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Abstract

We focus on the solution of the Sylvester quaternion matrix equation AX−XB =C, where A ∈Hm×m, B ∈Hn×n, C ∈Hm×n and m is very
large such that m� n. Non-commutative nature of quaternion scalars under multiplication is a hurdle in solving such a matrix equation.
Thus, instead of directly dealing with the quaternion matrix equation, we make use of the complex matrix representations of quaternion
matrices, and turn the quaternion matrix equation into a complex matrix equation of size twice as big. Since the resulting complex matrix
equation involves large matrices, assuming m is large, in particular m� n, we present a block Generalized Minimal Residual (GMRES)
method that seeks the solution of the complex matrix equation in small affine spaces defined in terms of Krylov subspaces. The solution in
such a small affine space can equivalently be posed as the solution of a small complex matrix equation, which can be solved directly, for
instance, by rewriting it as a linear system. At every iteration of our block GMRES method, the Krylov subspaces are expanded by adding
new vectors, and the small complex matrix equations are altered accordingly. Our block GMRES method eventually produces the complex
representation of an approximate solution of the original Sylvester quaternion matrix equation. Finally, this complex matrix representation is
transformed back into the corresponding quaternion matrix, which is an approximate solution of the original quaternion matrix equation
AX−XB =C.
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1. Introduction

Matrix equations are mathematical tools that arise when modelling real-life situations. More specifically, many problems that appear in
applied sciences can be expressed in terms of linear or non-linear matrix equations. A Sylvester matrix equation is a particular linear matrix
equation of the form

AX−XB =C, (1.1)

where A, B, C are known matrices of appropriate sizes, and X is an unknown matrix of appropriate size. The homogeneous version of a
Sylvester matrix equation was first introduced by J. J. Sylvester in 1884 [15]. In the symmetric case, that is when B = AT and C = CT ,
equation (1.1) is called a Lyapunov equation, used in the stability analysis of dynamical systems, as well as designing controllers for them
[6]. Sylvester matrix equations and its variations, as well as special cases arise in various fields, including control theory, model reduction,
matrix decompositions, image processing, and numerical ordinary differential equations; for details, see [29].
In the literature, the solution of a real or a complex Sylvester matrix equation has been widely studied by means of either direct approaches
or iterative methods; see, e.g., [3, 4, 5, 9, 12, 17, 20, 21, 23, 32]. In this study, we attempt to solve a Sylvester matrix equation as in (1.1) for
m×m, n×n, m×n quaternion matrices A ∈Hm×m, B ∈Hn×n, C ∈Hm×n, respectively, assuming A is large and sparse, as well as m� n.
Quaternions, discovered by W. R. Hamilton in 1843, are generalizations of real and complex numbers [30]. The multiplication of two
quaternion numbers is not commutative, which makes them a skew-field rather than a field. The quaternion matrix equation in (1.1) that we
deal with here has applications in various fields, including computer science and signal processing [16].
Motivated by the applications in the fields listed above, solving (1.1) and its variations over the quaternion skew-field has recently attracted
attention. There are several approaches in the literature for solving these type of matrix equations [1, 2, 7, 8, 10, 11, 13, 14, 18, 19, 22, 24,
25, 26, 27, 28, 31, 33, 34, 35, 36]. One of the most notable among these approaches is the transformation of the quaternion matrix equations
into a real or a complex matrix equation by using the real or complex representations of quaternion matrices [7, 11, 19, 22, 27]. After
performing such transformations, some researchers have derived necessary and sufficient conditions for the solvability of Sylvester-type
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matrix equations or a system consisting of Sylvester-type matrix equations. Additionally, they have presented expressions for general
or special solutions to these matrix equations using the Moore-Penrose pseudoinverse [11, 19]. Some other researchers have dealt with
the solution of the equation by using an iterative method after transforming the quaternion equation into its real or complex counterpart
[7, 11, 22, 27]. In contrast to these approaches, it is also possible to solve the quaternion matrix equation without transforming it to a real
or a complex matrix equation [8, 10, 13, 18, 24, 25, 26, 31, 33, 34, 35, 36]. In this direction, Kyrchei has derived explicit expressions in
terms of determinants for the solutions (analogous to Cramer’s Rule) of a two-sided quaternion generalized Sylvester matrix equation [13].
Beik and Ahmadi-Asl have developed conjugate gradient least-squares (CGLS) methods for finding the η-Hermitian and η-anti-Hermitian
solutions of the least-squares problem associated with the quaternion matrix equation AXB+CY D = E by making use of Sylvester operators
and a real inner product defined over the skew-field of quaternions [10]. Şimşek has provided explicit formulas for the general solutions, as
well as the perhermitian, skew-perhermitian solutions of the least-squares problems associated with AXB+CY D = E and AXB+CXD = E
over the skew-field of quaternions in terms of Kronecker products and Moore-Penrose pseudoinverse [24]. In this last study, applications of
the derived formulas to color image restoration are also presented. In another study, Şimsek has proposed an approach for the numerical
solution of a large-scale Sylvester matrix equation by means of a global GMRES method based on a real inner product defined on the space
of quaternion matrices [26]. In addition to these studies, some studies attempt to solve Sylvester quaternion matrix equations by employing
matrix decompositions [33, 36]; for example, in [36] the solutions of systems of Sylvester-type matrix equations are obtained by computing
simultaneous decompositions of quaternion coefficient matrices of the matrix equations. In this study, we solve Sylvester quaternion matrix
equations by exploiting their complex representations, particularly by applying the well-known block GMRES method in the complex setting
to these complex representations. Thus, we first transform the quaternion matrix equation (1.1) into a complex matrix equation by utilizing
complex representations of quaternion matrices. This transformation allows us to work fully in the complex algebra. However, the sizes of
the matrices in the resulting complex matrix equation are twice as large as their counterparts in the original quaternion matrix equation. The
block GMRES method in the complex setting, as it seeks the solution of the problem in a low-dimensional (Krylov) subspace, is a suitable
approach to solve the resulting complex matrix equation. Finally, we form the solution of the original quaternion matrix equation from the
solution of the complex equation by applying a simple transformation.

