prove inequality (I0), observe that for n € C in (I7), setting (1 —p[1—n[) 20 = [1—n| < /% or

1—nl= i For [1 —n| < i the least upper bound is 2y and for |1 — | = % the least upper bound can
be expressed as 2u2|1 — 7| and the proof is complete. |

Remark 2. Setting p =1 in gives the result of Pommerenke [19, p.165] and setting p = 1 in @[)
and gives the results of Babalola and Opoola [4), Corollary 2.5].

4. THE MAIN RESULTS

In this paper, we obtain the integral representation formula, some sharp early coefficient estimates,
the Fekete-Szego estimates (for real and complex parameters) and some inclusion relations for functions
f € Lyy(a, B, p). Further, we feature the early coefficient estimates for functions f € Eiv(a, B, ).

4.1. Integral Representation of f € £, (o, B, 1).
Theorem 1. A function f in is in the class Ly (c, B, 1) if and only if there exists a function g € S*
and a function p € P, such that

1 N 8
Luwf(2) = ——— t)) g (t)p(t)dt 18
W)=~ [ e @) (13)

where (a + B) = 1 and the powers appearing in the formula are meant as principal values only.

Proof. Let f € Ly,(c, B, p) so that for g € S*,

(L) Lunl O _
(ol s%eel) —oto) 1
Multiplying both sides of by ég’(z)(g(z))g yields
(Zunf D 0DF + 2625 () 20 (2) = ~(0(2) 30 (pl2)

where an equivalence relation gives

d

S Lun () F) = = (92 ()l).

The integration of both sides with respect to z from 0 to z yields the representation formula . We
obtain the converse from the fact that %, , f(z) given by has a Taylor’s series type

Ll (2) =2+ (k)1a22® + -+ .

Qfw
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Remark 3. It is known that the extremal functions in S* and P, are go(z) =

14 pz
1—pz

e ) =

, respectively. Hence, following from , we get

28

1 OVENT A+ pt)
Hunf ) = yF — = [ (%) s 20

as the extremal function in the class Ly(cv, B, 1). Some other examples of functions in L, (o, B, 1) are
reported as follows.

Example 1. Take gs(z) =z + s2° € §* and p(z) =1 € P, then from we get
1 8 8
L10f(2) = —— [ (@) g0l
a(gs(z))= Jo
1 z
= 7&/ (t+ st*)a (1 + s2° ) at
a(z + sz%)a Jo
=z+§<1_5)zs (522 a>0, at+B=1). (21)
Observe that we can harvest infinitely many functions from by varying values for s, a and 3. Clearly,
the class Lo (e, B, 1) is non-void of functions.

4.2. Coefficient Estimates for f € £, ,(a, 5, 1t).
Theorem 2. Let the function f in belong to the class Lo, (e, B, 1), then for (a+p) =1,
23— (a+28)+ 4

el £ = AN 22
and
as] < (20 + B){12 + 14 — 3(ar + 36)} — 8 (23)
(2a + B)(3a + B)|(k)a|
The results are sharp for the extremal function in .
Proof. Since f € Ly(c, B, 1) and (o + ) = 1, then we can write (6) as
(ZLuwf(2)) fu,vf(2)> _
(2l s 52) e
or
a(Luwf(2))9(2) + BLuuf(2)9'(2) = p(2)9(2)d (2). (24)

Putting , , and into simplifies to
2+ {(a+2B)by + (2a + B)(k)1az}2?
+ {(o + 3B)bs + 2(k)1b2a2 + (3 + B)(k)2az}z® + - -
= 24 {3by + p1} 2% + {4b3 + 203 + 3bopy +pa}2> 4+ . (25)
The comparison of both sides of means
38— (a+28)]bs + p1

T T @ar Ak (26)
and
_4—(a+3p) 3(2a+ ) — 2
%= Bat D), T Cat HBat B Pt Bat BR) (27)
From ,

|(L2| < |[3 — (a+25)]”b2| + |p1|
- (2a + B)[ (k)1
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so that the use of inequalities |p,| < 2y (Lemma[d) and |bs| < s (Lemma [I)) yields (22). More so, from

([27) we get
|4 — (a+38)|
(Ba + B)|(k)2|

13(2ac+ B) — 2|
(2a+ B)(Ba + B)| (k)]

las| = |bs] +

[b2||pa | +

Ba+ B)|(k)z]

and using the inequalities [p,| < 2y (Lemma[d]) and |bs| < s (Lemmal[I)) yields (23).

