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Abstract. The aim of this paper is to study the topology of the additive (Lie algebra) and multiplica-

tive (Lie group) pairwise comparison matrices (PCM). We prove that both additive and multiplicative

PCM are connected while only multiplicative consistent PCM is compact. We also provide that there
is no upper bound for the Perron norm of an inconsistent pairwise comparison matrix.
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1. Introduction

Pairwise comparison matrices are a useful tool in decision-making processes, especially in scenarios
requiring the assessment and comparison of various options or criteria based on their relative importance
or contribution to a goal. This method is widely applied in fields such as operations research, decision
analysis, and management science. When tasked with the evaluation of two distinct entities, whether
they be tangible or conceptual, one often turns to the method of pairwise comparisons, or PCs for short.
Historical texts, particularly those by Raymond Llull, shed light on the early utilization of this method.
Llull’s work, detailed in handwritten manuscripts due to the absence of contemporary publication avenues,
paved the way for using PCs as tools in the electoral systems.

Definition 1. Given two entities, A and B, a multiplicative pairwise comparison establishes a relation-
ship wherein A is a certain multiple (say, x times) of B. The ratio-centric nature of this approach is
reminiscent of the constant π, which conveys the relationship between a circle’s circumference and its
diameter.

Definition 2. Contrasting the multiplicative approach, the additive pairwise comparison quantifies the
difference between two entities. This is often represented in terms of percentages, signifying how much
one entity surpasses the other in a certain metric.

Definition 3. Let A = [aij ] be an n× n matrix. A is a multiplicative PCM if and only if:

• aij > 0 for all i, j
• aii = 1 for all i
• aij =

1
aji

for all i, j
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In matrix form:

A =


1 a12 . . . a1n
1

a12
1 . . . a2n

...
...

. . .
...

1
a1n

1
a2n

. . . 1


Let us give an example to make the diference between consistent and inconsistent PCM clear.

Example 1.

A =

 1 2 6
0.5 1 3

0.1667 0.3333 1

 .

Here, a12 · a23 = 2 · 3 = 6 = a13, so this matrix is consistent. However, for the matrix:

B =

 1 3 4
0.3333 1 2
0.25 0.5 1

 ,

we find that b12 · b23 = 3 · 2 = 6 ̸= 4 = b13. This deviation from the transitivity condition indicates that
B is inconsistent.

In scholarly research, various metrics or comparison standards, such as superiority or significance,
have been proposed, with [9] offering a comprehensive insight. Despite the prevalence and accessibil-
ity of the multiplicative approach, its inherent mathematical complexity is noteworthy. On the other
hand, additive comparisons, though less popular, possess an innate simplicity. Interestingly, the two can
be interconverted using logarithmic transformations, as elucidated in [2]. Such a transformation holds
significance in mathematical discussions on inconsistency convergence, as supported by multiple studies
including [3], [7], and [6].

Further explorations, particularly by [6] and building upon the foundational work in [5], suggest that
PC matrices can be grouped under a mathematical operation known as the Hadamard product. This
observation becomes pivotal in later studies, such as [4], which identifies this collection as a special
mathematical entity known as a Lie group.

The structure of this paper is as follows: In section 2 we will give additive (Lie algebra) and multiplica-
tive (Lie group) PC matrices and we give the relationship between them by exponential and logarithm
functions. In section 3 we prove the main results of this paper using Perron-Frobenious norm on positive
matrices.

2. Lie Groups and Lie Algebras of PC Matrices

The monograph [11] stipulates that, Intuitively, a manifold is a generalization of curves and surfaces
to higher dimensions. It is locally Euclidean in that every point has a neighborhood, called a chart,
homeomorphic to an open subset of Rn”. We find the above stipulation to be sufficient to be followed
by computer science researchers. A group that is also a differentiable (or smooth) manifold is called Lie
group (after its proponent Sophus Lie). According to [1], a Lie group is an abstract group G with a
smooth structure, that is:

Definition 4. (1) G is a group,
(2) G is a smooth manifold,
(3) the operation G×G → G; (x; y) → xy−1 is smooth. Matrix Lie group operates on matrices.

Definition 5. The Lie algebra of a Lie group G is the vector space TeG equipped with the Lie bracket
operation [, ] of vector fields.