2. Background

We first introduce some basic concepts and definitions related to the skew-field of quaternion scalars, as well as quaternion matrices. The set
of quaternion scalars is given by

H=
{

a = a0 +a1i+a2j+a3k : i2=j2=k2=−1, ij =−ji=k, a0,a1,a2,a3 ∈ R
}
.

The conjugate and modulus of a = a0 +a1i+a2j+a3k ∈H with a0,a1,a2,a3 ∈ R are defined as

a = a0−a1i−a2j−a3k and |a|=
√

aa =
√

a2
0 +a2

1 +a2
2 +a2

3,

respectively. Throughout this study, the set of vectors of size n and the set of m×n matrices with quaternion entries are denoted by Hn×1

and Hm×n, respectively.
Since the multiplication of the units i, j, k with each other is not commutative, the product of two quaternion scalars does also not commute.
As a result, the set of quaternions is a skew-field, but not a field. The multiplication of vectors in Hn×1 with scalars in the skew-field H can
be defined from left or right, and Hn×1 equipped with such a multiplication with scalars can be viewed as a right vector space or a left vector
space accordingly. In this work, we avoid the use of left or right vector spaces, and instead, we benefit from an isomorphism that converts
Hm×n into a complex subspace of C2m×2n explained next.
Any quaternion matrix A∈Hm×n can be expressed as A = A1+ jA2 ∈Hm×n for same A1,A2 ∈Cm×n in a unique way. For this representation
of a quaternion matrix A, consider the map Ω : Hm×n→ C2m×2n defined as

Ω(A) =
(

A1 −A2
A2 A1

)
∈ C2m×2n, (2.1)

where the notation M stands for the complex conjugate of a complex matrix M, which is the matrix obtained by taking the complex conjugate
of each entry of M. We remark that the map Ω is on isomorphism between Hm×n and the subspace of C2m×2n consisting of notices of

the form
(

Z −U
U Z

)
for same Z,U ∈ Cm×n. We now give same basic definitions related to complex and more generally quaternion

vectors, matrices. The Euclidian norm of u ∈ Hn is defined by ‖u‖2 =
√

∑
n
i=1 |vi|2, and the Frobenius norm of A ∈ Hm×n is defined by

‖A‖F =
√

∑
m
i=1 ∑

n
j=1
∣∣ai j
∣∣2. The symbols AT and A∗ stand for transpose and conjugate transpose, respectively, of a quaternion matrix A of

