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Abstract

We provide some useful equations for calculating the periodic and antiperiodic eigenval-
ues of the one-dimensional Schrédinger operator S(q) with a special potential that is a
PT-symmetric trigonometric polynomial. We even give estimates to approximate complex
eigenvalues by the roots of some polynomials derived from some iteration formulas. More-
over, we give a numerical example with error estimation using Rouche’s theorem.
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1. Introduction

In this article, we are interested in the operators S¢(q), for t = 0, 1, generated in L3 |0, 7]
by the expression

—y" (@) + q(2)y(z) (1.1)
and the periodic and antiperiodic boundary conditions
y(m) = ey(0),  y'(m) =€y (0), (1.2)
where ¢ is the trigonometric polynomial potential of the form
q(z) = q_pme M 4 g e, m > 2, (1.3)

(G—mqm) € R and m € Z. Here we choose the notations ¢_,, and g, to mention the
Fourier coefficients of the potential. Note that, in the case m = 1, potential (1.3) can be
considered as the optical potential with g1 =1—2V, g1 =1+ 2V, V > 0. This case has
been investigated in our another work [15].

It was proved by Veliev [18, see Theorem 1 and (26)] that, if ab = cd, where a,b,c,
and d are arbitrary complex numbers, then the Hill operators S(q) and S(p) generated in
Ly(—00,00) by differential expression (1.1) with the potentials ¢(z) = ae™"?* + be?* and
p(r) = ce ™% + de??* | have the same Hill discriminant, and hence the same Bloch eigen-
values and spectrum. Therefore, the investigations of the operators S(q), for t = 0, 1, can
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be reduced to the investigations of the operators generated in L2[0, 7] by expression (1.1)
and the boundary conditions (1.2) with the potential

p() = rme M 4 e = 2, cos(2ma), (14)

where 7, = \/q_mGm- It is well known that the spectra of the operators Sp(g) and S1(q)
are discrete and for large enough n, there are two periodic (if n is even) or antiperiodic
(if n is odd) eigenvalues (counting multiplicities) in the neighborhood of n%. See the basic
and detailed classical results in [4,9-11] and references therein.

Note that, the trigonometric polynomial potential (1.3) is a PT-symmetric potential if
G—m,qm € R. For the properties of the general PT-symmetric potentials, see [1-3, 12,20,
22,24] and references therein. Here, we only note that, the investigations of PT-symmetric
periodic potentials were initiated by Bender et al. [2].

The eigenvalues of the operators Sp(0) and S1(0) are (2n)? and (2n + 1)2, for n €
Z, respectively and all the eigenvalues of Sy(0) and S;(0), except 0, are double. The
eigenvalues of So(¢) and Si(q) are called the periodic and antiperiodic eigenvalues of the
one-dimensional Schrédinger operator S(gq), generated in La(—00,00) by expression (1.1)
with potential (1.3), and they are denoted by A, (q), for n € Z and p,(q), for n € Z — {0},
respectively.

It is well known that (see [6,10,11]), if 7, is a real nonzero number, then all the eigen-
values of the operator Hy(r,), generated in Ly[0, ] by expression (1.1) and the bound-
ary conditions (1.2) with potential (1.4), are real, for all t € (—1,1], and the spectrum
o(H (ry,)) of the Schrodinger operator H (r,,), generated in Lo(—o00, 00) by expression (1.1)
with potential (1.4), consists of the real intervals

[yi= [Ao(rm), p—1(rm)], T2 = [pga(rm), A1 (rm)], - T o= [Apa(rm), p—2(rm)],

Iy:= [MJrQ(Tm)v )‘fQ(Tm)]a IR
where \o(7m), A—n(m), Agn(rm), for n = 1,2,..., are the eigenvalues of Hy(ry,) and
foen(Tm), tan(rm), for n = 1,2..., are the eigenvalues of Hj(r,,) and the following in-
equalities hold:

Ao(rm) < p—1(rm) < p1(rm) < A=1(rm) < A1(rm) < p—2(rm) < p2(rm)
< )\,Q(Tm) < )urg(’l“m) < v

The bands I'1, I'g, . .. of the spectrum o(H(r,,)) of H(ry,) are separated by the gaps
Ar = (g1 (rm)s i (rm), - Bz i= (Aa(rm), Apa(rm)), Az = (p2(rm), pr2(rm), - - -

if and only if the eigenvalues at the endpoints of the intervals are simple. In other notation,
we can write I'y, = {7y, (¢) : t € [0, 1]}, where v1(t),v2(t), ... are the eigenvalues of Hy(r.,),
called as Bloch eigenvalues corresponding to the quasimomentum ¢. The Bloch eigenvalue
Yn(t), continuously depends on ¢ and ~,(—t) = v,(t). These statements remain valid for
Si(q) and S(q) if ¢—m@m > 0. (see also [21])

Obviously, A_,(ry,) and Ayp (), for n = 1,2,... are the (2n)th and (2n + 1)th pe-
riodic eigenvalues; p—p () and pgp(ry), for n = 1,2,... are the (2n — 1)th and (2n)th
antiperiodic eigenvalues, respectively.

If one of the numbers ¢_,, and g, is zero and the other one is real in (1.3), then all
the eigenvalues of the operator So(q), except 0, are double and they are equal to (2n)2.
This fact was proved for the first time in [7]. This case was investigated also in [8,14,19].
In [14], we investigated the operators S;(q), for ¢ = 0,1, with potential (1.3), when the
periodic and antiperiodic eigenvalues are real.

In this paper, we give estimates for the eigenvalues of Sy(q) and S1(q), when (¢_mgm) €
R. We provide some useful equations to approximate the periodic and antiperiodic eigen-
values for different values of m in the potential. We even calculate complex eigenvalues
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by approximating the roots of some polynomials derived from some iteration formulas.
Finally, we give a numerical example with error estimation using Rouche’s theorem.

Arguing as in the proof of Theorem 9 of [23], one can prove that, the periodic eigenvalues
Ain(q), for n > 2, lie in the disk D,, := {\ € C : |A\—(2n)?| < 2|rp|}, forn =2,3,4,... and
7| < 2n — 1, where ry, = \/q—mGm. Moreover, the disk Dy, for n > 2, has no common
points with another disk D,,, for m # n and the boundary of the disk D, := {A € C:
A= (2n)2| < 2|rm|+ €}, for n = 2,3..., belongs to the resolvent set of the operator Sy(q),
for all |r,| < 2n—1, if € is a sufficiently small positive number. It implies that, the number
of eigenvalues (counting the multiplicity) of So(¢) lying in D, ., for n > 2, are the same
for all |r,,| < 2n—1. Since Sp(0) has two eigenvalues in D, ¢, for n > 2, the operator Sy(q)
has also two eigenvalues for |r,,| < 2n — 1. Letting € tend to zero, we obtain that Sy(q)
has two eigenvalues (counting the multiplicity) in D,,, for n > 2 and |rp| < 2n — 1. By
the same token, we can prove that Sp(g) has 2 eigenvalues in Dy, for |g_2| + |g2| < 29/10,
m = 2 and for |g_m| + |gm| < 7/2, m > 3; and that it has one eigenvalue in Dy, for
g—2| + [q2] <2, m =2, and for |g_p| + [gm| < 3, m > 3.