The bracket operation [, ] is assumed to be bilinear, antisymmetric, and satisfies the Jacobi identity:
Cyclic ([X, [Y,Z]]) = 0 for all X,Y, Z belonging to this algebra.

Lemma 1. Let A and B be two matrices of the same dimensions. Then, the transpose of the Hadamard
product of A and B satisfies the reverse order law:

(A ◦B)T = AT ◦BT ,

where ◦ denotes the Hadamard (element-wise) product.
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Proof. By definition of the Hadamard product, the (i, j)-th element of A ◦B is given by:

(A ◦B)ij = AijBij .

Taking the transpose of A ◦B, the (i, j)-th element of (A ◦B)T is:

((A ◦B)T )ij = (A ◦B)ji = AjiBji.

On the other hand, the (i, j)-th element of AT ◦BT is:

(AT ◦BT )ij = AjiBji.

Thus, we have:

((A ◦B)T )ij = (AT ◦BT )ij ,

which implies:

(A ◦B)T = AT ◦BT .

□

From [4], we have the following result.

Theorem 1. For every dimension n > 0, the following group

G = {M = [mij ]n×n |M ·MT = I,mij = 1/mji > 0 for every i, j = 1, 2, . . . , n}

is an abelian group of n× n PC matrices with an operation
· : G×G → G defined by (M,N) → M ◦N = [mij · nij ]
where ”◦” is the Hadamard product.

Let M and N be arbitrary elements of G. Notice that by the properties of G:

NM(NM)T = (NM)(NTMT ) = N(MMT )NT = NINT = I.

Also G is closed and commutative under Hadamard product. Consequently, we see that (G, ◦) is an
abelian group.

Definition 6. Let G be a PC matrix Lie group and M(t) be a path through G. We say that M(t) is
smooth if each entry in M(t) is differentiable. The derivative of M(t) at the point t is denoted M ′(t)
which is the matrix whose ijth element is the derivative of ijth element of M(t).

Corollary 1. The abelian group G is a PC matrix Lie group.

Proof. We know that the Hadamard product ”·” and the operation M → M−1 = MT are differentiable
for every PC matrix M . Thus, G is a PC matrix Lie Group. □

We also know that the tangent space of any matrix Lie group at unity is a vector space. The tangent
space of any matrix group G at unity I will be denoted by TI(G) = G where I is the unit matrix of G.

Theorem 2. The tangent space of the PC matrix Lie Group G at unity I consists of all n × n real
matrices X that satisfy X +XT = 0.

Corollary 2. The Lie algebra of G, denoted by TI(G) = G, is a Lie algebra of G and TI(G) = G is
the space of the skew-symmetric n× n matrices. Notice that:

dim(G) = dim(G) =
n · (n− 1)

2
.

The exponential map is a map from Lie algebra of a given Lie group to that group. Note that this is
an entrywise exponential map rather than the classical matrix exponential. from G (the tangent space
to the identity element of PC matrix Lie group G) to G.

Let G be a PC matrix Lie group and G be the Lie algebra of G. Then, the exponential map

exp : G → G

A = [aij]n×n → exp[A] = [eaij ]

can be defined so that the following properties (1)-(6) hold:
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G1 = {δ(t) = etA | t ∈ R, A ∈ G} is one parameter subgroup of G.
(2) Let A and B be two elements of the Lie algebra G. Then, the following equality holds:

eA+B = eA · eB

(3) Given any matrix A ∈ G, the tangent vector of the smooth path γ(t) is equal to A · etA, that is,

γ′(t) =
d

dt
etA = A · etA

(4) For any matrix A ∈ G,

(eA)
−1

= e−A = (eA)
T
= eA

T

and

(eA) · (eA)T = eA · eA
T

= eA+AT

= eA−A = e0 = 1.

(5) For any matrix A ∈ G, γ(t) = etA is a geodesic curve of the pairwise comparison matrix Lie group G
passing through the point γ(0) = 1.
(6) For any matrix A ∈ G,, we have det(eA) ̸= etr(A) where tr(A) is the trace function of A.

Now we want to give a counter example for the last property.

Example 2. let us consider the following matrix

A =

 0 −1 1
1 0 0
−1 0 0

 .

Then A is the element of G, hence the exponential map of A is

eA =

 1 1/e e
e 1 1

1/e 1 1

 .