size m×n. A matrix A ∈Hn×n is called Hermitian if A∗ = A. Moreaver, if the conditions AB = BA = I are satisfied, then B is called the
inverse of A and denoted by A−1. In particular if A∗A = AA∗ = I are satisfied, then the matrix A is said to be unitary. A matrix A ∈Hm×n is
called upper Hessenberg if ai j = 0 for all i such that is i > j+1. Finally, the vec-operator is a linear transformation that maps a quaternion
matrix into a column vector by vertically stacking the columns of the quaternion matrix, while the Kronecker product of two complex
matrices A and B is denoted by A⊗B.

3. Problem Definition

Here, we consider the Sylvester quaternion matrix equation

AX−XB =C, (3.1)
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for given large and sparse quaternion matrices A ∈Hm×m, B ∈Hn×n, C ∈Hm×n, and the unknown matrix X ∈Hm×n for the setting when
m� n. A linear quaternion matrix equation as in (3.1) can be transformed into a linear complex matrix equation using the complex matrix
representations of quaternion matrices in (2.1). It is worth noting that there are alternative complex representations of a quaternion matrix
employed in the literature, but these complex representations can be obtained from each other by permuting rows and/or columns. We will
use the following properties related to the complex matrix representation of a quaternion matrix.

Theorem 3.1. The following properties hold for every A,B ∈Hm×n, C ∈Hn×p, and k ∈ R:

1. A = B ⇔ Ω(A) = Ω(B).
2. Ω(A±B) = Ω(A)±Ω(B).
3. Ω(AC) = Ω(A)Ω(C).
4. Ω(kA) = kΩ(A).
5. Ω(A∗) = Ω(A)∗.
6. A ∈Hn×n is invertible⇔Ω(A) is invertible, and if A ∈Hn×n is invertible, then Ω

(
A−1)= Ω(A)−1.

7. A ∈Hn×n is unitary⇔Ω(A) is unitary.
8. ‖A‖F = 1√

2
‖Ω(A)‖F .

By making use of the complex representations of A ∈Hm×m, B ∈Hn×n, C ∈Hm×n, X ∈Hm×n in (3.1), as well as items (1), (2) and (3) in
Theorem 3.1, we rewrite the Sylvester equation in (3.1) as

Ω(A)Ω(X)−Ω(X)Ω(B) = Ω(C) , (3.2)

where Ω(A) =
(

A1 −A2
A2 A1

)
∈ C2m×2m, Ω(B) =

(
B1 −B2
B2 B1

)
∈ C2n×2n, Ω(C) =

(
C1 −C2
C2 C1

)
∈ C2m×2n,

and Ω(X) =

(
X1 −X2
X2 X1

)
∈ C2m×2n. To ease the notation, we represent Ω(A), Ω(B), Ω(C), Ω(X) with Ã, B̃, C̃, X̃ , respectively.

Equation (3.2) with these shorter representations can be expressed as

ÃX̃− X̃ B̃ = C̃. (3.3)

Equation (3.3) can further be expressed in terms of the Sylvester operator S : C2m×2n→ C2m×2n, S
(
X̃
)
= ÃX̃ − X̃ B̃ for given matrices

Ã ∈ C2m×2m and B̃ ∈ C2n×2n as

S
(
X̃
)
= C̃. (3.4)

Throughout the rest of this paper, we focus on the solution of the Sylvester quaternion matrix equation (3.1) by setting up a block GMRES
method based on its representation in (3.4) in terms of the Sylvester operator. When setting up the block GMRES method, we always assume
that (3.1) has a unique solution, equivalently that the complex matrices Ã and B̃ have no common eigenvalues. We, however, remark that in
case the matrix equation does not have any solution, a least-squares solution for (3.1) can be obtained by applying the method to the normal
equations corresponding to the least-squares problem associated with (3.1) in a similar way. In the next section, we describe a block Arnoldi
process for constructing orthonormal bases for Krylov subspaces, as well as a block GMRES method for finding the best solutions in the
least-squares sense of (3.4) in affine spaces associated with these Krylov subspaces.

