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Abstract 

Wireless sensors networks have been used for data collection in various civil and military applications. We consider a system where 
a group of mobile robots and a set of stationary wireless sensor nodes are sparsely deployed in a large unbounded area. In such 
scenarios, all sensor nodes may not be connected via a communication network.  Furthermore, no pair of sensor nodes may be within 
the transmission range of each other. Therefore, many relay nodes are needed to guarantee the connectivity of the network. However, 
this approach will affect the lifetime of the system due to the energy consumption by data transmission. In this paper, we study the 
problem of data collection from the deployed sensors utilizing the robots. The robots do not know the locations of each other and the 
sensor nodes. Moreover, the sensor nodes do not know the locations of each other and the robots. We propose an online algorithm in 
which the robot explores the area to find the sensor nodes and collect their stored data. Depending on whether the number of robots 
is known by the robots in advance or not, we investigate and compare two cases of the problem. In simulations, we empirically 
evaluate the performance of our algorithm and show that it quantifies as a function of the environment size, the number of robots, 
and the communication range when both the number of robots and the number of sensors are not known in advance. 
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Öz 

Kablosuz sensör ağları, çeşitli sivil ve askeri uygulamalarda veri toplamak için kullanılmıştır. Bir grup hareketli robotun ve bir küme 
hareketsiz kablosuz sensör düğümünün sınırsız geniş bir alanda aralıklı olarak konuşlandırıldığını düşünüyoruz. Bu gibi 
senaryolarda, tüm sensör düğümleri bir iletişim ağı ile bağlı olmayabilir. Buna ek olarak, birbirinin iletişim ağı içinde olan herhangi 
bir sensör düğümü çifti bulunmayabilir. Bu nedenle, ağ bağlantısının sağlanması için birçok aktarma düğümüne ihtiyaç vardır. Fakat, 
bu yaklaşım, veri iletiminden kaynaklanan enerji tüketiminden dolayı sistemin ömrünü etkiler. Bu makalede, robotlardan 
faydalanarak konuşlandırılmış olan sensör düğümlerinden veri toplama problemini çalışıyoruz. Robotlar, birbirlerinin ve sensör 
düğümlerin konumunu bilmezler. Dahası, sensör düğümleri de birbirlerinin ve robotların konumunu bilmezler. Robotların sensör 
düğümleri bulmak için alanda keşif yaptığı ve düğümlerdeki veriyi topladığı çevrimiçi bir algoritma öneriyoruz. Robotların, robot 
sayısını önceden bilip bilmediğine bağlı olarak problemin iki durumunu inceliyor ve karşılaştırıyoruz. Simülasyonlarla, 
algoritmamızın performansını deneysel olarak değerlendiriyor ve robotun, sensör düğümü ve robot sayısını önceden bilmediği 
durumda performansın alan boyutu, robot sayısı ve iletişim alanının bir fonksiyonu olarak ölçeklendiğini gösteriyoruz. 

Anahtar Kelimeler: Veri Toplama, Çevrimiçi Planlama, Çok-Robotlu Sistemler 

 

1. Introduction 

Wireless Sensor Networks (WSNs) consist of physically small and 
battery-powered sensing devices with wireless communication 
and computation capabilities [1]. They have been used for data 
collection in various civil and military applications such as 
habitat monitoring and surveillance. One of the key challenges 
that affects the lifetime of WSNs is the limited energy of the 
sensors which is mostly consumed by data transmission. 

When data collection process is completed, the sensor nodes 
need to form a connected network to relay the collected data via 
multi-hop routing to the data sink (depot station). An important 
issue in multi-hop communication is that it causes the sensors 
that are close to the data sink to deplete faster than the other 
sensors, since the packets destined for the sink have to be 
forwarded to these nodes. Moreover, in some cases, maintaining 
system-wide connectivity can only be possible using relay nodes. 
For example, when the sensor nodes are sparsely distributed 