Similarly, Si(¢) has two eigenvalues (counting the multiplicity) in d,, := {u € C :
= (2n — 1)?| < 2|rp|}, for n = 1,2,... and |r,| < 2n. We denote the first, (2n)th and
(2n+1)st periodic eigenvalues by Ag(q), A (q) and A4, (q), for n =1,2,...; the (2n—1)st
and (2n)th antiperiodic eigenvalues by p—,(q) and p4,(q), for n =1,2,... , respectively.

Therefore,

|>\in(Q) - )\in(o)| < 2|rm|,
’Hin(Q) - Min(0)| < 2|rm|,

forn=1,,2..., where A1, (0) = (2n)?, 4, (0) = (2n—1)% and r,, = \/G—mGm- Moreover,
for n = 0, we have [Ao(q)| < 2|ry,|. Thus, we write

(2n)% — 2|7 | < [An] < (20)2 + 2|7 (1.5)
and
A = (2k)%] > 1(2n)° = (2k)?| = 2lrm| = 4l — Klln + k| = 2lrm| > 4120 = 1] = 2lrp],
for n € Z and k # £n. In particular, if n = 1, then |A41]| < 4 + 2|r,,| and
Dt — (2802 2 [Aat] — (28)%] 2 16 — [Aaa] 2 12— 2, (1.6)
for k > 2. Further, if |n| > 2, we have |A,| > |[A_2| > 16 — 2|r),| and
Do — (26)2] > [IAoa] — (20)%] > [A o] — 4 > 12— 2y, (1.7)
for k # +n. Similar inequalities can be written for the antiperiodic eigenvalues from
(20— 1)% = 2fr] < [pia] < (20— 1)% + 21, (18)

forn=1,2,....

2. Main results

First, we study the operator Sy(¢) and periodic eigenvalues. We note that, by the
notation \,, we mean the (2n)th and (2n + 1)th periodic eigenvalues A_,, and Ay, for
n =1,2,.... We also note that, the following relations and iteration formulas have been
used by Veliev and his collaborators to obtain asymptotic formulas for large periodic
eigenvalues, corresponding eigenfunctions and the length of the gaps in the spectrum of the
Schrodinger operators with different potentials, see for example [5,17,24-26]. We also used
them to obtain numerical estimations for periodic eigenvalues in different cases [13-16]. In
the present paper, we find completely different conditions on the potential than those of
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our other works for which the periodic eigenvalues satisfy the iteration formulas obtained
below and the calculations are quite long and technical. We begin with the equations

Ay = (20)*) (U, €?"7) = (¢, ™), (2.1)
(A = (20)*) (T, e7"%) = (qUn, e ") (2.2)

which are derived from
—U(z) + q(2) TN (z) = AnTn(z),

by multiplying both sides of the last equality by €™ and e %2"*  respectively, where
Uy (z) is an eigenfunction corresponding to the eigenvalue \y. Iterating equation (2.1) k
times, as done in [5], we obtain

()\n—(%)2—i%()\n))( 2 qszlﬂa U ) = o), (23)
where i ]
g e
e =

B GnyGny * anan+l(qun’ i2(n—n1—-—ngy1)x )
O = Y e D= G == =)

1,125+ 1

l
Here, the sums are taken under the conditions n; = +m, Z n; #0,2n,forl =1,2,...,k+1.

=1
Note that, for the trigonometric polynomial potential of the form (1.3), we have ¢; = 0
for i # £m.
Similarly, iterating equation (2.2) k times, we obtain

k k
(An = (20)* = >~ o (An)) (Tn, €)= (goan + D 55 (An)) (Tn, €77) = p(An),  (2.4)
j=1 j=1

where
ww= 2 B R (2
HOD= S G n T = Gl £ T
)= e et

An—(2n+mn1))2] - [An— 2n+n1+ - +npp1))?]

1,12, M1

Here, the sums are taken under the conditions n; = £m, Z ni #0,—2nforl=1,2,....k+

1 We note that, analogous iteration formulas to (2.3) and (2.4) were derived and used

in [5] for large eigenvalues to obtain asymptotic formulas. In this paper, we find conditions
on the Fourier coefficients of potential (1.3) for which the iteration formulas (2.3) and (2.4)
are also valid for the small eigenvalues, as k tends to infinity. We also note that, finding
such conditions is not easy, there are many technical calculations. Since the potential ¢
is the trigonometric polynomial potential of the form (1.3), we have the followings, after
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some calculations (see [14]):

a3 (n) = azjm1 )y abi(a) = agi(A) =0, Bi0w) = ()85 (A),

m
(2.5)
for 7 = 1,2,.... Now, in order to give the main results, we prove the following lemma.
Without loss of generality, we assume that ¥, (z) is a normalized eigenfunction corre-
sponding to the eigenvalue A,,.

Lemma 2.1. The statements
(a') limy 00 pk()\n) =0, limy 00 pZ()\n) =0,
(b) |un|? + |vn|? > 0, where u, = (¥, €2"%) and v, = (V,,, e~2"7),
are valid in the following cases:
(i) if |q—2| + |g2| <29/10, forn =1 and m = 2,
(ii) if |g—m| + lgm| < 7/2, forn =1 and m > 3,
(#ii) if [rm| <25 —1, forn > s, s =2,3,... and m > 2, where 7, = \/q—mGm.-
Proof. (a) By the definition of pi(A,) and the conditions imposed on the summations,

the number of summands of pog11(\,) is not greater than 42*.On the other hand, by (1.5)-
(1.7), we have

A1 — 16] > 12 — 2|ry,|, A1 — 36| > 32 — 2|1y, [A1 — 100] > 96 — 2|r,],
16 — 2|rp | < |A2] < 16 + 2|y, Ao — 4| > 12 = 2|ry,|, Ao — 64| > 48 — 2|1y, |,
and

—(2(n —m))?| > 4m|2n — m| — 2|ry,| > 4m|2s — m| — 2(2s — 1)
24(3—1—1)(3—1)—2(23—1):43 —4s -2, m # 2n,

— (2(n = 2m))?| > 16m|n — m| — 2|r,| > 16m|s — m| — 2(2s — 1)
>16(s+1) —2(2s — 1) = 12s + 18 = 6(2s + 3), m # n.