4. Results

4.1. The Block Arnoldi Process

In this section, we first present the block Arnoldi process for solving the complex matrix equation in (3.4) expressed in terms of Sylvester
operators. Let X̃0 ∈ C2m×2n be an initial approximation of the solution of (3.4), and R̃0 := C̃−

(
ÃX̃0− X̃0B̃

)
= C̃− S

(
X̃0
)

be the initial
residual related to the error of this approximation. For a positive integer k, the kth block Krylov subspace Kk

(
S, R̃0

)
associated with R̃0 and

the Sylvester operator S is defined by

Kk
(
S, R̃0

)
:= blockspan

{
R̃0,S

(
R̃0
)
, . . . , S

(
R̃0
)k−1

}
=
{

R̃0β1 +S
(
R̃0
)

β2, . . . ,S
(
R̃0
)k−1

βk : β1, . . . ,βk ∈ C2n×2n
}
. (4.1)

Lemma 2.1 in [17] shows that the Krylov subspaces constructed using the matrix Ã and using the Sylvester operator S are the same, i.e., for
all k ≥ 1, we have

Kk
(
S, R̃0

)
= Kk

(
Ã, R̃0

)
:= blockspan

{
R̃0, ÃR̃0, . . . , Ãk−1R̃0

}
.

Thanks to this lemma, throughout the rest of this paper, we work on Kk
(
Ã, R̃0

)
rather than Kk

(
S, R̃0

)
.

The block Arnoldi process is formally described below in Algorithm 1. It starts with Q0 ∈ C2m×2n, whose columns form an orthonormal
basis for the columns space of R̃0. At the kth iteration, the Krylov subspace is expanded by adding 2n new orthonormal basis vectors stored
inside Qk due to the inclusion of the column space of ÃkR̃0 in the subspace. This is achieved by multiplying Ã with Qk−1, the orthonormal
basis matrix from the previous iteration, then orthonormalizing the resulting vectors against all previous basis vectors by the Gram–Schmidt
procedure. At the end of the kth iteration, Algorithm 1 yields the recurrence

ÃQ̃k = Q̃k+1H̃k, (4.2)
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where Q̃k :=
[

Q0 Q1 · · · Qk−1
]
∈C2m×2nk and Q̃k+1 :=

[
Q0 Q1 · · · Qk−1 Qk

]
∈C2m×2n(k+1) with columns forming an

orthonormal basis for Kk
(
Ã, R̃0

)
and Kk+1

(
Ã, R̃0

)
, respectively, while H̃k ∈ C2n(k+1)×2nk is an upper block Hessenberg matrix given by

H̃k =



H11 H12 H13 · · · H1k
H21 H22 H23 · · · H2k

0 H32 H33 · · · H3k

0 0
. . .

. . .
...

...
...

... Hk(k−1) Hkk
0 0 0 0 H(k+1)k


. (4.3)

We remark that the submatrices H(i+1)i for i = 1, . . . , k in (4.3) are upper triangular matrices.
Algorithm 1 The Block Arnoldi Process

1: R̃0← C̃−
(
ÃX̃0− X̃0B̃

)
2: Obtain Q0 from the QR factorization R̃0 = Q0U0

3: for i = 1, . . . ,k do

4: Wi← ÃQi−1

5: for j = 1, . . . , i do

6: H ji← Q∗j−1Wi

7: Wi←Wi−Q j−1H ji

8: end for

9: Form Qi and H(i+1)i by computing the QR factorization Wi = QiH(i+1)i

10: end for

11: Q̃k←
[

Q0 Q1 · · · Qk−1
]
, Q̃k+1←

[
Q0 Q1 · · · Qk−1 Qk

]
and H̃ is as in (4.3).