across a large environment, there can be isolated nodes which 
cannot transmit data to any other node. In such scenarios, many 
relay nodes are needed to guarantee the connectivity of the 
network, since the transmission ranges of the sensor nodes are 
typically short. Another approach for data collection is using 
robots. In this approach, the robot moves to a point within the 
transmission range of the sensor node to download its sensed 
data. There are several advantages of utilizing robots as data 
mules over forming a dense static network. Since the robots visit 
the sensors to collect data, it is not necessary to deploy relay 
nodes to achieve network connectivity. This reduces the 
communication load between the sensors which in turn reduces 
the energy consumption and improves the lifetime of the system. 
Moreover, the proximity of the robot to the sensor when 
downloading data decreases the data loss rate, thus the number 
of retransmissions. 

https://orcid.org/0000-0001-5406-4024
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The problem of data collection from the sensor nodes (DCP) was 
studied both using a single robot [2-8] and multiple robots [9-11]. 
Bhadauria et al. [3] presented a constant factor approximation 
algorithm for DCP for the case where the single robot and the 
stationary sensors are deployed on a plane. Tsilomitrou and Tzes 
[10] studied the DCP with multi-robots and stationary sensors 
formulating the problem as a variation of Traveling Salesman 
Subset-tour Problem taking various constraints (e.g. pairwise 
distance between the sensors, visiting time, data download time) 
into account. When both robots and sensor nodes are mobile, Das 
et al. [9] showed that minimizing the number robots needed to 
complete data collection within a certain time is NP-Complete. 
Yedidsion et al. [4] focused on finding a tree connecting the 
sensors and the deployment of a single data mule such that the 
total distance traveled by the mule is minimized in case of any 
sensor failure. The study proposed approximation algorithms to 
solve this problem in Unit Disc Graph (UDG) topology. In UDG, 
two nodes with the same circular transmission range can 
communicate only if the distance between them is within this 
range. 

Unmanned Aerial Vehicle (UAV) is another mobile entity that 
have been used for data collection from the sensor nodes [12-20]. 
An energy efficient UAV-assisted data aggregation algorithm 
based on the clustering of deployed sensors was proposed in 
[14]. The sensors are equipped with a GPS module thus know 
their own locations, and the sink knows the locations of all 
sensors in advance. Gul and Erkmen [15] considered that each 
clustered sensor network also includes robots. The proposed 
approach selects a cluster head robot (CH) which assigns the data 
collection task to the other robots within its cluster. Then, an 
unmanned aerial vehicle (UAV) with limited battery capacity 
collects data from the CH robots. For the case where the UAV does 
not have a limited battery capacity, Luo et al. [16] focused on 
optimizing the flight trajectory of the UAV while ensuring that a 
certain amount of data is collected from each sensor. Given that 
the data collection areas are disjoint, an approximation algorithm 
was presented to solve this problem. Wu et al. [17] proposed a 
data aggregation protocol that focused on balancing the energy 
consumption in the system and reducing the latency for data 
delivery to the sink by applying a genetic algorithm. Chen et al. 
[19] proposed a (1-1/e)-approximation algorithm for one-to-
many data collection problem in WSNs where the UAV collects 
data from multiple sensors simultaneously. To collect data from 
ground sensor nodes using a UAV, two Reinforcement Learning 
(RL) approaches are combined in [20] to determine the UAV’s 
trajectory in an environment with obstacles also the order of 
visiting the sensor nodes . 

In addition to their usage on land, sensor nodes are also deployed 
under the water for a wide range of marine applications such as 
natural disaster prevention (e.g. earthquake and tsunami), 
pollution and environmental monitoring [22-23]. For long-
distance communication, the commonly used technology under 
the water is acoustic communication. However, due to the 
external interference and strong signal attenuation, acoustic 
channels are constrained by limited bandwidth. Therefore, to 
reduce the signal propagation distance, thus improve the data 
reliability and the energy efficiency of the sensors, the 
autonomous underwater vehicles (AUV) are utilized to collect 
data from underwater wireless sensor networks (UWSN) [24-
26]. 