Remark 4. We observe the following existing results.

(1) Whena=0andu=v=pu=L0=1, then and will reduce to the estimates:

laz] £ 4 and |asz| £9

which are the results of Reade [20, Theorem /J.

(2) Whenu=1=wv and 8 =1— a, then and will reduce to the estimates:

1 6 14 9)+6 3
|a2|§2(+ﬂ+a> and |az| < o +a(l4p+9) +6p+

(1+a)
which are the results of Kasi [11, Theorem 4].

(3) Whenu=v=p=1and 8=1-—q, then and will reduce to the estimates:

a(6a+23) +9
1+ a)(1+2«w)

2
|a2|§2+m and |113‘§

which are the results of Kasi [12, Theorem 3.1.4).

1+ a)(1+2a)

(4) When a =0 and f=1= u, then and will reduce to the estimates:

4 9
lag] £ —— and |ag|
= k)] (k)

which are the results of Akbarally et al. [1, Theorem 2.1].

(5) Whenu=1=w, then and will reduce to the estimates:

2[u+3— (a+28))

o] = (200 + )

and

< 2p(10a + 36) + 4(4a — ) + 20% 4+ 75° + 3af8

las] = Ba + B)2a + B)

which are the results of Sudharsan et al. [23, Theorem 2] although with an erratum for the bound

on |as|.

4.3. Fekete-Szegt Estimtates. Another well investigated type of coefficient problems of functions f

in is the Fekete-Szegd functional defined by
F(& f) = las — €aj

(28)

where as and ag are coefficients of f in , and ¢ is a real (or complex) parameter. The functional
was initiated by Fekete and Szego [§] and it has been considered for several subclasses of A. One may

explore the works in [2]13}/14] for more information.

Theorem 3. Let the function [ in belong to the class L, (v, B, 1) and let (o +B) = 1. If € and (k)s

are real parameters, then
Ug(:u’a kla k27 f)

Ag(ﬂvkl»k%f) - (30[+5)|(]€)2|

lag — ga3| < { AplaRLke &)+ oo

O3 (1, k1, k2, §)
(Ba+ B)|(k)2|

Ag(ﬂv kl» k27£) +

for &

(1= 1)QG (1, b, k2);

2

u for (i —1)Q8 (. k1, k) <
§S (n+1)QG (1, by, k)

for &z (n+1)QG (1, k1, k2);

(29)
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where
3(2a+ B){4 — (a+ 36)} + 4u{3(2a + B) — 2}
(2a+ B)(3a + B)[ (k)2
n 4§43 — (e +28)H{2p + [3 — (e +25)]}
(200 + B)2[ (k)1 ’
202 {23 + B) (k)26 — (20 + B)?(k)7}
(2a+ B)2(k)3 7

Ag(:u‘a kl, k2a€) =

Ug(:u‘a kl, k2a€) =

and

(2a + B)%(k)?

QF (. kr, ) = W

553

(30)

(31)

(32)

Proof. Let f € Ly,,(c, 8, 1t), then putting (26]) and into (28)), and using the fact that (o + ) = 1

with some groupings and simplifications, we get
GRS P LGRS )
(Ba+ ) (k)2 (2a+3)2( )2 ?