Hence, using 2|ry,| < |¢—m| + |gm| and considering the greatest summands of pog+1(A,) in
absolute value, we obtain for case (i)

47K |q_y| \qzlk“?lm!\f AV o
P — 36/ g — 100]F = (32 — 2/ra| F1(96 — 2]ra] )F

3lqaly/m4%F3%F  3|go|y/m12F12F 3|QQ’\F(£)I€
22k29k+193k — 4kook+193k 29 ‘899’ ’

|par+1(A1)] <

for case (ii)

4% |q_s|F|gs|FT12)rg| /T < 2| qs] /T4 |rg |21
|A1 — 16|51 A; — 100]F = (12 — 2|rs|)k+1(96 — 2|r3|)*

|por+1(A1)] <

< 4lgs|y/ma?*2%*  gs|y/m 16"4F !%\\/ﬂzyc
8k+192k 2 8kg2k 2 2377
and for case (iii)
42k|Q—m’kIQm|k+12’7”m|\/%
|p2r+1(An)| < 20k +1 20k
[An = (2(n —m))?[*HAn = (2(n — 2m))?|
< AMlgslFlasM U 20rsl v 20aslv/maH s
Ao — 4[F+L | Ng — 64]F (12—2|r3|)k+1(48—2|r3|)

6|q3‘f42k32k _ 6k9k B A
TRk |Q3|ﬁm = \Q3|\/E(§) :

Thus, in any case |p2rs1(A\n)| < ca®, for some constant ¢ > 0 and 0 < a < 1, and hence
limy, 00 pr(An) = 0. Similarly, we show that limy_,« pj (M) = 0.



6 C. Nur

(b) Assume the contrary, u, = 0 and v, = 0. Because the system of root functions
e2kz | /1 k € Z) of Sy(0) is an orthonormal basis for Ly[0, 7], we write the decomposi-
) p
tion
7, = w2 4y e i2nE Z <\I/ €i2km) pi2k
n — n n s
kEZ kA+n
for the normalized eigenfunction ¥, corresponding to the eigenvalue A, of Sy(q). By
Parseval’s equality, we have

Z ‘(\pn’eika)‘Q = .

ke€Z,k#En

First, we consider the case n = 1, for m = 2, and for m > 3, namely for the cases (i) and
(ii), respectively. Using the relations (1.6) and (2.1), the Bessel inequality, and taking

(qU1,1) = g (V1 €2™) 4 g (T, e~ 2m)

into account, we obtain for m = 2

ST VLN O (e
kEZ k#A+1 ’ | A1]? kO t1 A1 — (2k)2]2
< (g-all(@¥s, )] + |gall (g%, e )] 3 [(q¥1, e )2
- [Ar?[A1 — 16]? hoy o — 162
- 2 1 A
oa] o) el 3 l(qWy, ) ?

< (4—2\7“2\)2(12—2]7”2])2 (12_2‘742‘)2 o
m(29/10)* 7(29/10)2 8l
= (11/10)2(91/10)2 © (91/10)2 ~ 100 =~
and for m > 3
Z (W, ei2k)[2 = 1(q¥1,1) + Z M
hebips |)\1|2 oty A= (2k)2)
O R VP O P ¥
- AP [AL = (2m)?? Lot 1M —162

(lg-3] + lga])*m(2]r3])? m(2rs)? _  7(7/2)* 7(7/2)2 olw _
T (4-2[r3))2(36 — 2[rs])? (12— 2rs))? T (1/2)2(57/2)2 © (17/2)* 100

which contradict Y ez pzaq [(P1,€257)]2 = 7.
Now, we consider the case (iii), namely the case |r,,| < 2s —1 and n > s, for s > 2.
Using (2n)% — 2|mm| < |An| < (21)% + 27|, we obtain
A= (2K)% 2 A = (2(n = 1)) = (20)* = 2lrm| = (2(n — 1))?
=42n—1) = 2|rpy| >4(2s — 1) —2(2s — 1) = 4s — 2.
Therefore,
|(q\I’n,6i2km)|2
A — (2)?]?

Z ‘(\I/m €i2kzx)‘2 — Z

kE€Z k#+n keZ k#+n

1 : T (2’71777,‘)2
< E : |(q\1jna 612]%”2 < <,
_ 2 _ 2

(45 — 2) kel dn (45 — 2)

2k2)|2 = 7 and the lemma is proved. 0

which contradicts 3 jcz kran [(Wn,e

Now, we consider the statements of Lemma 2.1 for the case n = 0:
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Lemma 2.2. The statements (a) limg_o pr(Ao) = 0 and (b) |(Vo,1)| > 0 hold in the
following cases:

(1) if lg—2| +|q2| <2, for m =2,

(i) if |g—m| + |gm| < 3, for m > 3.

Proof. The proof of (a) is obvious in each case. For the proof of (b), suppose the contrary
(U, 1) = 0. Isolating the terms |(¥o, e "2%)|2 and |(¥p, e"??)|? in Parseval’s equality, we
can write
(To, &™) + | (Wo, )P+ Y [(Vo,e5)]> = 7.
k#£0,41

First, we estimate |(q¥o, e~%%)|2 + |(q¥o, €'?%)|? for each case. Using (2.1), the relations
Aol < 2[rml, [Ao — 4] = 4 = |Ag| = 4 — 2|ry| and

(q\lfo,e_i%) - q72(\110’622x) + QQ(‘IJ(),B ’563:)’

(q\I](),ein) — Q—z(\Ilo,eZM) + q2(\I’0,€ 123:)’
(q\IIO’ €_i2x) = q_3(\II0’ €i4x) + q3(\110a e—iSI)’

(q\I’O, €i2x) = qig(\lfo, €i8m) + q2(\110’ e i4x)’

we obtain for case (i)
i —2(q%o,e*")| | lg2(q¥o, ")
/j —i2x < ‘q 2((] 0 ,
[(q¥o, e )| < o — 4| o — 36
|4-2¢2(q%o, e"*)| | [(g-2)*(q%0,€¢"")| | |az2(q¥o,e~"")]
< |)\0*4|2 ‘)\0*4||)\0736| ‘)\0*36| s

2|ro|3/m N lq_2|?2|ra| /7 Jr|612!2|7“2|\/7T
(4—2Jra))% (4 —2|r2])(36 —2r2]) ~ (36 —2|r2)

VT aPVE | 2elVE _VE AV 2T

<

-2 34 34 2 17 34
and
i _ g eiﬁx)| |QQ(C]‘I’0 €—i2z)‘
i} 22| < ‘q 2(6] 0 ,
(o 1= T g ho—4
la—2(a%0,€"")| | la—2a2(q%0,€™")| | [(2)*(q¥o, e )]
[Xo — 36| X — 4[2 Mo — 4] Ao — 36| °

< la—2[2|r2| VT n 2|ro|3 /7 N |q2|22]ra |/
T (36 —2[ra|)  (4—2Jm2])2 (4 —2|ra)(36 — 2|ra])
2golVm VT | lalVT _ VT 4T 25V

34 ot S tr T

IN

for case (ii)

: -3(a%0,e"")| | las(a%o,e”"™7)|\2
i} —i2x|2 ~ |q 3(q 0, 3
< (\Q—3\2!7"3\\/77 |CI3!2|7“3!\/7T)2: A2 ( g3 |3 )2
= V16— 2|rs] | 64— 2Jrg] 16 — 2[rs| '~ 64— 2|r3]’
_3]? 2|q— 2
— Ay ( la-s” |q-343] L el )

(16 —2[r3])* (16 — 2|rs[)(64 — 2rs]) ~ (64 — 2|r3[)?
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| 2

and
- —3(q%0,e™)|  |as(qPo,e”")] 2
I 2x\ |2 < ‘q 3(q ) 5
_3|2|r s 2\r T\ 9 _ 2
< (|q 3|_’ sV |Q3’_|3|\f) — dfrg|2( \3 sl |_Q3\ )
64 — 2[r3)| 16 — 2| 64 — 2|r5] | 16 — 23]
2 2
- 2|q—3q3| |lg3]
—4 2 !q 3’
I3l (62— ajral)? T (16 = 2Jra])(64 = 2Ira]) T (16 — 2/ra)?)
and so,
» : _3[? 2 4|q_3qs] lg_s|> + g
224 (2 i22y2 o o (la—3|* + g3 q-343 3 3
(o, (o, PO < 4irs P gy o)+ (06 = 2lval) 64— 2ral) (16— 2]ra)?)
32 6 32
<In( =5 + 5 + 55) < 0.577.