The determinant of eA is

det(eA) = e2 + e−2 − 2

and trace of A is:

tr(A) =

3∑
i=1

aii = 0.

Consequently, det(eA) is not equal to etr(A) for the matrix A.

3. Perron Norm and Topology of Pairwise Comparison Matrices PCM

Definition 7. The Perron norm is denoted by ∥ · ∥∞ and defined as follows:

∥A∥∞ := max
i

n∑
j=1

|aij |, i = 1, . . . , n

where A is an n × n matrix with entries aij. The Perron norm is also called the infinity norm or the
maximum row sum norm.

Lemma 2. For any non-negative matrix A its Perron-Frobenius eigenvalue λ satisfies the inequality:

min
i=1,··· ,n

n∑
j=1

aij ≤ λ ≤ max
i=1,··· ,n

n∑
j=1

aij .

Lemma 3. Let A be an inconsistent pairwise comparison matrix with at least one negative eigenvalue.
Then, the Perron norm of A is greater than 1.
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Proof. Let A be an inconsistent pairwise comparison matrix with at least one negative eigenvalue, and
let λmax(A) be the largest eigenvalue of A. We want to show that ∥A∥∞ > 1.

Suppose for the sake of contradiction that ∥A∥∞ ≤ 1. Then, we have:

λmax(A) = max
∥x∥∞=1

∥Ax∥∞
∥x∥∞

≤ ∥A∥∞ max
∥x∥∞=1

∥x∥∞
∥x∥∞

= ∥A∥∞ ≤ 1.

Since λmax(A) is the largest eigenvalue of A, we know that it satisfies the equation Av = λmax(A)v
for some nonzero vector v. Multiplying both sides by sgn(v) (the vector of signs of the entries of v), we
obtain:

sgn(v)TAv = |λmax(A)|sgn(v)T v.
Since A is pairwise comparison matrix, all of its entries are nonnegative, so we have sgn(v)TAv ≥ 0.

Therefore, we must have |λmax(A)| ≥ 0. But since we assumed that A has at least one negative eigenvalue,
we know that λmax(A) < 0, which is a contradiction.

Therefore, we must have ∥A∥∞ > 1, as desired. □

Theorem 3. Let A be an inconsistent pairwise comparison matrix with all positive eigenvalues. Then,
the Perron norm of A is greater than or equal to n, where n is the order of the matrix.

Proof. Let A be an inconsistent pairwise comparison matrix with all positive eigenvalues. Then, we can
write A as the product of its diagonal matrix of row sums D and its matrix of normalized entries B:

A = DB.

Since B is column stochastic, we have that B1 = 1, where 1 is the vector of all ones. Then, we can
write:

∥A∥∞ = max
i=1,...,n

n∑
j=1

|aij |

= max
i=1,...,n

n∑
j=1

|dibij |

= max
i=1,...,n

di

n∑
j=1

|bij |

≥ max
i=1,...,n

di

= max
i=1,...,n

n∑
j=1

aij

= λmax(A),

where di is the ith diagonal entry of D, and λmax(A) is the largest eigenvalue of A. The inequality
follows from the fact that the row sums of B are all equal to 1, so

∑n
j=1 |bij | ≥ 1 for all i. Therefore, we

have shown that:

∥A∥∞ ≥ λmax(A).

Since all eigenvalues of A are positive, we know that λmax(A) is one of the diagonal entries of D, say
dk. Therefore, we have:

∥A∥∞ ≥ dk =

n∑
j=1

akj ≥ n.
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The last inequality follows from the fact that A is column stochastic, so
∑n

j=1 akj = 1 for all k.
Therefore, we have shown that:

∥A∥∞ ≥ n.

□

Example 3. Let A be an 6× 6 inconsistent pairwise comparison matrix.

A =


1.0000 0.8059 0.9801 0.4685 0.5094 0.1642
1.2408 1.0000 0.1017 0.9085 0.4869 0.3990
1.0203 9.8307 1.0000 0.4171 0.8559 0.5324
2.1343 1.1007 2.3972 1.0000 0.6144 0.8752
1.9630 2.0538 1.1684 1.6276 1.0000 0.6590
6.0909 2.5061 1.8784 1.1426 1.5174 1.0000

 .