{( 3(2a+p) -2 a+26 }b2p1

|a3 - §a§| =

20+ B)(3a + B) (k)2 2a+ﬁ
1 (3a+6 p
{2‘< ‘

+ (Ba+ B) (k)2 200+ B)? E

1 (@t38) . B-(at2B)P . .
Gat A0 T et peiR), e
+{ 320+p) -2 2B-(a+20)
@at A)Bat ARl 2ot B2 \( I
2(3a+ B)(k)2€ o Pr
Ga T R0R " 3|

|a3 - §a§| <

|§|} s Ip1|

1
T Bar Al [

From (33)), consider the expression

23+ B)(k)=2£ i P
P ot pry " 2 "”‘"2
for
_ 2(3a + B)(k)2£
(2a+ B)% (k)7

Now, taking the first inequality in @ (Lemma@ implies

2
D2 n 92| = 1% ( T]) 12 (2a+ﬁ)2(k)% U(avﬁvﬂ'ak7£)
in and
p—1 2(3a + B)(k)2§ _ p—1
< = < = < (p—1)Qa, B, 1, k
s Qa+B)2(k? = £= (p—1)a, B, p, )
in . Also, taking the second inequality in @D (Lemma@ implies
2
prn% S 2p
and
u—lgngu—kl . u—1S2(3a+ﬁ)(k)22§§u+1
w0 T po T Ra+pBRk)T T ou
so that

(:u‘ - 1)9(043183”47]@) é 6 § (.u =+ 1)9(05757.“3 k)

(33)
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in . Lastly, taking the third inequality in @D (Lemma@ implies

2 2(3a+ B)(k)2£
inand
g2t 2008 Dt s L e (g 1), B ) (39)

1 2a+pB)2(k)7 = n
in (32). Putting (34 - [39) into (33)), using Lemmas [1] and [4] and further simplification give the result in

29).
O

Theorem 4. Let the function f in belong to the class Ly, (ax, B, 1) and let (a+B8) =1. If ¢ or (and)
(k)s are complex parameters, then

2u

2 «
oz — €a3] < ARGk k&) + s

max {1, ¢} (40)

where
o= pnl1— 2(3a+ B) (k)28 | M|2(3a + B) (k)26 — (2a + B)* (k)7
(200 + )2 (k)3 (2cc+ B)?[(K)1[?
and A (p, k1, ko, €) is as defined in ([30).
Proof. Using Lemmas 1| and [4f and inequality (Lemma@ in yields the result in . O

4.4. Inclusion Relations for the Class £, (o, 8, ). For convenience, let £, (e, 8,1) = Ly, (e, B).
Hence we establish the following theorems.

Theorem 5. Let f € A and g € §* with f(0) = f/(0) —1=g¢(0) =¢'(0)—1=0. If

(Zupf(2) L yf(z)>
R : + : >0 (ze€eA),
(o2l o e
az0,8>0,and (a+ B) =1, then
L vf(2)>
R————=]>0 (z€A).
(25 e
Proof. Firstly, let o > 0, 8 > 0 and consider the function
(Zunf(2) Zu vf(z)>
z)= |« : + ’ z € A).
o0 = (F25755 oo ) B
. B Lunf(2)\ .
It can easily be observed that R¢(0) = a4+ 8 > 0 and R o )T 1 > 0. Secondly, if we let
g(z
a=0,8>0and z € A\ {0}, then Rp(z) > 0 implies %(ﬁW) > 0. Now to prove that
%(M) > 0, consider the analytic function
9(2)
gumf(z) _ 1- U)(Z) (Z c A)

g(z) 14+ w(2)

for w(z) # —1 and w(0) = 0. So, it suffices to prove that |w(z)| <1 (z € A), otherwise, by Jack’s lemma
(Lemma [2)) there exists zg € A such that |w(zp)| = 1 and

zow' (20) = kw(z0), k= 1.

That is

Cl-w(z)  20kw(z) 9(%0)
¢(20) = T+ w(zo)  (1+w(z0))? « 209 (z0)
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: , 1—w@®) (9@0) w(z) . -
th — 1. Since R [ —220) _ o % >0, and — 220 1 and positive,
with |w(zp)] ince (1 T w(z) 20 (20) an 0T w(z))? is real and positive
then Rp(zp) < 0 which is a contradiction to the fact that Rp(z) > 0, Vz € A. Therefore,
%(zﬂﬂ@)>0 (z € A).