612  13.61 132
Using (2.1), the Bessel inequality and taking
[(q¥o, e~ %) 2 4 | (W0, &) |* < 2%(3—4)2< 117/10,  m=2

and
(W0, e %)% 4 |(qT0, e?7)|* < 0.57m < 37/5, m >3
into account, we obtain for case (i)

S |(W, )2 = (g0, e~i22)|2 |(q\1;0’6i2x)|2+ 5 [(q¥o, )2

| Ao — 4|2 Ao — 42

117 1 .
< + (g, €72
10(4 — 2[rs))2 ﬂG—QVﬂPkgil

_ Unm 7(2|ra])? o U LT 3T _
-t — X — + =< = <m,
~ 40 142~ 40 49 " 10

and for case (ii)

_ 212
keZ,k#0 k#0,41 Ao — (2k)?|

Z |(\I]O ei?kx)|2 _ |(Q\I/07677:2x)‘2 ‘(q\IIO, 122 ‘2 N Z M
ek Po—daP T o= T e, o — (6P
3m 1 '
< + |(qWo, eszx)P
54— 2frs)* (16 = 2rs])? ,ﬁ;ﬂ

o3 N m(2|rs))? 597
) 132 90
which contradict }°yc7 120 [(Wo, 612’7“”)]2 = 7 and complete the proof.

<

O

Now, letting k tend to infinity in the equations (2.3) and (2.4), we obtain the following

results. First, we consider the case n > 2.

Theorem 2.3. Suppose that |rp,| < 2s — 1, forn > s, s = 2,3,... and m > 2, where

'm = /9—mYm-

(a) If m is even and n = m/2, then Ay, is an eigenvalue of So(q) if and only if it is

either the root of the equation

A— — T — Z agj—1(
or the root of

A—(2n)2 + 1y — Zazg 1

(2.6)

(2.7)
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(b) If n =m, then Ay, is an eigenvalue of So( ) if and only if it is either the root of

2r2

2 m
A= @)= —16n2 Z:O% ! (28)

or the root of

A —(2n)% — - 16n2 Za2j 1 (2.9)

(c) If n #m and n # m/2, then Ay, is an ezgem)alue of So(q) if and only if it is either
the root of

- Qi \n/mx—
> aga () — (E)Y T g0 =0 (2.10)
j=1 dm j=1
or the root of
a0+ (E)M™YT B0 =0 (2.11)
= m =
lying in the disk D, := {\ € C : |\ — (2n)?| < 2|r|} and each of the series in these

equations converges uniformly to an analytic function on the disk D,,.

Proof. (a) By Lemma 2.1, letting & tend to infinity in the equations (2.3) and (2.4), we
obtain

Z Q25— 1( un = Q2n + Z B] T)n, (2.12)

7j=1
ZOZQJ 1 Un— q QnZﬁ Una (2.13)

z2nx) 71271:1:)

where u, = (¥, e and v, = (¥, e . If one of the numbers u,, and v,, is zero,
then the proof is obvious. If they are both different from zero, multiplying these equations
side by side and then cancelling the term w,v,, by (2.5), we obtain

- i a1 (An))*= (qqim )2 (gon + Z Bi(An)), (2.14)
=1 m
which implies A, is either the root of
Z ag;j-1( qq: )™ (qan + Z Bi(A (2.15)
or the root of
- i::l azj—1(An) + qq: )™ (q2n + 321 Bi(An))= (2.16)

Since Bj(A\n,) =0, j = 1,2,..., for n = m/2, X\, is either the root of (2.6) or the root
of (2.7).

Now, we prove that the roots of (2.6) and (2. 7) lying in the disk D,, are the eigenvalues
of Syp. The equation fi()\) := XA — (2n)? — (=1)"r,, = 0, has one root in the disk D, for
each ¢ = 1,2, and

i)l = [An = (20)2 = (=1)'rim| 2 [[An = (20)| = [Pl |= 20rm]| = [rm| = [Fml,
for all A, € Cy,, where C,, = {\ € C: |\ — (2n)?| = 2|rn|}. Define the function

Gi(N) = A= (20)” — (1) — > oy a () =
=1
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for i = 1,2. Estimating the summands of |ag;_1(\y)| for n = m/2, we obtain

(3/2) rm|¥
[An = (61)2)7| A, — (10m)23=1

lagj—1(An)] <

for j > 1. Using the relations |\, — (61)2| > 32n2 —2|r,,| and |\, — (10n)?| > 9612 — 2|y,
it follows by the geometric series formula that

i . il (3/)lrm N (3/2?rml”
= 21 < 32— 2rm| (3202 = 2|rn])2(96n2 — 2|ry|) (3202 — 2|r,,])3 (9602 — 2|1, ])?
P (3/2)lrm (32l o
32n2 — 2|ry,| (32n2 — 2|1 |) (9612 — 2|rn|) (3202 — 2|1y, |)2 (9612 — 2|1y, )2
B |7 |2 1 B 2|7m |2(96n% — 2|1, |)
- 2 _ 3|7 |2 - 2 _ 2 _ _ 2
32n2 — 2|r,l 1 — TP T s (R o | 2(32n2 — 2|1, ) (9612 — 2|ry,|) — 3|7rm|
. 4(25 — 1)2(4852 — 25 + 1) U
8(1652 — 25+ 1)(48s2 — 25+ 1) —3(2s —1)2 ~ ° = 8’
for all s > 2 and limgs_,~ as = 1/8. Hence
1
19i(An) = fi !<Z!0¢231 <y

Therefore, |g;(A) — fi(A)] < |fi(A)| holds for all A € C), and for each i = 1,2. By Rouche’s
theorem, g;(A) has one root inside the disk D,,, for ¢ = 1 and i = 2. Hence, Sy has one
eigenvalue (counting the multiplicity) lying inside D,,, which is the root of (2.6) and it has
one eigenvalue (counting the multiplicity) lying inside D,,, which is the root of (2.7). On
the other hand, each of the equations (2.6) and (2.7) has exactly one root (counting the
multiplicity) inside D,,. Thus, Ay, € D,, is an eigenvalue of Sy if and only if, it is either
the root of (2.6) or the root of (2.7) and the roots of (2.6) and (2.7) coincide with the
eigenvalues A\_,, and A4, of Sp.