In this paper, we study the problem of online planning of multiple 
mobile robots to collect data from the stationary sensors. The 
previous studies focused on planning paths for the robots 
assuming that the locations of the sensor nodes, the robots, and 

the sink node are known in advance. In contrast, in our work, we 
do not make any of these assumptions. The robots do not know 
the initial locations of each other, the sensor nodes, and the 
sink(s). Moreover, the sensors do not know the initial locations of 
each other, the robots, and the data sinks except the one where 
its data should be uploaded. Our contributions are as follows. 

1. We propose an online algorithm which allows multi-
robots to collect the stored data from all deployed 
sensors without a priori knowledge about the locations 
of each other and the sensors. 

2. We consider two cases of this problem depending on 
whether the number of robots is known by each robot in 
advance or not, also present how to adapt our algorithm 
according to these cases. 

3. We empirically evaluate the performance of our 
algorithm through simulations varying the key 
parameters of interest including the number of sensors, 
the number of robots, the communication range, and the 
environment size. 

The rest of this paper is organized as follows. We formulate the 
DCP in Section 2 and present our algorithm including its example 
execution in Section 3. We report the simulation results in Section 
4. The concluding remarks are presented in Section 5. 

2. Problem Formulation 

We consider a system that includes m identical stationary 
wireless sensors and n identical robots that have wireless 
communication capabilities and act as data mules. The robots and 
sensors are sparsely deployed in a large unbounded area. The 
sensors do not know the locations of each other and the robots. 
Moreover, the robots do not know the locations of each other and 
the sensors. There can be more than one data sink for the robot 
to later offload the gathered data. Each sensor knows only the 
location of the data sink where its data should be offloaded, but 
not the location of the other sinks. The robots do not have a priori 
knowledge about the number and the locations of data sinks. Due 
to the lack of prior knowledge, we propose an online algorithm 
which is executed by each robot autonomously. 

The i-th robot and the j-th sensor in the environment are denoted 
by ri and sj, respectively, where i, j ∈ Z+. Each sensor has a unique 
integer identifier and can sense and transmit data within the 
distance R. The robot can communicate with the sensor thus 
exchange messages with it, if the distance between them is within 
R. We make the following assumptions: (1) Same amount of data 
is collected from each sensor, (2) The time to collect the stored 
data from each sensor is the same, (3) The robot stops during 
data collection. 

3. MDC: Multi-Robot Online Data Collection Algorithm 

In this section, we introduce our multi-robot online data 
collection algorithm called MDC. The algorithm consists of two 
main phases: phase-1: exploration phase and phase-2: 
information exchange phase. The pseudocode of MDC is 
presented in Algorithm 1.  

In phase-1, the robot explores the environment to find the 
sensors at unknown locations. The motion planning strategy of 
the robot in this phase is as follows (refer to Algorithm 1, lines 4–
10). We divide the execution of the strategy in rounds that are 
indexed by k ≥ 0. The robot draws concentric circles to explore 
the environment and find the sensors. Each circle is centered at 
the robot’s initial location. In the first round, when k = 0, the robot 
moves R distance north, and then follows a circle of radius R. In 
the next rounds, when k > 0, the robot moves 2R distance north, 
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and then follows a circle of radius (2k+1)R. We use this motion 
planning approach also in our previous work [19]. 

In phase-2, the robot exchanges information with the sensor that 
it finds to (1) learn if it is the first visitor of the sensor to decide 
whether it should collect the required data from the sensor, (2) 
relay the information of the set of sensors that it has found also 
learned that the others robots have found, (3) learn about the set 
of found sensors relayed to the sensor by its previous visitor 
robots. 

When the robot finds a sensor s, it sends the set of the sensors 
that it has found to s. The sensor s accumulates the set sent by 
each robot that visits it and sends this gathered information to 
each new visitor robot. Through this information exchange 
between the robot and sensor, the robot learns whether it is the 
first visitor of the sensor or not, also determines whether to 
terminate the algorithm or not. Only the first robot that finds the 
sensor collects the required data from the sensor (refer to 
Algorithm 1, lines 16-19). 