4.2. A Block GMRES Method

Using the initial approximation X̃0 ∈ C2m×2n for the solution of (3.4), our block quaternion GMRES method determines X̃k minimizing∥∥C̃−S
(
X̃
)∥∥

F over all X̃ ∈ X̃0 +Kk
(
Ã, R̃0

)
. The minimizing X̃k can be expressed as X̃k = X̃0 + Q̃kỸk for some Ỹk ∈ C2nk×2n, where

Q̃k=
[

Q0 Q1 · · · Qk−1
]
∈ C2m×2nk is the matrix with columns forming an orthonormal basis for Kk

(
Ã, R̃0

)
generated by the block

Arnoldi process, i.e., by Algorithm 1. The matrix Ỹk such that X̃k = X̃0 + Q̃kỸk is optimal for the least-squares problem must satisfy

min
X̃∈X̃0+Kk(Ã,R̃0)

∥∥C̃−S
(
X̃
)∥∥

F = min
Ỹ∈C2nk×2n

∥∥C̃−S
(
X̃0 + Q̃kỸ

)∥∥
F =

∥∥C̃−S
(
X̃0 + Q̃kỸk

)∥∥
F .

Recalling the definition of the operator S, as well as R̃0 = C̃−S
(
X̃0
)
, and exploiting the linearity of S, letting m := min

X̃∈X̃0+Kk(Ã,R̃0)

∥∥C̃−S
(
X̃
)∥∥

F ,

we obtain

m = min
Ỹ∈C2nk×2n

∥∥R̃0−
(
Ã
(
Q̃kỸ

)
−
(
Q̃kỸ

)
B̃
)∥∥

F . (4.4)

Since R̃0−
(
Ã
(
Q̃kỸ

)
−
(
Q̃kỸ

)
B̃
)

is contained in Kk+1
(
Ã, R̃0

)
for which the columns of Q̃k form an orthonormal basis, its Frobenius norm

does not change when it is multiplied with Q̃∗k+1 from right. Hence, we have

m = min
Ỹ∈C2nk×2n

∥∥Q̃∗k+1R̃0− Q̃∗k+1
(
Ã
(
Q̃kỸ

)
−
(
Q̃kỸ

)
B̃
)∥∥

F . (4.5)

As R̃0 = Q0U0 is the QR factorization of R̃0, and Q0 is the first block column of the matrix Q̃k+1 with orthonormal columns, it follows that

Q̃∗k+1R̃0 =


U0
0
...
0

. Finally, letting Ũ =


U0
0
...
0

, and recalling the Arnoldi recurrence in (4.2), the minimization problem in (4.5) can

equivalently be written as

m = min
Ỹ∈C2nk×2n

∥∥∥∥Ũ−(H̃kỸ −
[

I
0

]
Ỹ B̃
)∥∥∥∥

F
. (4.6)

Consequently, Ỹk is the best solution in the least-squares sense of the Sylvester matrix equation

H̃kỸ −
[

I
0

]
Ỹ B̃ = Ũ , (4.7)
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which has a smaller size than the original Sylvester matrix equation in (3.4). The least-squares solution Ỹk of the matrix equation in (4.7)
satisfies the linear system (

I⊗ H̃k− B̃T ⊗
[

I
0

])
vec
(
Ỹ
)
= vec

(
Ũ
)

(4.8)

with the help of the vec operator. Denoting
(

I⊗ H̃k− B̃T ⊗
[

I
0

])
, vec

(
Ỹ
)
, vec

(
Ũ
)

with A , y, g, respectively, we represent it as

m = min
y∈C4n2k×1

‖g−A y‖2 . (4.9)

Note that the coefficient matrix A is of size 4n2(k+1)×4n2k independent of m. Thus, assuming n, k are small, A is of small size, and the
least-squares solution to (4.9) can be retrieved efficiently by computing a QR decomposition of A . Let y∗ ∈ C4n2k×1 be the solution of (4.9)
retrieved this way. Then, Ỹk ∈ C2nk×2n is such that y∗ = vec(Ỹk), so Ỹk can be constructed from y∗ by just reshaping it as a matrix without
performing any computation. In the end, the matrix X̃k = X̃0 + Q̃kỸk is an approximate solution to the complex Sylvester matrix equation
(3.4) and must be of the form

X̃k = Ω(Xk) =

[
Xk,1 −Xk,2
Xk,2 Xk,1

]
∈ C2m×2n

for some Xk that is an approximate solution to the quaternion matrix equation (3.1). The approximate solution Xk to (3.1) is then given by

Xk = Xk,1 + jXk,2 ∈Hm×n.