(b) In this case g2, = 0, Bj(\n,) = 0, for j # 1, and B1(\n) = rm?/Ay. Therefore,
by (2.15) and (2.16), A, is either the root of (2.8) or the root of (2.9). Now, we prove that
the roots of (2.8) and (2.9) lying in the disk D,, are the eigenvalues of Sy. The equation
f(A) := X —(2n)? = 0, has one root in the disk D,, and |f(A\,)| = |\ — (2n)?| = 2|ry], for
all \,, € C},. We define the functions

2rm2
) —16n2 ZO@” 1

hi(\) :== X — (2n)% —

and
— 2
hg()\) = (2%) — 16TL2 E 042] 1

Estimating the summands of |a2j—1(A,)| for n = m, we obtain

(3/2) "t rm|
[An = (4n)27[An — (6n)2 1

|agj—1(An)| < (2.17)
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for j > 2. Using the relations |\, — (4n)?| > 12n% — 2|r,,,| and |\, — (6n)2| > 32n% — 2|y,
it follows by the geometric series formula that

2 00 2 4
"m |7m| (3/2)rml
_"m (N
A — 16n2 +jz::1 [azj-1(An)l < 12n2 — 2|1y, | * (12n2 = 2|ry,|)2(32n2 — 2|ry|)
N (3/2)rm" o
(12n2 — 2|ry,])3(32n2 — 2|y, |)?
S (3/2)|rm/? N (3/2)%rml* o)
12n2 — 2|ry,| (12n2 — 2|ry|) (3202 — 2|ry|) (1202 — 2|ry,|)2(32n2 — 2|ry,|)?
_ ’7’m|2 1
12n2 = 2|ry,| 1 — 3|rm |

2(12n2=2|rp,|)(32nZ=2|rm])

_ 2(2s — 1)%(32s% — 45 + 2) L
2(1252 — 45 +2)(32s2 —4s+2) —3(2s —1)2 ~ 7 ~ 3’
for all s > 2 and lims_,o bs = 1/3. On the other hand,
2|7m|? 2|7rm)? 2(25 —1)2
< L <2
Aol = 0% — 2| 42 —2025 1) ©°
for all s > 2 and lim,_,o ¢ = 2. Hence
2|Tm’2 |7”m|2 7
h An - An S
‘ 1( ) f( )‘ ’)\n| +‘)\ 16n2|+2|a2] 1 3
and
‘TmP - 1
|h2(An) — fF(An)] < o — 1607] + > fazi—1(An)] < 3
j=2

Therefore, |h;(A) — f(A)| < |f(A)] holds for all A € C,, and for each i = 1,2. Arguing as
in the proof of (a), by Rouche’s theorem, we conclude that A\y,, € D, is an eigenvalue of
So if and only if, it is either the root of (2.8) or the root of (2.9) and the roots of (2.8)
and (2.9) coincide with the eigenvalues A\_,, and A\, of Sp.

(c) In this case g2, = 0. So, by (2.15) and (2.16), A, is either the root of (2.10) or the
root of (2.11). Now, we prove that the roots of (2.10) and (2.11) lying in the disk D,, are
the eigenvalues of Sy. The equation f(A) = A — (2n)? = 0, has one root in the disk D,
and |f(\n)| = |An — (2n)2| = 2|7y, for all A, € C,,. We define

> i/d—m\n/m =
Bi(3) 1= A= (20) = 3 anpa(0) = (<1 ()Y 50 =
Jj=1 Im j=1
for i = 1,2. Estimating the summands of |ag;j—1(\y)| and |(g—m/qm)™ ™B;(An)| for n # m
and n # m/2, we obtain
(3/2)|rim|*
[An = (2(n —m))2P[An — (2(n — 2m))2P

lagj—1(An)| <

and , , ,
|T2’2j+1 ‘T2‘2j+1 52j+1

qg—2,3/2
(A . . .
g | 1Pl < s — A% (32— 2T~ 225

for 7 > 1. Using the relations
An — (2(n —m))?| > 4m|2n — m| — 2|rp| > 4m|2s — m| — 2(2s — 1)
>4(s+1)(s — 1) —2(25 — 1) = 4s? — 45 — 2,
A — (2(n — 2m))?| > 16m|n — m| — 2|ry| > 16m|s — m| — 2(2s — 1)
> 16(s+1) — 2(25 — 1) = 125 + 18 = 6(2s + 3),
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it follows by the geometric series formula that

% (3/2)(2s — 1)2 (3/2)%(2s — 1)*
> lazj 1 (M)l < 2252 — 25 —1) | 22(252 — 25 — 1)%6(25 1 3)

(3/2)°(2s — 1)°

+ 23(252 — 25 — 1)362(2s + 3)2
o 3(2s—1)2 ( (3/2)(2s — 1)? N (3/2)%(2s — 1)* L)
T 4(282 —25—1) 12(2s2 — 25 —1)(2s +3) ~ 122(2s? — 25 — 1)?(2s + 3)?
o 3(2s—1)2 1 B 6(2s — 1)%(2s + 3)
- 2 _9¢ _ 25—1)2 - 2 _ 9o _ —1)2
422 —2s—1)1 — 8(252—(25—1)(25—1-3) 8(2s2 —2s—1)(2s+3) — (2s — 1)

3

=ds <3,

for all s > 2 and lims_,o ds = 3/2. Also, that

Y 18Ol < %!WZ 1825 (%a)]

m j=1
<53(1+ 52+54+ - 125 3
292 222 994 159 S 10

Hence

Iki(An) — F ()| = @ zj 1 (M) £ (*—W/mz Bi(A

am

3 3 9

0o
an/m
ZOQ]l )+ [ ZIBJ N<s+5=5
s wm o 10 5

Therefore, |k;(A)— f(A)] < |f(A\)] holds for all A € C), and for each ¢ = 1,2. Again, arguing
as in the proof of (a), we arrive by Rouche’s theorem that, Ay, € D,, is an eigenvalue of
So if and only if, it is either the root of (2.10) or the root of (2.11) and the roots of (2.10)
and (2.11) coincide with the eigenvalues A_,, and A4, of Sp.