9(2)

Remark 5. From Theorem[5], it is easily seen that
Loy (e, B) C Ly ,(0,1).
Theorem 6. Let o = 0 and § > 0, then
CS(a) C Ly w(a,B)

ifa+p>1, and
Lyn(a, 8) CCS(a)
if0<a+pg<l.
Proof. Firstly, observe that
(Zunf(2)) .zu,vf(z)) . ( (Zunf ) 1 ) )
(e + 552 - (T -0 T ) v

Case 1. Leta+ =1 = B=(1—a) and if f € CS(«), then we have

(gu,vf(z))/ gu,vf(z)
Since CS(a) consists of close-to-star functions (see [12, Theorem 3.1.1]), then

gu,vf(z) zu,vf(z).

9(2)

(41)

So,a+pB=11in implies

(oL | gt )
g(2) 9(2)
Therefore, f € Ly(a, B, 1) = CS(a) C Ly (e, B) when a+ = 1.

Case 2. Let0 < a+ f <1, then from , we get the relation

gg(a(iziff(z)y thwf(z))

7 () +(1—a)—/——=

9(2)

(B B FON L (Zuf)
‘%( FIC RS )”1 5)%( o) ) (42)

Let f € Ly (a, B), then

(sl C | unf D)
9'(2) 9(2)
and by TheoremH we have R (W) > 0. Thus, if 0 < a4+ S < 1, then implies
(Zuwf(2)) _ -iﬂu,vf(z)>
R (ag'(z) + (1 a)ig(z) > 0.
Therefore, f € CS(a) = Ly(a,B) C CS(ar) when 0 < o+ 3 < 1.

Remark 6. If a + 3 =1, then L, ,(a, 8) = CS(a).

Theorem 7. Let a = 0 and § > 0, then
(1) Lyy(a,B) C Lywn(d,B) for0=a’ <a, and0 < =S



556 R.S. SRINIVASAN, R. EZHILARASI, A.O. LASODE, T.V. SUDHARSAN

(2) Luw(@,B) C Luw(a, ') for B> B.
(3) Luw(a,B) C Lyyp(@,B) for >0and 0= <a.
Proof. Let f € Ly.(a, 3).
(1) Consider the relation
(o el el )
g'(2) 9(2)

(5 (7)) ()R ()

Now, if 0 £ o/ <aand 0 < B < A3, then 0 £ (a’/a) < 1 and
(B —a'B/a) = B(B'/B — o’ /a). Therefore, if f € L, ,(,3), then using Theorem [5 implies
(o O Bt 2
g'(2) 9(2)
Therefore, f € L, (', ) = Lyw(a,B) C Lun(d/,3).
(2) Consider the relation

(Lunf Q| L)
R Bl sl
_ a (gu,vf(z))/ Juwf(z) ;o gu,v (2)
= (o E L TS ) - pm ().
If f€Ly,,(a,B) and B’ > 3, then we have
(Luwf(2)) 1 Lo f(2)
R (ol eyl ) o
Therefore, f € Euw(a,ﬂl) = Ly.(a,p) C ‘Cu,v(aaﬂ/)'
(3) Consider the relation
/(guwf(z))/ fu,vf(z)
Rl sl
(@l LS (o) N g (Lund(2)
= (G (T 0 Tl2)) va (- ) (B

If felyva,B),8>0,and 0 < o < a, then o' /a and B(1 — o’ /a) are positive values, hence,
Zunf(2)) | s Lunf(2)
R o/( . +p/— >0 (z€A).
(5 o) Fea
Therefore, f € Ly, ,(c/,8) = Lyn(a,B) C Lyo(d, ).

([l
4.5. Coefficient Estimates for f € L} (c, 5, p).
Theorem 8. Let f in belongs to E;\’U(a,ﬂ,,u), then for (a+ ) =1,
2
ag] £ ————— [u+A3—(a+2 43

if A>0;

2 (da+p) (1-X)
2a+6)2 A

(1-X) A1 = A)(a+48) + (9A = 5)]
[

20+ 2

1
3a+ﬁwk)2|{ + 3[4 — (o +38)]

+4)\u‘3 — {E —

las| =
(

- (E - (12_AA) F) (3 — (o +2B)] ‘} (44)
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if0< A< 1; and

! (A-1)
|as| SMW{QM—FED\M— (a+35)|+4)\u‘3— [E+)\F] ’
+4‘)\[(9>\—5)— (;—1)(a+4,8)] _ (E+(A2—ADF) e ((Hm)]'} ()
if A = 1. Note:

_ _ 4o+ B)[3 — (a+28)]
E—2a+5 and F = 20 £ 9)° .

