
ABSTRACT: In this paper, we consider an initial boundary value problem for a two-dimensional nonlinear 
Schrödinger equation. We prove by using Galerkin’s method that the solution of the initial boundary value problem 
exists and it has a unique solution. Also, we get an estimation for the solution of the initial boundary value problem.
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ÖZET: Bu çalışmada iki boyutlu lineer olmayan bir Schrödinger denklemi için bir başlangıç sınır değer problemi 
göz önüne alırız. Galerkin metodunu kullanarak başlangıç sınır değer probleminin çözümünün var ve tek olduğunu 
ispatlarız. Ayrıca, başlangıç sınır değer probleminin çözümü için bir değerlendirme elde ederiz.

Anahtar kelimeler: Başlangıç sınır değer problemi, Galerkin metodu, Schrödinger denklemi
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INTRODUCTION

The nonlinear Schrödinger equation is a nonlinear 

mathematical equation that describes the evolution over 

time of a physical system. It arises in nonlinear optics 

(Kelley, 1965; Talanov, 1965), the evolution of water 

waves (Hashimoto and Ono, 1972), hydromagnetic 

and plasma waves (Schimizu and Ichikawa, 1972), 

nonlinear instability problems (Stewartson and Stuart, 

1971).

In the present paper, we study a nonlinear 

Schrödinger equation that usually arises in the 

dispersion of light beams (waves) in a nonlinear 

medium. We investigate the existence and uniqueness 

of the solutions of nonlinear Schrödinger equation. For  

purpose, we use Galerkin’s method and constitute the 

approximate solutions of the initial boundary value 

problem. By means of the approximate solutions, we 

prove that the solution of initial the boundary value 

problem exists and it has a unique solution.

The nonlinear Schrödinger equation and boundary 

value problems for Schrödinger equation were 

previously studied in (Tsutsumi, 1991; Bu, 1994; 

Strauss and Bu, 2001; Bu et al., 2005; Holmer, 2005; 

Iskenderov and Yagubov, 2007; Mahmudov, 2007; 

Kaikina, 2013; Yildirim Aksoy et al., 2016). The 

Schrödinger equation considered in the literature is 

usually one-dimensional. But, in the paper (Iskenderov 

and Yagubov, 2007), an initial boundary value problem 

for a multi-dimensional (except for two-dimensional) 

Schrödinger equation is examined. 

MATERIAL AND METHODS

The basic of Galerkin’s Method is based on finding 

an approximate solution in a finite-dimensional space 

spanned by a set of basis functions. To obtain the 

approximate solution, we project the partial differential 

equation onto a finite-dimensional subspace. This 

gives a system of ordinary differential equations for 

the approximate solutions, which has a solution with 

standart ordinary differential equations theory. Each 

approximate solution satisfies an estimation called as a 

priori estimation for solutions of the partial differential 

equation. These estimations allow to obtain a solution 

of the partial differential equation.

We formulate the initial boundary value problem 

as follows:  
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0 1( ) ( ) ( , ),   ( , )i a a x v x a f x t x t

t
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S

t t S    , (3) 45 
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2 2

2 2
1 2x x
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1 2

,
x x
 

  
     

,   indicates the 49 

unit outward normal vector to  , 1a  is a complex number such that  50 

 1 1 1 1Im 0,   Re 0,   Im 2 Rea a a a   , (4) 51 
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 (1)

 ( ,0) ( ),   x x xψ ϕ= ∈ D (2)

 ( , ) 0,   ( , )
S

t t Sψ ξ ξ= ∈ , (3)

where, 
2D R⊂  is a bounded domain,  is the sufficiently smooth boundary of domain D , 0,  0T a >  are given 

number, 1 2( , )x x x D= ∈  is an arbitrary point, ( )0,D TΩ = x , ( )0,t D tΩ= x , ( )0 ,  0,t T S T≤ ≤ = Γ  is the 
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2 2
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ψ ψ
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∂ ∂

∂
 and 

1 2

,
x x

ψ ∂
∂ ∂

∂ψ ψ
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υ  indicates the unit outward normal vector to , 1a  is a complex number such that 
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1 1 1 1Im 0,   Re 0,   Im 2 Rea a a a> < ≥ , (4)

( )a x  and ( )v x  are the measurable functions satisfying the conditions
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CONCLUSION 

As a result, we obtained that the solution of the 

considered initial boundary value problem exists 

and it has a unique solution. Also, we shown that the 

solution of the partial differential equation satisfies a 

priori estimation. Different from the previous studies 

we studied a two-dimensional nonlinear Schrödinger 

equation. So, this study is more comprehensive than 

previous.  