Si denotes the set of all sensors that robot ri has found during 
exploration. Fi denotes the set of sensors that ri is first to find 
during exploration, that is, ri finds the sensors in Fi before all the 
other robots.  

The time when a robot meets a sensor is denoted by t which is 
represented as decreasing order. Thus, t denotes the current 
meeting, while t-1 denotes the previous meeting, and so on. The 
sensor information that robot ri accumulates from each sensor in 
Si until t is denoted by 𝐴𝑖(𝑡 − 1). Let Vj be the list of the robots that 
have visited sensor sj. The information that sensor sj accumulates 
from each robot in Vj until t is denoted by 𝑆𝑗

∗(𝑡 − 1). When a robot 

ri ∈ Vj finds sj at time t, it sends 𝐴𝑖(𝑡 − 1) to sj and meanwhile 
receives 𝑆𝑗

∗(𝑡 − 1). When a meeting between sensor sj and robot 

ri occurs, sj and ri update the sensor information that they keep as 
follows: 

 𝑆𝑗
∗(𝑡) =   𝑆𝑗

∗(𝑡 − 1) ∪ 𝐴𝑖(𝑡 − 1) and 

𝐴𝑖(𝑡) =  𝐴𝑖(𝑡 − 1) ∪ 𝑆𝑗
∗(𝑡 − 1), 

where 𝑆𝑗
∗(𝑡 − 1) ⊆ ⋃ 𝑆𝑉𝑥[𝑖]𝑖 ∈ 1,…|𝑉𝑥| (𝑡 − 𝑖) and Si ⊆ Fi. 

Consider the following example scenario for phase-2 with two 
robots (r1 and r2) and five sensors (s1, · · ·, s5). Suppose that the 
first sensor that r1 finds is s1. When r1 and s1 exchange 
information, r1 sends A1 = ∅ to s1 and in return receives 𝑆1

∗ = ∅ 
from s1 which also implies that r1 is the first robot that finds s1. As 
a result of this phase, r1 has F1 = {s1} and A1 = {s1}, while s1 has 𝑆1

∗ 
= {s1} and V1 = {r1}. Next, r1 finds s2 which has already been found 
by r2. Before, r2 finds s2, it has also found s4 and s5. Therefore, 
when r1 finds s2, 𝑆2

∗ = {s2, s4, s5}. As a result of the information 
exchange between r1 and s2, r1 has F1 = {s1} and A1 = {s1, s2, s4, s5}, 
while s2 has 𝑆2

∗ = {s1, s2, s4, s5} and V2 = {r1, r2}. Next, r1 finds s3. Let 
r1 be the first robot to find s3. After r1 and s3 exchange information, 
r1 has F1 = {s1, s3} and A1 = {s1, s2, s3, s4, s5}, while s3 has V3 = {r1} 
and 𝑆3

∗ = {s1, s2, s3, s4, s5}. 

We consider two cases of the problem depending on whether 
case-1: both the number of sensors and number of robots are 
known by the robots in advance or case-2: the number of robots 
is unknown, but the number of sensors is known by the robots in 
advance. In case-1, we assume that n|m, that is, m/n is an integer. 
The approaches for the solutions of the cases differ from each 
other in the termination part of the algorithm. In case-1, the 
algorithm terminates when the robot collects data from m/n 
sensors such that the robot should be the first to find each of 
these sensors, which occurs when |Fi| = m/n (refer to Algorithm 
1, comments between lines 23–24). Whereas, in case-2, the 

algorithm terminates when the robot ensures that each sensor in 
the environment is found by a robot, which occurs when |Ai| = m 
(refer to Algorithm 1, line 24). 