[e.°]
nm > 185(An)], we first estimate
j=1

o0
Now, in order to estimate Z a1 (An)] and |%

3/2

the summands |ag; 1 (An) and \q 27785, (A3)] by differentiating agj—1(An) and B2;(A3)

with respect to A\, and A3, respectlvely:
2j|7” |2j
hi1(An)] < L A
Ol < Gt =), — 2= 2P

|q 2132131 (As)| < M
TS g =y
for j > 1, and hence, we have
S a1 ()] < 2(2s — 1) 22(25 — 1)* 23(2s5 —1)°
L T2 92(952 — 25 — 1)2 T 23(2s52 — 25 — 1)36(25 +3) | 24(2s2 — 25 — 1)462(2s + 3)2
25 —1)2 25 —1)2 25 —1)4
- (28 ) 5 (1+ 2 sl RETIEY) 2 )2 g )
2(2s2 —2s — 1) 6(2s2 —2s —1)(2s +3)  62(2s2 —2s — 1)2(25+ 3)
o (2s—1)? 1 B 3(2s — 1)%(2s + 3) o
2282 —2s—1)27_ __ (212 (252 -25—1)(2s+3)—(2s—1)2 " 7 7

6(2s2—2s5—1)(2s+3)
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for all s > 2 and limg_,o ts = 3/2. Also, we have

© 3j’7,2‘2j+1

qd—m n/m > / qd—-23/2 > /
§ ()| < | —= E (A < E - -
’ Im ’ = |6]( )’ ’ 7 | = ‘623( 3)’ = 2]_1|)\3 _ 4|2]+1

S 3j’7~2‘2j+1 >  3j525+1 1
— I 1(32—2|T2|)23+1 £~ 9j—1992j+1 25
7j=1 7j=1

o0 o0
Therefore, each of the series Y agj—1(A,) and > 5;(Ay,) converges uniformly to an ana-
j=1 j=1

o0
lytic function on the disk D,,. One can prove in a similar way that, the series Y ag;—1(\y)

7=1
in the cases (a) and (b) also converges uniformly to an analytic function on the disk D,,. O

Now, to estimate the periodic eigenvalues A\_; and \;, we consider the case n = 1. By
Lemma 2.1, we should consider the cases (i) and (ii). In case (i), substituting Bj(\,) =0,
for j > 1, in (2.3) and (2.4) as k — oo, we obtain

M —4-> azj-1(M))*=ro?
=1
or

()\1 —4 —ry — Z agj,l()\l)) ()\1 —4+7ry — Z Ozgjfl()\l)): 0. (218)
j=1 j=1
In case (ii), substituting g2, = 0, B;(\,) =0, for j > 1, in (2.3) and (2.4) as k — oo, we
obtain

()\1 —4 — io: Oégjfl()\l))zz 0 (2.19)
j=1

Therefore, we have the following results.

Theorem 2.4. (a) If |g—2|+]|q2| < 29/10, forn =1 and m = 2, then Ay1 is an eigenvalue
of So(q) if and only if it is either the root of the equation

)\—4—7"2—2042]‘,1()\) =0 (220)
j=1
or the root of
A—4+1ry— Z 042]'_1()\) =0, (2.21)
j=1

(b) If |q—m| + lgm| < 7/2, for n = 1 and m > 3, then A11 is a double eigenvalue of
So(q) if and only if it is the double root of the equation

(A—4-— i ai_1(N)’=0 (2.22)
j=1

[e.°]

lying in the disk Dy := {\ € C : |A — 4| < 2|ry,|} and the series Y. agj—1(\) converges
j=1

uniformly to an analytic function on the disk D1 in each case.

Proof. (a) The equations (2.20) and (2.21) follow from (2.18). Let Fj(\) := A —4 —

(=1)re =0 and G;(\) := A —4— (=1)'ro — 3 agj—1(A) =0 for i = 1,2. Then, using the
j=1
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estimations
(3/2) Hrg|* - (3/2) Mg ¥ 1
(\)] < < T <=
Z [@2j-1 ()] Z — 36[7|A; — 1001 ]Z::l 32 — 2ro[)7(96 — 2[ro| )71 54
(2.23)
and
27|ro|% N 29|ro|? 1

L. (\) < - - — < —
Z:‘O‘?J—l( )l ; A1 — 367\ — 10071 Z:: (32 — 2|r2|)a+1(96 — 2|ro|)i—L ~ 826

for 2|ra| < |g—2|+|g2] < 29/10, and arguing as in the proof of Theorem 2.3 (a), by Rouche’s
theorem, we complete the proof of (a).

(b) Equation (2.22) follows from (2.19). Let g(A) = A—4— io: agj—1(A) and h(X) = A—4.
j=1

Then, using the estimations

(3/2)[rm|*
Z agj—1(A)] < Z |)\ (2(1 —m))2)P A1 — (2(1 — 2m))2}i—1

S (3/2)7|rm|* B R ) o
m —1)2 —8)i(4(2m — 1)2 — = 819271 365

j=1
and

27 |7 |
—m))2P A — (2(1 — 2m))2 1

Yo lan ()l <Y
j=1 J j=1 |)\1 - (2(]‘

29 |7y | > 22% 23

oo
< j - < —_— = —
jgl (4(m — 1)7 — 8)7+1(4(2m — 1)7 — 8)1~ ; 8it192i-1 181

for 2|rm| < |g—m| + |lgm| < 7/2, and again arguing as in the proof of Theorem 2.3 (a), we
complete the proof. O

Finally, in order to estimate the first periodic eigenvalue \g, we consider the case n = 0.
By Lemma 2.2, we have:

Theorem 2.5. (a) If |[g—2| + |q2| < 2, for n =0 and m = 2,
(b) If |g—m| + lgm| < 3, for n =0 and m > 3,
then Ao is an eigenvalue of So(q) if and only if it is the root of the equation

A — i Oézjfl()\) =0 (2.24)
j=1

[e.e)

lying in the disk Do := {\ € C : |\ < 2|rp|} and the series Y aoj—1(N\) converges
j=1

uniformly to an analytic function on the disk Dy.

Proof. (a) Iterating the equation Ay (¥n,1) = (¢¥n, 1), for N = 0, k times, by isolating
the terms containing (W, 1) gives

(Mo =D aj(Mo)) (o, 1) = pr(Ao)-

Q.
M-
i
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Letting k tend to infinity in the last equation, by Lemma 2.2 and (2.5), we obtain (2.24).
[e.0]

Let H(A) := XA and G(\) := A — > agj—1(A). Then, using the estimations
j=1

(Xo) 2 g
<=
Zm 1(%0)| +Z|)\0—16IJ!>\0—64V 1
1 & 29 ry|%
1 3 2.25
7 +jz:: (16 — 2|r2])7(64 — 2|ra])i— 20 ( )
and
2]"_1|?"2|2J
i a0l < o+ 55 o

+ f} 2ol <=
2 16— 21ra )71 (64— 21~ 50

for 2|ra] < |g—2| + |¢g2] < 2, and arguing as in the proof of Theorem 2.3 (a), we complete

the proof of (a).
(b) In this case, using the estimations

= 2]rm| 231, | %
- )\ . '
jZ::lOéZJ 1( 0)| |)\ —4m2| Z |)\0—4m2‘7‘>\0—16m2|1—1
2|7 |2 ad 2=, 12
< 2‘7ﬂ1|+z . \ |2
4m?2 — 2|ry,| 5 (4m? — 2|1y ) (16m — 2|rm|)i
2 [e'e) j—1
< C2rml® s 251y, |2 <L
36 — 2[rm| 5 (36 — 2[rin])7 (144 — 2Jriu )7~ T 200
and
- 2|r ]2 ]—‘1—1’7, |
L) <« —22m
;\O@_l( o)l < 3y —am72 Zuo_mgw,%_wmw 1
2|7m| S 20+, |2