Perron norm of this pairwise inconsistent matrix is 6.9629, which is bigger than n.

Theorem 4. Let A be an inconsistent pairwise comparison matrix with all positive eigenvalues, and let
λmax(A) be the largest eigenvalue of A. Then, we have:

∥A∥∞
λmax(A)

≥ n

mini=1,...,n

∑n
j=1 aij

.

Proof. To prove this inequality, we can use the fact that the consistency ratio of a pairwise comparison
matrix A is defined as the ratio of the inconsistency of A to the consistency of a perfectly consistent matrix
with the same row geometric means as A. The inconsistency of A is measured by the quantity λmax(A),
while the consistency of a perfectly consistent matrix is measured by the quantity mini=1,...,n

∑n
j=1 aij .

Therefore, the consistency ratio of A can be written as:

λmax(A)

mini=1,...,n

∑n
j=1 aij

Since A is inconsistent, its consistency ratio is greater than 1. Thus, we have:

λmax(A)

mini=1,...,n

∑n
j=1 aij

> 1

Multiplying both sides by n yields:

nλmax(A)

mini=1,...,n

∑n
j=1 aij

> n

Using the fact that the infinity norm of A is greater than or equal to its row sums, we have:

∥A∥∞
λmax(A)

≥ 1

Multiplying both sides by n yields:

n∥A∥∞
λmax(A)

≥ n

Combining the above inequalities, we get:

∥A∥∞
λmax(A)

≥ n

mini=1,...,n

∑n
j=1 aij

.

□
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Example 4. Let A be an 4× 4 inconsistent pairwise comparison matrix.

A =


1.0000 0.1540 0.0627 0.1305
6.4931 1.0000 0.3371 0.9015
15.9500 2.9663 1.0000 0.2203
7.6609 1.1092 4.5385 1.0000

 .

In this example, λmax(A) = 4.7790 and ∥A∥∞ = 20.1367. Then, ∥A∥∞
λmax(A) = 4.2136. On the other hand,

n = 4 and mini=1,...,n

∑n
j=1 aij = 1.3472. Thus,

∥A∥∞
λmax(A)

= 4.2136 >
n

mini=1,...,n

∑n
j=1 aij

= 2.9690.

Theorem 5. Let A be an inconsistent pairwise comparison matrix with all positive eigenvalues, and let
λmax(A) be the largest eigenvalue of A. Then, we have:

λmax

2
min

i=1,...,n

n∑
j=1

aij < ∥A∥∞

Proof. Suppose that A is an inconsistent pairwise comparison matrix with all positive eigenvalues, and
let λmax(A) be its largest eigenvalue. We can use the fact that A is inconsistent to obtain a lower bound
for its Perron norm.

Recall that the consistency ratio of A is defined as λmax(A)
mini=1,...,n

∑n
j=1 aij

. Since A is inconsistent, its

consistency ratio is greater than 1. Thus, we have:

λmax(A)

mini=1,...,n

∑n
j=1 aij

> 1

Multiplying both sides by mini=1,...,n

∑n
j=1 aij yields:

λmax(A) > min
i=1,...,n

n∑
j=1

aij

Using the triangle inequality, we have:

∥A∥∞ ≥ max
i=1,...,n

n∑
j=1

aij − max
i=1,...,n

n∑
j=1

(−aij) ≥ 2 min
i=1,...,n

n∑
j=1

aij

Therefore, we have:

∥A∥∞
λmax(A)

≥
2mini=1,...,n

∑n
j=1 aij

λmax
> 1

This inequality can be rearranged to obtain a lower bound for the Perron norm of A:

∥A∥∞ >
λmax(A)

2
min

i=1,...,n

n∑
j=1

aij

Therefore, we have shown that the Perron norm of an inconsistent pairwise comparison matrix with
all positive eigenvalues is bounded below by

λmax(A)

2
min

i=1,...,n

n∑
j=1

aij .

□

Theorem 6. There is no upper bound for the Perron norm of an inconsistent pairwise comparison
matrix.
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Proof. First, let us define what we mean by an inconsistent pairwise comparison matrix. A pairwise
comparison matrix is said to be inconsistent if there exist at least one pair of elements for which the ratio
of their weights is not consistent with the ratio of their weights as compared to a third element. In other
words, if Ai,j denotes the weight given by element i compared to element j, and Aj,k denotes the weight
given by element j compared to element k, then an inconsistent pairwise comparison matrix is one for
which there exist i, j, and k such that Ai,j ·Aj,k ̸= Ai,k.