5. Numerical Experiments

Here, we provide a numerical example to demonstrate the accuracy of the block GMRES method proposed for the Sylvester quaternion
matrix equation AX−XB =C, as well as its convergence. We randomly generate the known matrices A ∈Hm×m, B ∈Hn×n, C ∈Hm×n with
m = 50 and n = 5 in MATLAB. The precise data is made available on the web1. By utilizing the complex matrix representations of the
matrices A,B, C, we transform the Sylvester quaternion matrix equation AX −XB =C into the corresponding Sylvester complex matrix
equation ÃX̃ − X̃ B̃ = C̃ for Ã ∈ C100×100, B̃ ∈ C10×10, C̃ ∈ C100×10. This transformation allows us to deal with the problem in the usual
complex space by using the complex arithmetic implemented in computers. In particular, we apply the proposed block GMRES method to
the Sylvester complex matrix equation ÃX̃ − X̃ B̃ = C̃. For this experiment, we initialize the block Arnoldi Algorithm with the matrix X̃0
set equal to the 100×10 zeros matrix. As a result, the initial residual matrix R̃0 satisfies R̃0 = C̃. When carrying out the block Arnoldi
algorithm, the maximal number of iterations is set equal to 10, so the block Arnoldi algorithm yields Q̃10 and Q̃11, which are orthonormal
bases for K10

(
Ã,C̃

)
and K11

(
Ã,C̃

)
, respectively. We then apply the block GMRES method to find the best solution X̃10 of the complex

matrix equation ÃX̃− X̃ B̃ = C̃ in the Krylov subspace K10
(
Ã,C̃

)
. Finally, an approximate solution X10 of the original problem AX−XB =C

is obtained by converting X̃10 into a quaternion matrix as explained at the end of the previous section.
Figure 5.1 below depicts the residual norm

∥∥R̃k
∥∥

F=
∥∥C̃−S

(
X̃k
)∥∥

F for the Sylvester complex matrix equation ÃX̃− X̃ B̃ = C̃ in this example
as a function of k, that is the number of iterations.

Figure 5.1: The residual norm
∥∥R̃k
∥∥

F is plotted as a function of k (the number of iterations) for Algorithm 4.1

Additionally, the residual norm up to four decimal digits at every iteration until termination is reported in Table 1 below. Observe that the
residual norms decrease monotonically. After 10 iterations

∥∥R̃10
∥∥

F is zero up to rounding errors as expected in theory.

1https://drive.google.com/drive/folders/11pUmV-O-285nRgCaNn9XA01eMoFZW61g?u

https://drive.google.com/drive/folders/11pUmV-O-285nRgCaNn9XA01eMoFZW61g?usp=drive_link
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Table 1: Residual norm
∥∥R̃k
∥∥ up to four decimal digits with respect to k

k 1 2 3 4 5 6 7 8 9 10∥∥R̃k
∥∥

F 62.2118 50.6591 40.7386 33.3585 27.8083 22.7574 17.8061 11.6200 6.8859 0.0000

6. Conclusion

In this paper, we present a block GMRES method for solving the Sylvester quaternion matrix equation AX −XB =C by employing the
complex representations of quaternion matrices. Our method is suitable for large and sparse quaternion matrices A ∈ Hm×m, B ∈ Hn×n,
C ∈Hm×n with the unknown matrix X ∈Hm×n, in particular for the case when m� n. We have also provided an example to illustrate the
accuracy and convergence of the proposed method.
The method could possibly be improved by taking the structures of the complex representations when dealing with the resulting complex
matrix equations, which may in turn reduce the number of operations. Moreover, the proposed approach could potentially be adapted to
solve other types of matrix equations.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful
comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC
4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles
were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable

References

[1] A. Rehman, I. Kyrchei, M. Z. U. Rahman, V. Leiva and C. Castro, Solvability and algorithm for Sylvester-type quaternion matrix equations with
potential applications, AIMS Mathematics, 9(8) (2024), 19967-19996. doi: 10.3934/math.2024974

[2] A. Rehman, I. Kyrchei, I. Ali, M. Akram and A. Shakoor, Explicit formulas and determinantal representation for η-skew Hermitian solution to a system
of quaternion matrix equations, Filomat, 34(8) (2020), 2601-2627.