3.1. Example Execution of the Algorithm 

In Figure 1, we present the example execution of algorithm MDC 
for case-1. n = 3 robots, r1, · · ·, r3, and m = 6 sensors, s1, · · ·, s6, are 
distributed uniformly at random in a circular area of radius A = 
100 with center x = 500 and y = 500. The initial configuration of 
the robots and sensors is shown in Figure 1:A. We assume that 
the robot moves at unit speed, thus time and distance are 
equivalent. The communication range is R = 10. The time for data 
download from each sensor is fixed to 50 and represented in 
terms of distance traveled units. The trajectories of robots r1, r2, 
and r3 are shown in Figure1:B-C, D-G, and H-I, respectively. Table 
I presents the elements of Ai and Fi for robot i, and 𝑆𝑗

∗ for the found 

sensor j after the message exchange phase is finished. Last three 
columns of the table provide the total time spent, the distance 
traveled, and the number of rounds executed by the robot until it 
finds the sensor. Note that total time data in Table-1 is given in 
distance traveled units and is equal to the sum of the distance 
traveled by the robot and the download time from the sensors 
found by the robot, until the robot finds the current sensor. We 
observe that r1 is the first visitor of the sensors s2 and s3, and r3 is 
the first visitor of the sensors s1 and s5. The first sensor that r2 
finds is s1. Since s1 has already been found by r3, robot r2 does not 
collect data from s1 thus the total time stays the same as the total 
distance traveled.  Robot r2 continues the exploration until its |F2| 
= 2, which occurs when it finds the sensors s4 and s6. 

 



DEU FMD 27(80) (2025) XXX-XXX  

 293 

 

Figure 1. Example execution of Algorithm MDC. The robot is depicted with a circle and the sensor is depicted with a square. 

Table 1. Output data for the example execution of Algorithm MDC which is shown in Figure 1. 

ri si Fi Ai 𝑆𝑗
∗ Total Time Total Distance Round 

r1 s3 F1 = {3} A1 = {3} 𝑆3
∗ = {3} 139 139 1 

r3 s5 F3 = {5} A3 = {5} 𝑆5
∗ = {5} 223 223 1 

r3 s1 F3 = {1, 5} A3 = {1, 5} 𝑆1
∗ = {1, 5} 335 285 2 

r2 s1 F2 = ∅ A2 = {1, 5} 𝑆1
∗  = {1, 5} 344 344 2 

r2 s4 F2 = {4} A2 = {1, 4, 5} 𝑆4
∗ = {1, 4, 5} 538 538 2 

r2 s5 F2 = {4} A2 = {1, 4, 5} 𝑆5
∗ = {1, 4, 5} 670 620 3 

r1 s2 F1 = {2, 3} A1 = {2, 3} 𝑆2
∗ = {2, 3} 1309 1259 4 

r2 s6 F2 = {4, 6} A2 = {1, 4, 5, 6} 𝑆6
∗ = {1, 4, 5, 6} 1655 1605 4 

4. Simulations 

We evaluate the performance of our algorithm MDC through 
simulations by implementing a multi-threaded system. Each 
thread represents a robot and runs MDC. The simulation results 
are shown in Figure 2:A-O. The robots and sensors are 
distributed uniformly at random in an unbounded circular area 
of radius A.  

We investigate the distance traveled by the robot, the total time 
spent by the robot, the number of rounds executed by the robot, 
the number of sensors found in a round by the robot, the number 
of sensors found by the robot, and the number of sensors that the 
robot is first to find by varying the key parameters of interest 
including the number of robots (n), the number of sensors (m), 
the communication range (R), and the environment size 
(represented with its radius A). We vary n between 2 and 32, m 
between 8 and 64, A between 100 and 200, and R between 5 and 
50. For each combination of the tested parameter pair, we take 

the average of the performance over 100 trials. The maximum of 
the evaluated data among the robots is used for each trial. 