Now, let A be an inconsistent pairwise comparison matrix of size n×n. Let λ be the largest eigenvalue
of A, and let v be a corresponding eigenvector with non-negative entries (i.e., a positive eigenvector). We
can assume that the entries of v are normalized so that their sum is 1.

Consider the matrix B = A + ϵI, where ϵ is a small positive constant and I is the identity matrix of
size n× n. We can think of B as a perturbation of A by adding a small positive constant to each of its
diagonal entries. It is easy to see that B is a consistent pairwise comparison matrix, since the diagonal
entries are now all 1 and the pairwise comparisons remain unchanged.

The largest eigenvalue of B is given by λ + ϵ, and a corresponding eigenvector is given by v. Since v
has non-negative entries, the corresponding eigenvector for λ+ ϵ also has non-negative entries. Moreover,
for ϵ small enough, λ+ ϵ is still strictly greater than any other eigenvalue of B.

Therefore, the Perron norm of B, which is equal to λ+ ϵ, can be made arbitrarily large by choosing ϵ
sufficiently small. Since B is a consistent pairwise comparison matrix, this shows that there is no upper
bound for the Perron norm of an inconsistent pairwise comparison matrix A.

Therefore, we have proved that there is no upper bound for the Perron norm of an inconsistent pairwise
comparison matrix. □

Proposition 1. A subset S of normed linear space X is said to be bounded if it is bounded with respect
to the metric induced by the norm.

Proposition 2. Show that a subset S in a normed space X is bounded iff there exists c > 0 such that
∥x∥ ≤ c for every x ∈ S.

Corollary 3. The Lie group of n×n multiplicative pairwise matrices PCM is not bounded by the Perron
norm. However, multiplicative consistent pairwise matrices PCM is bounded.

Proof. Let A be a consistent n × nPC matrix. The the norm of A is n. So it is bounded. If A is an
inconsistent n×nPC matrix. Then, by Theorem 6 and Proposition 2, the n×nmultiplicative inconsistent
pairwise matrices PCM is not bounded by the Perron norm. □

Theorem 7. The Lie group (Lie algebra) of n×n multiplicative (additive respectively) pairwise matrices
PCM is (topologically) closed.

Proof. Let G be the Lie algebra of additive pairwise comparison matrices PCM . If H = [hij ] ∈ G then
hij = −hji. It implies that hii = 0. So the trace of H is tr(H) = 0 for every additive PCM . So the trace
function on additive pairwise comparison matrices is constant 0, then it is continuous. Since {0} is a
closed set then inverse image of {0} under trace function is closed too. Hence the Lie algebra of additive
pairwise comparison matrices G is closed. On the other hand, we know that the map exp : G → G is a
closed map and onto, therefore the Lie group of n×n multiplicative pairwise matrices G is (topologically)
closed. □

Since a closed and bounded set is compact, then we have the following result.

Corollary 4. The subset n × n multiplicative consistent pairwise matrices G is compact. However, the
Lie group (Lie algebra) of n × n multiplicative (additive respectively) pairwise matrices PCM is not
compact.

Theorem 8. The Lie group (Lie algebra) of n×n multiplicative (additive respectively) pairwise matrices
PCM is connected.

Proof. Since the singleton set {0} is a connected then inverse image of {0} under trace function is
connected too. Hence, the Lie algebra of additive pairwise comparison matrices G is connected. On the
other hand, we know that the map exp : G → G is a continuous map and onto, therefore the Lie group
of n×n multiplicative pairwise matrices G is connected too because continuous image of a connected set
is connected. □
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4. Conclusion

Our paper demonstrates that the multiplicative PC matrices (not the elements of a PC matrix) gen-
erate a Lie group for the Hadamard product. Lie algebras of these Lie groups are identified here. It
has been shown that Lie algebras form spaces of skew-symmetric matrices. Then, we prove that both
additive and multiplicative PCM are connected while only consistent multiplicative PCM is compact.
Also, we find that there is no upper bound for the Perron norm of an inconsistent pairwise comparison
matrix.
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