T (4m? = 2rp)? * ]222 (4m? = 2[ry, [)7HH(16m? — 2|7y, [)I 1

o2l i A A
36 — 2[r | (36 — 2[rp )i T1(144 — 2[ry i1 50

for 2|ry| < |g—m| + |gm| < 3, and again arguing as in the proof of Theorem 2.3 (a), by
Rouche’s theorem, we complete the proof. O

In order to estimate eigenvalues numerically, we take finite summations instead of the
infinite series in the equations (2.6)-(2.11), (2.20)-(2.22) and (2.24). When we say the
k

2k—1
(2k — 1)th approximations, we mean the equations containing - agj_1(A) and > 3;(N)
j=1 j=1
o0 [e.°]
instead of > agj—1(A) and ) B;(A). For instance, in the case m = 2, the (2k — 1)th
. =

7=1
approximations of (2.24), (2.20), (2.21), (2.8) and (2.9) are

k
A= agi1(A) =0, (2.26)
j=1
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for n = 0;
k
A—4— ro — Z Ckgj_l()\) = 0, (2.27)
j=1
k
A—d+ry =) agi_1(N) =0, (2.28)
j=1
for n = 1; and
2192 192 k _
A—16 — T - m - jz2a2]_1()\) = 0, (229)
o2 k
A—16 — N —jZQan_l(A) =0, (2.30)

for n = 2. Then, by (2.25), (2.23) and (2.17), we have the following estimates for the
remaining terms of these equations:

DIETRUHIER SETEECHID Y 2
a2;—1(A0)|< a2j—1(Ao)| < . —
il T 51 (16 = 21r2])7 (64 — 2Jra[)7~
_ 2F|pg| 22 _ 31 ( 1 J
(16 = 2Jra] )5 (64 — 2[ra| ) 1[(16 — 2[ra]) (64 — 2]ra]) — 2Jra]?] ~ 433'434)
for n = 0;
o0 oo oo i1 27
(3/2)7 " |ra|*
agj—1(A1)|< laj—1(A1)] < ' =
2, OIS 2 oGOl 2. Gy a6 2l
< 3o+ < Sl
2k=1(32 — 2|r3])k(96 — 2|r2|)F—1[2(32 — 2|r2]) (96 — 2|r3|) — 3|r2]?] ~ 102°399"

for n = 1; and

ac = 3/2)1 7 |ro|? = 3/2)7ro|%
| 2 aaa)l< X (()CU?A | TS X 2( /312‘ 2|2 =
et 5 e =64 — 14471 T 2= (48 — 2fro)7 (128 — 2fra))

3F|rq|2k+2 11 1

< 2k —1(48 — 2|ro|)F(128 — 2|ro|)F—1[2(48 — 2|r2|) (128 — 2|ra]) — 3[r2|?] < %(%)k’
for n = 2. Obviously, we will have better approximations as k grows. For the 5th
approximations, we use the followings:
Tm2 Tm2
1(An) = 3— 2 —m)?2 =@+ m)?
Tm4 7,m4
) = B Rl — ) — @0 — 2] T Do — (200 + )2y — (20 2m))E]
T’mG
5 = B = @l = m)2P P — (200 — 2m)ZE D — (201 — 3m))
rmG
T o= 2 = m)P A — (200 — 2m))2P2
rm6
- [An = (2(n —m))?]2[An — (2(n — 2m))?]2 [y — (2(n — 3m))?]
’I“m6

T P = @0 = )P — 200 — 2m) 2
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and
q 2
Bl(Am) = )\la 61(>\n) = Ov n 7& m,
3
Ba(A3my2) = (/\3/(127”_m2)27 B2(An) =0, n#3m/2,
_ G’ _
63()‘2771) - [)\m _ (2m)2]2)\2m’ 63()‘71) =0, n#2m,
. Qm4Q—m . qm5
64()\3771/2) - [/\3m/2 — m2]4> 64()\5771/2) - [A5m/2 _ (3m)2}2[/\5m/2 — m2]2>
3m dm
Ba(An) =0, n# PR
5 6
65()\2m) _ 2¢m°q—m 65(/\3171) _ dm

[A2m — (2m)2]3(A2m)?’
Bs(An) =0, n#2m,3m.

Asm — (4m)2* [Asp — (2m)2]2 A3,

17

Note that, by the conditions imposed on the summations, we take only the fractions that
are not containing \,, — (2n)? in the denominators, into consideration. Now, we approach
the periodic eigenvalues by the roots of the polynomials derived from the (2k — 1)th
approximations (2.26)-(2.30), as it was done in [21]. For example, for n = 0 and m = 2,

the fifth approximation is

27"22 27"24
A)i=A— -
@) A—16 (A—16)2(A — 64)
. 27”26 B 27“26 _ O
(A —16)2(\ — 64)2(\ — 144) (A —16)3(\ —64)2
for n = 1 and m = 2, the fifth approximations are
Q1(N):=A—4+r— EM ro!
A 27 X=36  (A—36)2(\—100)
_ 7“26 _ ’1”26 —0
(A —36)2(A —100)2(A — 196) (A —36)3(\ — 100)2
and
2 4
T2 T2
N i=A—4—ry— —
@) "27NT36 0 (- 36)2(A — 100)
_ 7’26 _ TQG —0
(A —36)2(\ —100)2(A — 196) (A —36)3(\ —100)2
for n = 2 and m = 2, the fifth approximations are
27‘22 7"22 1”24
o(A\) = A —16 — — —
Q-2 LS WS Wy VI § WV) 1§ S PV
- 155 - 190 0
(A —64)2(\ — 144)2(A — 256) (A —64)3(\ —144)2 7
and
2 4
2 T2
A)i=A—16— -
Q=N A—64  (A—64)2(\— 144)
- ra” ek 0.

(A — 64)Z(\ — 144)2(X — 256) (A — 64)3(A — 144)2
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Then, the corresponding polynomials are

Py(N\) := (A = 16)3(X — 64)%(\ — 144)Qo(N), (2.31)
P_1(X) := (A= 36)3(\ — 100)%(\ — 196)Q_1(N), (2.32)
Pi()\) := (A —36)3(\ — 100)%(\ — 196)Q1(N), (2.33)
P_o(X) := (A — 64)3(\ — 144)%(\ — 256)Q_2(\) (2.34)
and
Py(N) := (A — 64)3 (X — 144)%(\ — 256)Q2()N), (2.35)

respectively. By the same token, we can derive polynomials to approximate other periodic
eigenvalues, as well.

