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Abstract

In this work, we investigate several properties of the generalized p-adic gamma function
I5. We demonstrate remarkable identities and special values of I;. We also derive a novel
representation of I, via its Mahler expansion and establish relationships among the coefficients
within this expansion. To simplify this study, we introduce the definition of the g-adic factorial

and establish its properties. In addition, some congruences are derived for this new concept.
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p-Adik Faktoriyelin ve p-Adik Gama Fonksiyonunun Genellemesinin Baz1

Ozellikleri
Oz
Bu c¢alismada, genellestirilmis p-adik gama fonksiyonu [z nun gesitli Ozelliklerini
aragtirtyoruz. I, ’nun dikkate deger 6zdesliklerini ve 6zel degerlerini gosteriyoruz. Ayrica I nun
Mahler agilimi araciligiyla yeni bir gdsterimini tiiretiyor ve bu acilimdaki katsayilar arasinda

iligkiler kuruyoruz. Bu c¢alismay1 basitlestirmek i¢in g-adik faktoriyel tanimini tanitiyor ve

o0zelliklerini belirliyoruz. Ek olarak, bu yeni kavram i¢in bazi kongriianslar tiiretiyoruz.
Anahtar Kelimeler: Mahler acilimi; p-adik gama fonksiyonu; p-adik faktoriyel; p-adik say1.
1. Introduction

In 1897, Kurt Hensel introduced the p-adic numbers, which are an extension of the rational
numbers for a given prime number p. These numbers have become essential in modern
mathematics, due to their wide applications in number theory, analysis, mathematical physics,

and cryptography. The unique representation of the p-adic numbers is given by the infinite series:

+ 0o
X=ZX]-pj , where x; € {0,1,..,p—1}andm € Z.
j=m
The p-adic gamma function I, is the p-adic analog of the classical gamma function. In
1975, Morita [1] defined I}, as a unique continuous extension of the following sequence:

n

Ln+1) = (—1)ntt 1_[ k , where n € N.

k=1
(p.k)=1

Several generalizations of the p-adic gamma function have been proposed (see [2-5]), one

of which was presented by Kaori Ota in 1994 [4]. To facilitate the study of the generalized p-adic

hypergeometric function, Ota defined the generalized p-adic gamma function [, where ¢ = pt

and t is a positive integer, by the formula:
I(a+1) =L,(hy(a) + 1).

such that @ = 375 a;p’ and hp(a) = X755 ap’~¢ for £ € N.
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The representation of generalized hypergeometric functions in terms of generalized gamma
functions is particularly important. Such representations consistently yield results of notable
mathematical significance, especially in applied contexts. The profound utility of these
relationships manifests across multiple disciplines, including quantum field theory, analytic

number theory, and cryptography.

N. Koblitz [3] proposed another extension of the p-adic gamma function, using the same
notation [, for his modified function. However, this shared notation does not lead to confusion.
Both Koblitz's and Ota's generalized p-adic gamma functions were presented without complete

characterizations of their properties.

In this paper, we introduce the concept of a g-adic factorial and establish several
congruences and inequalities related to this new construct (see Definition 3.1, Lemma 3.3,
Proposition 3.6, Proposition 3.7, Corollary 3.8, and Corollary 3.9). Furthermore, we present a
definition of the generalized p-adic gamma function I; and we demonstrate some of its
combinatorial properties, similar to those of the p-adic gamma function (see Proposition 3.15,
Proposition 3.16, and Corollary 3.17). Additionally, we propose a Mahler expansion for I and
prove the relationships between its coefficients (see Proposition 3.18). Finally, we provide several
numerical examples to illustrate our results (see Examples 3.4 and 3.13). These results offer new
insights into the combinatorial and analytic structure of p-adic special functions and paving the

way for further developments.

2. Preliminaries

2.1.Notations

In this work, we use the following concepts: p € {2,3,5,7,11,13,17, ... } is a prime number,
Z denotes the set of integers, Z_ (resp. Z,) represents the set of negative integers (resp. the
positive integers), Z* is the set of non-zero integers. The set of non-negative integers is denoted
by N, the field of rational numbers is Q, and R is the field of real numbers. The absolute value in
R is denoted by |. |, and the real integer part is denoted by [. ].

The p-adic valuation is defined as v,(0) =+o and for n €Z" by v,(n)=
max{r € Z /p” divides n}. For % € Q, the p-adic valuation is given by v, (%) =v,(n) —
vp(m).