Figure 2:A-J shows the performance of algorithm MDC for case-2. 
For fixed n and R, Figure 2:A shows the distance traveled by the 
robot with respect to the change in m and A. We observe that the 
distance traveled stays constant over increasing m and increases 
as A increases. For fixed n and A, Figure 2:B shows the distance 
traveled by the robot with respect to the  change in m and R. The 
robot travels less distance and complete the data collection task 
sooner as R increases. When m and R are fixed, Figure 2:C shows 
that increasing the number of robots improves the performance 
of the algorithm. The total number of rounds that the robot 
executes is presented in Figure 2:D with respect to the change in 
m and R, and in Figure 2:E with respect to the change in n and A. 
These results are proportional to the distance traveled results 
shown in Figure 2:B-C, since as the robot executes more rounds, 
its traveled distance also increases.  
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In Figure 2:F, we observe that the number of sensors that the 
robot is first to find increases as m increases and decreases as R 
increases. Figure 2:C shows that as the data collection task is 
distributed among more robots, the maximum of the distance 
traveled among the robots decreases. This further implies that 
the robot has yet explored a smaller part of the area. Therefore, 
the number of sensors that robot i is first to find and the total 
number of sensors that robot i finds to achieve |Ai | = m decreases 
as n increases. This outcome is depicted in Figure:G and Figure:I, 
respectively. From Figure 2:H, we obtain that when m and n are 
fixed, the number of sensors found by the robot is not affected by 
the change in A. For fixed R and n, Figure 2:J shows that the 
number of sensors found in a round by the robot increases as m 
increases, but decreases as A increases since the pairwise 
distance between the sensors increases.  

In Figure 2:K-O, we compare the proposed approaches for case-1 
and case-2 and show the effect on the performance of the 
algorithm. Recall that in case-2, unlike case-1, the robots do not 
know n in advance and the number of sensors that each robot 
collects data from is not neccessarily balanced. To terminate 
MDC, in case-1, robot i must satisfy |Fi| = m/n, whereas in case-2, 
robot i must satisfy |Ai| = m. Figure 2:K-L shows the distance 
traveled by the robot with respect to the change in m for fixed n 
and R, while Figure 2:M-N shows the distance traveled by the 
robot with respect to the change in n for fixed m and R. The results 
show that MDC performs better in case-2 comparing to case-1. 
The total time which is shown in Figure 2:O is the sum of the total 
distance traveled by the robot and the total download time from 
the sensors that the robot is first to find. The download time is 
fixed and assigned to 50.

Figure 2.  Simulation results that show the performance of Algorithm MDC.

5. Conclusion

We studied the problem of data collection from a set of stationary 
wireless sensor nodes utilizing multi-robots. The robots and 
sensors are deployed in an unbounded large area and unaware of 
each other. We proposed an online algorithm which plans the 

actions of the robot without requiring the locations of the sensors 
and the other robots as input. Moreover, we compare two cases 
of the problem depending on whether the robots know the 
number of robots in advance or not. For these cases, we showed 
how to adapt our algorithm. The performance of the proposed 
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algorithm was empirically evaluated also compared for the 
mentioned two cases through simulations varying the key 
parameters of interest including the number of sensor nodes, the 
number of robots, the communication range, and the 
environment size. Through the reported simulations results, we 
showed that the approach used in case-2, where the robot 
terminates the strategy after ensuring that each sensor node is 
found by at least one robot, performs better than the approach 
used in case-1, where the robot terminates the strategy as soon 
as it finds a certain number of sensor nodes. Moreover, we 
validated that the performance of our algorithm for case-2 
quantifies as a function of the environment size, the number of 
robots, and the communication range.  

The proposed algorithm can be extended to UAVs considering 
that the UAV flies at a fixed altitude and has enough battery 
capacity to complete its task, and no obstacles exist at the altitude 
that it flies. However, for long running or persistent tasks, having 
unlimited operational time for the UAV is not a reasonable 
assumption. Therefore, our future work includes replanning the 
path of the UAV during exploration taking the visits to the 
recharging station(s) into account. In future, we also intend to 
implement the extended algorithm on an actual robotic system 
and carry out real-world experiments. 

Another challenging future work is to consider the same problem 
for a heterogeneous multi-robot system where the robots have 
varying capabilities (e.g. communication range, velocity) and are 
located in environments with obstacles. The main difference 
between the proposed solution and the solution to be designed 
for the environments with obstacles would be the motion 
planning strategy that the robot executes for exploring the 
environment. Taking uncertainties into account while planning 
the path of the robot is another interesting future work. The 
proposed algorithm can be extended considering the robot 
failures or new robots that are added to the system during the 
mission. 
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