Proof. Since f € L ,(a, B, 11) and (a4 8) = 1, then we can write as
(Zuwf )| o (Funf MY _
(S ) =

a((ZLuwf () GEN + B(Lun ()G () = 0(2)(g(2) g (2))*. (46)
Putting , , and into simplifies to

M1+ Ajz + Agz? 4+ ) + B2MN1 4 Biz + Bo2® + ) = 2M1 + Crz + Co2® + ---)  (47)

+ 5

or

where

A1 = /\bg + 2)\(1€)1a2,

B AA=1) , 2 _ 2 2
A = A\bg + b2 + 2X (k/’)lazbg + 3)\(]@')2663 + 2)\()\ 1)(k)1a2,
Bl = 2)\[)2 + )\(/ﬂ)laz,
_ 2 2 AA=1) 5 o

By = 3A\b3 + 2)\()\ 1)b2 + 2\ (k)1a2b2 + )\(k‘)gag + 9 (k:)laz,

C1 = p1 + 3\ba,
and

9\ — 5)Ab3

Cy = P2 + 3Abap1 + 4Abs + %

Equating the coefficients implies
(2a + B))\(k‘)lag = [pl + 3)\[)2] — (a + 25))\b2 (48)
and )
(da+pB)d—=A) p
(30é + ﬁ))\(k‘)QCB = P2 + W X ?1 + [4 — (Ot + 3,8)})\b3 + D1b2p1 + DQb%, (49)
where
Dy =\ {3— (E—MF>]
A

and

Dy =

A1 —/\)(oz+;lﬁ) —(-9)] (E_ (12_)\/\)F> A2[3 = (a +28)].

Using Lemmas and in and gives the inequalities and . Now, if A 2 1, we write

4 A—1 2
% x 2L +[4 — (a+ 38)|Abs + D1bapy + Dyb2

(Ba-+ B)A(K)aay = po = HE IS

or

(da+ B)(A—1) y p}

4— 38)|\|b Dy||b Ds||b2].

(Ba+ B)A|(K)2llas] < |p2 —
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Now, consider the expression

(ot BN =1)  pi|_ »i
P2 e gy C 2| TP
where
:@a+mu-¢>go
(2a + B)2X
with A = 1. Using Lemmas and |§| yields the results in the Theorem. d
Remark 7. Settingu=v=p=pF=1, anda =0 in , and gives
202\ + 1)
1 ST 0< A<,
las] <2 (1 + )\) and lag| £ A2 ( =1)

31+3) (Az1).
which are the results of Babalola et al. [5, Theorem 1].

5. CONCLUSION

In this study, we introduced and studied some interesting properties of two subclasses of close-to-
star functions. The classes were represented by the notations: L, ,(a, 8, 1) and Lﬁw(a, B, 1); and their
definitions incorporated the idea of the use of the well-known Carlson-Shaffer linear operator, set theory,
and the linear combination of two geometrical conditions, where one of the conditions is for a close-to-
starlikeness.

Using various approaches, we were able to determine the integral representation formula which shows
that class £, (a, 8, 1) is non-empty, the extremal function for the class, some sharp upper coefficient
estimates, the Fekete-Szego estimates both for real and complex parameters and several inclusion relations
for the functions f in the class £, (o, 8, u). Afterwards, some upper coefficient estimates for functions
f in the class EQ,v(a, B, ) were established.

Astoundingly, several subclasses of the new classes £, ,(c, 8, 1) and Eﬁ)v(a,ﬁ,u) were reported in
many of the remarks. These show that the new classes generalized several existing and new subclasses
of analytic functions.

We earnestly hope that these results will motivate researchers for further studies on close-to-star
functions and many of its generalizations involving the use of other known (or new) (q-)operators in the
theory of analytic-univalent functions.
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