The p-adic absolute value of an element in Q is given as
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al, = o ifa 20,
P o ifa=0

The completion of Q with respect to the p-adic absolute value |. |, yields a field, known as
the field of p-adic numbers, denoted by Q,,. The p-adic absolute value on Q,, is the extension of
that on Q. The set of p-adic integers, denoted Z,, contains the p-adic numbers that satisfy |a|, <

1. For more details about p-adic numbers, we refer to the classical book of Gouvéa [6].

2.2. The p-adic Factorial and the p-adic Gamma Function

In this part, we present the concept of the p-adic factorial and the p-adic gamma function,

along with several fundamental properties.

Definition 2.1. [7] We define the p-adic factorial by 0!, = 1, and forn € N is given by

nl, = ﬁm. (1)
m=1

ptm
For more details and properties of this concept see [7].

The p-adic gamma function has found significant applications in dynamic systems and
string theory. Various mathematicians [8-10] have utilized this function to explore properties of

polynomials.

Definition 2.2. [1] The p-adic gamma function is a function I, : Z, — Z, that extends the

following sequence: I,(n + 1) = (—1)"+1n!p , forn € Z,. Which we have, for x € Z,:
IL(x) = }li_r;glcfp(n).

Here, we cite the properties of I, that we will give their analogue for the generalization of

[, in the next section.

Proposition 2.3. [11] The function I, holds the following properties
1. L,(0)=1,L1)=-11,2)=1.
2. L(n + 1) =D, ,vn € N.

Proposition 2.4. [11] Let n > 1 be a positive integer with its p-adic expansion given by

Zf:o njpj and we suppose the sum of digits is S,, = Z?:o n;. Then,
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1)n+1

For p = E], we have T,(n+1) = EO™ ol

n! . Ky — _(DP p
TR In particular Fp(p )— IRt

pk-11 ppk_l’
1. Form € N such that 0 < A < p, we have

(_1)np+l+1 (np + /1)!

Lnp+A+1)= ol pn

2. We have the relation between n! and T P

n! = (=1)n+1-¢ (—p)% Hf_orp ([%] + 1) :

Theorem 2.5. [11] (Mahler Expansion of ;)

Forx € Zj, , let the Mahler expansion of T}, be given by the series I, (x + 1) = Y25 ak(i),

where the symbol (i}‘) is defined by (’é) =1 and (;‘) = w ,n=12,..

Then, the coefficients o satisfy the following relationship
k

xP\ 1—xP - er1. X
exp x+? T =Z(—1) akm. @)
k=0

3. Main Results and Proofs

Drawing on the work presented in [7], we will introduce a g-adic factorial and establish a
few congruences and inequalities related to this new concept. We also provide a definition for the
generalization of the p-adic gamma function and demonstrate some of its properties, including

the Mahler expansion. Throughout this section, we consider ¢ = p¢, where t is a positive integer.
3.1. The g-adic Factorial

Definition 3.1. The g-adic factorial is defined by 0!; = 1 and for n > 1 is equal to

n

nly = Hk. 3)
k=
pvs

Remark 3.2. If 1< n< qg—1,thenforalll < k < nwehaveq t k. So, n!; =nl.
Lemma 3.3. For § = 1, we have (¢6)!4 = (¢6 - 1)!,.

Proof. We observe that q divides g4, it means that
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qé qé—-1

I ﬂk - 1_[ k=(gs — Dy
k=1 k=1
qtk qtk

Example 3.4. In Tables 1, 2, and 3 we compute the g-adic factorials of a given positive integer,

specifically for g = 22,23,32,

Table 1: For g = 22,

n 0 1 2 3 4 5 6 7 8 9 10 11
nly2 1 1 2 6 6 30 180 1260 1260 11340 113400 1247400
Table 2: For q = 23
n 0 1 2 3 4 5 6 7 8 9 10 11
nlys 1 1 2 6 24 120 720 5040 5040 45360 453600 4989600
Table 3: For g = 32.
n 0 1 2 3 4 5 6 7 8 9 10 11
nls2 1 1 2 6 24 120 720 5040 40320 40320 403200 4435200

A g-generalization of the Wilson congruence is given in the following theorem, which is

necessary to prove the Proposition 3.6.
Theorem 3.5. Leta € Z and s > t. Then
1. Forp odd,

a+psS—1 a+psS—1

[]7=-[] jmoar.
j=a j=a
qtj

plJj
2. Forp =2,
a+25—-1 a+25—-1
1_[ j= 1_[ j (mod 2%).
Jj=a Jj=a

qtj j even
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Proof. We have

a+pS—1 a+pS—1 a+pS—1
[[=] L1711~
j=a Jj=a Jj=a
qtj plj ptj

By generalizing the Wilson congruence, we obtain the result. For p = 2 is the same. From the

previous, we get the following congruence.