Now, we consider the operator Si(q) which is associated with the antiperiodic boundary
conditions. The analogous formulas to (2.1), (2.2) are

(1 — (2n = 1)%)(By, €7 D7) = (B, /2" D7), (2.36)
(un — (2n — D)2)(@y, e 712) = (¢, e 712~ D2y, (2.37)

Iterating equation (2.36) k times, we obtain

k k
(,Un - (2n — 1)2 — Z Ui (Mn))(q)n’ el(Qn—l)x) _ (Qanl + Z vj (Mn))(q)na e—z(Qn—l)x) _ 5k(,un),
Jj=1 j=1
(2.38)
where
qnlan o qnj q*n17n27--.7nj
1j(ptn) = ’
5 (Hn mg:n] [n — 2(n—n1) = 1)2] - [un — 2(n —ny — - -- — nj) — 1)7]
dniAny " " qn;92n—1—n1—no——n;
I/‘(,u ) = J J ’
e nlﬂ’;.,n]’ [:un - (2(n - nl) - 1)2] s [Mn — (2(7], —_nyp— - — 7'1,]) _ 1)2]
Shlpn) = Y G g+~ Qg gy, (g, T h) 1)
n N1,M2,ee et 1 [ — (2(n —n1) — 1)) [pn — (2(n —ng — -+ —ngy1) — 1)?]
Here, the sums are taken under the conditions n; = +m, > n; # 0,2n — 1, for [ =
2., k+1.
Similarly, iterating equation (2.37) k times, we obtain
k .
(b —(2n—1) Z ,emi@n—Day_ (4 2"+1+Z iy gy
(2.39)
where
qnlan Tt Qn-Q—m—ng—m—n
77#7(# ) = J j 7
7 nl,g..,,nj [n — (2(n+mn1) —1)2] -+ [pn — 2(n+ 11 + - +nj) — 1)?]
* qn19ny " " qn;49—2n+1-—ni—ng—-—n;
 (hn) = . i 7
n n”;nj [ — 2(n+n1) = 12 [ — (2(n+ 11 4+ -+ +nj) — 1)?
6 (1n) = Z An1Gns ** " AnpQngy g (¢Pn, e_i(2(n+n1+"'+nk+1)—1)x)

[ = @(n 1) =12 [ = (20 11+ gegn) = 1))

N1,N2, N1
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Here, the sums are taken under the conditions n; = +m, > n; # 0,—2n + 1 for [ =

1=1
2,...,k + 1. Therefore, the analogous formulas to (2.12), (2.13) and (2.14) are

(4 = (2n = 1)° Z 0 () (P, €YY = (a1 + D0 () (P 720717,

j=1
(2.40)
(u 2n — 1 Z 77] MTL ®,,, (271—1)517) = (q72n+1 + Z I/; (#n))(q)n’ ei(2n—1)m)
j=1
(2.41)
and

—my &) >

(= (2n = 1)? Z% ()= (. ) (g Y i), n>1, (242)
qm =

respectively. Using (1.8) and the formulas (2.38)-(2.42), one can obtain analogous theo-
rems to Theorem 2.3 and Theorem 2.4 for the operator Si(q). Now, we present a numerical
example.

Example 2.6. Consider the potential g(z) = €% — e=% = 2jsin(4z) or p(z) = ie"® +
ie” ™ = 2jcos(4x). In this case, m = 2, o = v/—1 = i and we have the following
approximations for the first periodic eigenvalues Ag, A_1, A11, A_2 and Aa:

First, we show that A\g is the eigenvalue lying inside the circle

co:={A € C:|\—0.125867010858| = 4.8 x 107 }.

The root of the polynomial Py()\) defined by (2.31), lying in the disk Dy = {\ € C :
Al < 2|ral}, is a; = 0.125867010858. The other roots of Py(A) are ag = 15.8939999572,
= (15.9900597315 — 0.02042239630857), as = (15.9900597315 + 0.02042239630857),
= (64.0000067845 — 0.000336043226373i) , ag = (64.0000067845 + 0.000336043226373)
and a7 = 144.0. Using the decomposition

()\—al)()\—ag)-~-(/\—a7)
(A= 16)3(A — 64)2(\ — 144)’

we obtain by direct calculation |Qo(\)| > 4. 4990 x 10719 for all A € ¢y. On the other

Qo(N) =

hand, again by direct calculations, we have Z lagj—1(N)] < 2.6416 x 10710, for all X € co.

Therefore, by Rouche’s theorem, equation (2 24) has only one root inside the circle cy.
Thus, using Theorem 2.5 (a), we conclude that )¢ is the eigenvalue lying inside the circle
Cp.

Now, we show that A_; and A1 are the complex eigenvalues lying inside the circles

c_1:={A€C:|\— (4.0312397462 — 1.000977726674)| = 8.8 x 10 1%}

and
c1:={A € C: |\ —(4.0312397462 + 1.00097772667i)| = 8.8 x 10_12}.

respectively. The roots of the polynomials P_;(\) and P;(\) defined by (2.32) and (2.33),
lying in the disk D; ={A € C: |\| < 44 2|ra|} are z1 = (4.0312397462 — 1.000977726677)
and y; = (4.0312397462 + 1.000977726671), respectively. The other roots of P_j(\) are
o = (35.9964522039 4 0.01761685571914), x3 = (35.9964154572 — 0.0172437280769:),
xq = (35.9758900488 + 0.00060462552073¢), x5 = (100.00000187 + 0.000114737272348i),
x¢ = (100.000000674 — 0.0001147637683117), x7 = (196.0 4+ 1.20513462491e — 13i) and the
other roots of Pj(\) are y2 = (35.9964522039 — 0.01761685571917), y3 = (35.9964154572 +
0.0172437280769¢), y4 = (35.9758900488 — 0.00060462552073i), ys = (100.00000187 —
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0.0001147372723481), ys = (100.000000674 + 0.0001147637683117) and y; = (196.0 —
1.20513462491e — 13i). Using the decompositions
A—x1)A—22)---(A—2
0100 = ( 1)3( 2) ! ( 7) ’
(A — 36)3(\ — 100)2(\ — 196)

e O =) =) (A= )
— ) A=Y2) (A=Yt
\) =
@ (A —36)3(A — 100)2(\ — 196)’
by direct calculations, we obtain |Q_1()\)| > 3.5600 x 1072, for all A € c_; and |Q1(\)| >

o0
3.5600x 10712, for all A € ¢1. On the other hand, one can easily calculate that 3> |ag;j—1())]
j=4

2.0038 x 10712, for all A € c_; U¢p. The proof follows from Rouche’s theorem and Theo-
rem 2.4 (a); each of the equations (2.20) and (2.21) has only one root inside the circle c¢_;
and cy, respectively and A_; and Ay; are the complex eigenvalues lying inside c_; and ¢y,
respectively.

Using the equations (2.34) and (2.35), Theorem 2.3 (b) and the estimations |Q_2(\)| >

[e.e]
3.7055 x 1079, for all A € c_9; [Q2(N\)] > 2.3100 x 1079, for all A € c2 and Y |agj_1(N)] <
j=4

1.1464 x 1072, for all A € c_o U co, one can show in a similar way that A_o and Ao are the
eigenvalues lying inside the circles

c_g:={A€C:|\— 158949584087 = 1.9 x 1077},

and
co:={A € C:|\—16.0208389883| = 1.9 x 107°}.

respectively.
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