[3] A. Bouhamidi and K. Jbilou, A note on the numerical approximate solutions for generalized Sylvester matrix equations with applications, Applied
Mathematics and Computation, 206 (2008), 687–694.

[4] A. El Guennouni, K. Jbilou and A.J. Riquet, Block Krylov Subspace Methods for Solving Large Sylvester Equations, Numerical Algorithms, 29 (2002),
75–96.

[5] A. Kaabi, On the numerical solution of generalized Sylvester matrix equations, Bulletin of the Iranian Mathematical Society, 40 (2014), 101–113.
[6] A.M. Lypunov, The general problem of the stability of motion, International Journal of Control, 55 (3) (1992), 531-534.
[7] A. Wei, Y. Li, W. Ding and J. Zhao, Three special kinds of least-squares solutions for the quaternion generalized Sylvester matrix equation, AIMS

Mathematics, 7 (4) (2021), 5029-5048.
[8] C.Q Zhang, Q.W. Wang, A. Dmytryshyn and Z.H. He, Investigation of some Sylvester-type quaternion matrix equations with multiple unknowns,

Computational and Applied Mathematics, 43 (2024), 26 pages.
[9] F.P.A. Beik, Theoretical Results on the Global GMRES Method for Solving Generalized Sylvester Matrix Equations, Bulletin of the Iranian Mathematical

Society, 40 (5) (2014), 1097–1117.
[10] F.P.A. Beik and S. Ahmadi-Asl, An Iterative Algorithm for η-(anti)-(Hermitian) Least-Squares Solutions of Quaternion Matrix Equations, Electronic

Journal of Linear Algebra, 30 (2015), 372-401.
[11] F. Zhang, W. Mu, Y. Li and J. Zhao, Special least-squares solutions of the quaternion matrix equation AXB+CXD = E, Computers and Mathematics

with Applications, 72 (5) (2016), 1426-1435.
[12] G.H. Golub, S. Nash and C.V. Loan, A hessenberg-schur method for the problem AX +XB =C, IEEE Transactions on Automatic Control, 24 (6) (1979),

909-913.
[13] I. Kyrchei, Cramer’s rules for Sylvester quaternion matrix equation and its special cases, Advances in Applied Clifford Algebras, 28:90 (2018).
[14] I. Kyrchei, Cramer’s Rules of η-(Skew-)Hermitian Solutions to the Quaternion Sylvester-Type Matrix Equations, Adv. Appl. Clifford Algebras, 29:56

(2019).
[15] J.J. Sylvester, Sur l’equation en matrices px = xq, C. R. Acad. Sci. Paris., 99 (2) (1884), 67-71, 115-116.
[16] L. Rodman, Topics in Quaternion Linear Algebra, Princeton University Press, 2014.
[17] M. Robbe and M. Sadkane, A convergence analysis of GMRES and FOM methods for Sylvester equations, Numerical Algorithms, 30 (2002), 71-89.
[18] N. Li and Q. Wang, Iterative Algorithm for Solving a Class of Quaternion Matrix Equation Over the Generalized (P,Q) Reflexive Matrices, Abstract

and Applied Analysis Article ID 831656 (2013), 15 pages.
[19] Q.W. Wang, Qing-Wen, H.S. Zhang and S.W. Yu, On solutions to the quaternion matrix equation AXB+CY D = E, The Electronic Journal of Linear

Algebra, 17 (2008), 343-358.
[20] R.H. Bartels and G.W. Stewart, Algorithm 432: Solution of the matrix equation AX +XB =C, Communications of the ACM, 15 (1972), 820-826.
[21] S. Agoujil, A.H. Bentbib, K. Jbilou, and E. Sadek, A Minimal Residual Norm Method for Large-scale Sylvester Matrix Equations, Electronic Transactions

on Numerical Analysis, 43 (2014), 45-59.
[22] S. Ling and Z. Jia, Matrix iterative algorithms for least-squares problem in quaternionic quantum theory, International Journal of Computer Mathematics,

90 (3) (2013), 727-745.
[23] S.K. Li, M.X. Wang and G. Liu, A global variant of the COCR method for the complex symmetric Sylvester matrix equation AX +XB =C, Computers

and Mathematics with Applications, 94 (2021), 104–113.



Konuralp Journal of Mathematics 105
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