Proposition 3.6. Letn € N and s > t. Then

S
1. For p odd, we have % =— ]_[;1=+npj1j (mod p%).
plj
(n+25)!q — n+425 . s
2. Forp = 2, we have — = [lj=n41] (mod 29).
’ j even

Proof. We calculate the quotient, we get

N

Y TH-p
(n+p*), _
n!
4 j=n+1
qtj

Now, we take a = n + 1 in Case 1 of Theorem 3.5, we derive the congruence for p odd.

Similarly, we obtain the result for p = 2, from case 2.

More generally, we establish the following proposition along with its immediate

corollaries:
Proposition 3.7. Let n,m,s € Z, where s > t. Then

1. Forp odd, we have

(n + mp®)ly T .
— = =™ 1_[ j (mod p®).
a j=n+1
plj

2. Forp =2ands = 3, we have

(n +m27%)! nr2
@m0 T moa 20,

Tl.q j=n+1

j even
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Proof. This is proved by induction on m. Indeed, about the case p > 3 we have:

For m = 1 is true. We assume that the property is true at rank m and we demonstrate it at rank

m+ 1. We write

n+(m+1)ps
(n+ (m+ 1)p®), . (n +mp®), j
] - ] )
g q j=n+mpS+1
qtj
On the other hand
( S)| n+mp*s
n+mp-~)! ]
St o™ [ | Jmodp?)
q j=n+1
plJj
and
n+(m+1)p° n+(m+1)ps
j=- || Jmodp®
j=n+mpS+1 j=n+mpS+1
qtj plj
So
n+mp*s n+(m+1)p°
(n+ (m+ 1)pS)! ) )
———t={ o™ [ |||~ ]] 7|amodr®
q j=n+1 j=n+mpS+1
plJj plJj
n+(m+1)p°s
=-pmt [ 7 modp
j=n+1
plJj

Then the property is true for all m. For p = 2 is the same.
The following corollaries follow from Proposition 3.6 and are presented here without proof.

Corollary 3.8. Forp > 3,n € Nand s € Z, where s > t, we have

n+pS

(n +p®)!; +nly 1—[ jl <
j=n+1
plJj p

1
E .

135



Belhadef & Sahali (2025) ADYU J SCI, 15(1), 128-145

Corollary 3.9. Forp=2,n € Nand s € Z, and s > 3 where s > t, we have

| |
n+2°%
1

(n+ 2%, —nl, 1_[ Jj S;.

j=n+1
Jjeven |,

3.2. Generalized p-adic Gamma Function

In this important subsection, we present the definition of the generalized p-adic gamma
function, which was originally introduced by Kaori Ota in [4], and we also explore in depth several of
its significant properties. Moreover, we establish new properties of this function that were not covered

in Ota's original work. For other references on this subject, see [12-13].

Definition 3.10. [4] Let x € Z,, be given by its p-adic expansion Z}’;’% xjpj , where x, # 0 and

x; €{0,1,---,p — 1} for all j € N. Ota define a map h, for £ € N by a formula
+00
heG) = > xpi. @
j=t

Furthermore, we have

-1
x = Z xip’ + pfhe(x). Q)

j=0

Definition 3.11. [4] The generalized p-adic gamma function is defined from Z, to Zj, by:

t—1
Le+1 = [ Rt +D. (6)
£=0

Remark 3.12. For t = 1 the function I;; coincides with I},, i.e.
l(x + 1) =L,(ho(x) + 1) = L,(x + 1).
Example 3.13. For t = 2, we have ¢ = p? so
I(x + 1) = [,(ho(x) + I, (hy(x) + 1)
= I,(ho(x) + DI, (hy (x) + 1).

according to the relationship Eqn. (5) we have x = xy + ph,(x), hence
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X — X

hy (x) = -

Therefore

X — Xg
rq(x+1)=rp(x+1)rp( . +1).

For example, if x = 3,p = 3 and t = 2, so g = 32. Then, I;(4) = I;(4)I[3(2) = 2.

In his paper [4], Ota presented some properties of the generalized p-adic gamma

function. Among them, the following property is especially remarkable.
Proposition 3.14. [4]
1. For a positive integer n, we have
Tq(n + 1) = (—1)4p~Banl, @)

where
t —

P L Y- L
nmee ] a= ) 5
£ lp Llpll lp

1

=

I
o

2. For p odd and x € Zj, the complement formula is given by
Tq(IT(1 — %) = (DR, (®)
where R¢(x) € {1,2, ..., q} is the representative of x modulo qZj,.

Next, we present our results concerning the combinatorial properties of the generalized p-

adic gamma function and the coefficients of its Mahler expansion.

Proposition 3.15. The following statements are verified by the function I;:

1. For a positive integer n and § = E], we have

(=1)*np~Frnl
Fq(n+1)—T. (9)
2. For a positive integer mand A € {0,1,---,q — 1}, we have
—1)Am2 p~Bma(mq + 1)!
Fq(mq+7\+1)=( )"mi p i (mg + ! (10)

m! q™

137



Belhadef & Sahali (2025) ADYU J SCI, 15(1), 128-145

where Ay =t+A+mq+v,(A) and By =m (2—:) —tm—t [2] + v, (AD) .

3. Fors € N we have

(=D p P (g — D)
gs—1! qq5‘1 !

I(a®) = (11)

where

t—1 t
Aqs—l =t—1+ Z pts—i and qu—l = Z pts—i _ tqs—l .

Proof.

1. We know that

n n n n
n!:l_[k: Hk l_[k - Hk nlg. (12)
k=1 k=1 k=1 k=1

qlk qtk qlk

On the other hand, we know that card {1 < k < n/ qlk} = E] Thus,

w gl
[+ l:l[(fq) = [2] e
qlk

Therefore, by the Proposition 3.14, we get

(=1)"np~Fnn!

T,(n+1) = (=D)*p~Bnnl, = 0

2. The Euclidean division gives n = mq + A, where A € {0,1,---,q - 1}. So,

e

Substituting this into Eqn. (9), we obtain

(_1)Amq+/1 p_qu+l n!
[(mg+4 +1)= —— : (13)

Such that Apq12 and By,q4, are calculated as follows:
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e For A;q42, we have
+ i
mq+/’l_t+2[ 1 ]—t+mq+/1+mq2() Z[ ] (14)

i
We know that v, (4!) = [ ] Since the sum Y.fZ (p) is even, it comes that

t—1/1)!
»¥=6) =1,
Then, (—1)4ma+2 = (—1)t*A*ma+vp@A) Finally, we obtain A, , =t + 1+ mq + v, (A1).

e For Byyg42, we have

o =Y L - L e Y (3 + S 2] 2o 09

i=1

So Bpp=m (Z%i) —tm—t E] +v,(A) .

3. We simply need to substitute n = q° — 1 into Eqn. (9) to determine the value of I;(q°).
Proposition 3.16.

1. Wehave I[((0) = 1 and |Fq(x)|p =1, forallx € Zj.

2. Forp =3, letx,y € Z,. We have

o If [x—yl|, =1, then |Fq(x) - Fq(y)| < x—ylp.
o If x—yl|, ==, with=t, then |F (x) —T, (y)| = |x—ylp.
Proof.

1. By the definition of I7,, we have I3 (0) = 1528 I,(he(—1) + 1). Furthermore, we have

-1= Z(p - Dp' + p*Z(p - p'. (16)
i=0 i=0

So, hy(=1) = —1. Then, I;(0) = [1523 [,,(0) = 1.
For the second part |F g () |p = 1, we simply use the fact that |Fp (x) |p =

2. First, we prove the property for positive integers and then extend the result to p-adic
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integers by taking the limit. For m,n € N, we consider the following cases:

e If|n—m|, = 1. Then,
|1y (m) = L, m)| ) < max(|Fq(n)|p, |rq(m)|p) <1=n—ml, (17)

e Ifn>mand|n—m|, = % , with s > t. Then, there exists u € N such that n =

m + up® and p t u. Therefore, by applying the Eqn. (7), we get

m+upS—1
L) = Gm+wp?) = (DA~ [ |k
k=1
qik
m—-1 m+upS—1
= (=1)Anp=En 1_[ k 1_[ k). (18)
k=1 k=m
qtk qik
Now, since s = t we must have 4,, = A; + 4, and B,, = B; + B, with
t—1 t—1
A=t+ ) |= Ay = s
1= pi , 2 — up .
i=0 i=0
t t
m m .
By = Z [—l] —t H , By= Z up*~t — tup*".
=P 1 i=1
Therefore
m-1 m+up’-1
Loy ={ o [ e )| cote [ &
k=1 k=m
qtk qtk
m+ups-1
=rm | Dtpe [ k), (19)
k=m
qtk
Hence
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m+upS—1
() = )|, = [ ([ (~1%p> 1_[ k|-1f . 20)
k=m
qtk D
Now, rewriting the product as follows
m+upS—1 m+pS—1 m+2pS-1 m+upS—1
nk=1_[k Hk nk. Q1)
k=m k=m k=m+p* k=m+(u—1)p*s
qtk qtk qik qtk

By Theorem 3.5, we have for all 6 € {1,2, ..., u}

m+6pS-1 m+6pS-1
k=- 1_[ k (mod p®).
k=m+(6-1)p° j=m+(6-1)p*
qtk plj

We know that the fact p|k implies that k = Agp*® with p t A and £4 € N. Thus

m+ups—1 U U
1_[ k=4 | 2, npf’e (mod p*). ©2)
k=m 6=1 =1
qtk pilg

which implies

m+up°—1 u

(~D%p B [ | k= (e pticton [ 2 (modp®). @3
k=m 6=1
qtk ptig

On the other hand, we have

t t
ep 1 p—1 -
u+Az=u<1+ps“ tﬁ) : Bz=ups<W—tp t)-
So, we get
m+upS-1 U
D4 [ | K|z pEatem ] |2 (modpo). (24)
k=m 6=1
qtk pilg

Thus
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m+upS—1 1
(—1)42p~B2 1_[ k-1 =max{p32‘25=1€9,p‘5, 1}2;. (25)
k=
atk

p

Which yields the result |Fq(n) — Fq(m)|p > [n—ml,.

By passing to the limit, we conclude that the property holds for all elements of Z,,.

Corollary 3.17. For p odd, we have
1
i (5)= 0
Proof. According to the complements Eqn. (8), for p odd and x = % we have
1 1 1 _ 1
L)) =5 ()= o), (6)

with R, (%) € {1,2, ..., q} is the representative of % modulo gZ,. In fact, we know that

+ oo t—1 +oo
i=1 i=1 i=t
which implies that
1 _q+1 op-1,
=) (28)

1
thus R; G) = qTH , which is even, so (—1)_1+Rt(5) = 1. Hence, the result follows.

Proposition 3.18. (Mahler expansion of Iy)

Let the Mahler expansion of I (x + 1) be given by
+00
X
L(x+1)= z a, (71)

n=0

For x € Zj,. So, the coefficients a, in this expansion satisfy the following relation
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q-1 1 — x"
expp (pp—lxq + x) = _Z(_l)n“n — 29)
(Sq — n!
=0
where

1)t+vp(l') [] VP(A)( x)’1.

||b4Q

Proof. The coefficients a,, satisfy the generating function relation

b x i = xN
Z = Zl"q(n+1)F. (30)
= 7]:0 '

The aim is to find an expression for the generating series of (I“q (n+ 1)) N given by
ne

+00 o
£(x) =;rq<n +D

To achieve this, we'll first decompose the index 7 in the sum according to its residue modulo q.

Letn =mqg+ Awherem >0and A € {0,1,..,q — 1}.

By separating the sum based on the possible values of A, we can express f(x) as

q-1 +oo

I A+1
f(x) — Z z q(glnqq-:_ /1; )xmq+l_ (31)
=0 m=0 '

We now use relation (10) to derive an explicit form of the generating series f

-1 +oo YerRma A )" » (Z i)+tm+t[ ]—vp()u)

fx) = Z z (-1 r (MA+A
< t+v, (A1) t[&]—vp(l!) 1 - (—1)7 x4 ™1
_ ;(—1) b il ® ey (_q ) L

m=0

= §,exp (pg%i(—x)q) (32)

where
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q-1 1
8, = Z(—1)f+va> plal 7 (2
A=0

Hence
q-1
e *f(x) = 6, exp (pl"l(—x)q — x). (33)
Then
- x" q-1
Z ay F = G4 exp (pl’—l(—x)q — x). (34
n=0

By replacing —x with x, we obtain

+00
x" q-1
z:(—l)"az,7 ? = §, exp (pl’—lxq + x).
=0 '

This completes the proof.
4. Conclusion

In this work, we introduced and systematically studied the g-adic factorial n!, establishing

its fundamental properties, including several novel congruences and inequalities. Building on this
foundation, we reformulated the generalized p-adic gamma function I, given by Ota through the
q-adic factorial, revealing new combinatorial identities. In addition, we proposed the Mahler
expansion of I and proved the relationships between its coefficients. These results collectively

advance the theory of p-adic special functions and open new avenues for further research in p-

adic analysis and its applications.
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