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Abstract

Based on a complete residuated lattice L, we show that the category of L-convex spaces
is not extensional and is closed under the formation of finite products of quotient maps.
Then we propose the concept of (preconcave, concave) L-convergence spaces via L-co-
Scott closed sets and prove that the category of concave L-convergence spaces is isomor-
phic to that of L-concave spaces. Finally, we investigate the categorical properties of
L-convergence spaces and show that it is extensional and closed under the formation of
finite products of quotient maps.

Mathematics Subject Classification (2020). 52A01, 54A40, 54A20

Keywords. L-convex space, L-concave space, L-convergence space, extensionality,
quotient map

1. Introduction

A convex structure (also called an algebraic closure system) via abstracting three basic
properties of convex sets is an important mathematical structure. Explicitly, a convex
structure on a set X is a subset C of the powerset of X satisfying: @, X € C; C is closed for
any intersections; C is closed for any directed unions. As a topology-like structure, convex
structures are closely related to many other mathematical structures [31]. Adopting the
lattice-valued approach in topological structures, convex structures are also studied in a
lattice-valued viewpoint, which leads to several types of lattice-valued convex structures
[18,27,29,30]. To date, lattice-valued convex structures have been extensively studied in
a topological approach, such as closure operators [22,28,39], interval operators [19,32],
categorical relationship [14,20,33] and so on. This demonstrates the feasibility of applying
the studying methods in the theory of lattice-valued topological structures to that of
lattice-valued convex structures.

From a categorical aspect, extensionality and productivity of quotient maps are im-
portant categorical properties of topological categories [24]. But the category of lattice-
valued topological spaces satisfies neither the extensionality nor the productivity of quo-
tient maps. This motivates us to consider if the category of lattice-valued convex spaces
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satisfies these two kinds of categorical properties. Besides, convergence structures via
filters [3,4,6, 15,16, 25], or lattice-valued convergence structures via lattice-valued filters
[5,7,12,13,17,34-38] serve as an important tool of characterizing topological structures
and possess better categorical properties than topological structures. This motivates us to
introduce the concept of lattice-valued convergence structures in the framework of lattice-
valued convex spaces and study its relationship with lattice-valued convex structures as
well as its categorical properties.

The aim of this paper is to apply the lattice-valued topological methods to the theory of
lattice-valued convex structures. Concretely, we will discuss the extensionality and produc-
tivity of quotient maps in the category of lattice-valued convex spaces from a categorical
aspect. Then we will propose lattice-valued convergence structures via lattice-valued fil-
ter analogues in a lattice-valued concave space and study its categorical relationship with
lattice-valued concave spaces as well as its extensionality and productivity of quotient
maps in a categorical sense.

The content is organized as follows. In Section 2, we recall some necessary concepts
and notations. In Section 3, we discuss the categorical properties of L-convex spaces. In
Section 4, we introduce the concept of L-co-Scott closed sets and use L-co-Scott closed sets
to define L-convergence structures and study their relationship with L-concave structures.
In Section 5, we discuss the categorical properties of L-convergence spaces.

2. Preliminaries

In this paper, if not otherwise specified, (L, *, T) is always a complete residuated lattice
[2]. That is, L is a complete lattice with the top element T and the bottom element 1 and
* is a binary operation on L such that

(i) (L,*,T) is a commutative monoid;
(ii) = distributes over arbitrary joins, i.e.,

ax(\VB:)=Vaxs

iel iel
for each av e L and {;}er € L.

Since the binary operation * distributes over arbitrary joins, the map aw* (=) : L — L
has a right adjoint & - (=) : L — L given by a - 3 =\V{y € L | a =y < 8}. The binary
operation — is called the implication with respect to *. Some basic properties of the
binary operations * and — are collected in the following proposition, which can be found
in many works, for instance [2, 10].

Proposition 2.1. Let (L, *,T) be a complete residuated lattice. Then

(I1) Lra=1Land T—>a=q;
a—-> =T a<p;

For a nonempty set X, P(X) denotes the powerset of X and L* denotes the set of all
L-subsets on X. For each nonempty U € P(X), let Ty denote the characteristic function
of U. We do not distinguish between an element « € L and the constant map ax : X — L
such that ax () = a for each z € X. All algebraic operations on L can be extended to LX
pointwisely.

A subfamily {A;}jes of L¥ is called directed (resp. co-directed) if for each A;,, Aj, €
{A;}jes, there exists Aj, € {A;j}jcs such that A; < Aj, and Aj, < Aj, (resp. Aj, < Aj,
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and Aj, < Aj,). We usually use the symbols {A4;};e,c% B (resp. {A;};es¥"B) to denote
that {A;}es is a directed (resp. co-directed) subset of B. Let f: X — Y be an ordinary
map. Define f~ : LX — LY and f~: LY — LX by f~(A)(y) = Vf(a)=y A(z) for each
AeLX and yeY, and f<(B) = Bo f for each B e LY [26]. A complete lattice L is called
join continuous if for each a € L, the map a v (-) : L — L is co-Scott continuous, that is,

a VvV /\ Bj = /\ a VvV ﬁj
jed jed
for each co-directed set {3} jes.
Definition 2.2 ([5]). The map S(-,-): L* x LX — L defined by
VA, BeL¥ S(A,B)= \ (A@@) - B()),
xreX
is called the lattice-valued inclusion order between L-subsets on X.

Definition 2.3 ([18,27]). A subset C of LY is called an L-convex structure on X if it
satisfies

(LCE1l) 1x,Tx €C;

(LCE2) {Ax}aea €C implies Ayep Ay € C, where A # &;

(LCE3) If {Aj}jes € C is nonempty and directed, then Vjey A; €C.

For an L-convex structure C on X, the pair (X,C) is called an L-convex space.

A map f: (X,CY) — (Y,CY) between two L-convex spaces is called L-convexity-
preserving if f<(B) e CX for each B eCY.

It is easy to check that L-convex spaces and their L-convexity-preserving maps form a
category, denoted by LConvex.

An L-convex structure C is called stratified if it further satisfies

(LCEs) a* A€C for each € L and A €C;
An L-convex structure C is called co-stratified if it further satisfies
(LCEcs) a > AeC for each ae L and AeC.

A stratified and co-stratified L-convex structure is said to be strong.
Considering a continuous lattice as the lattice background, Pang and Xiu introduced
an axiomatic approach to bases and subbases in L-convex spaces in [23].

Definition 2.4 ([23]). Let (X,C) be an L-convex space and B ¢ C. If B satisfies
VCOeC IBoc B, s.t. C=\/Bg,

then B is called a base of (X,C).

Definition 2.5 ([23]). Let (X,C) be an L-convex space and A ¢ C. If

IB%A:{/\AZ-\{AZ-HEI}QA, I#@}

1el
is a base of (X,C), then A is called a subbase of (X,C).

Definition 2.6 ([1]). A concrete category C is called a topological category over Set with
respect to the usual forgetful functor from C to Set if it satisfies the following conditions:

(TC1) Existence of final structures: For any set X, any class A, any family {(Xx,&)) Faea
of C-object and any family {f) : X — X}, ca of maps, there exists a unique C-
structure £ on X which is final with respect to the sink {fy : (Xx,&)) — X }aea,
this means that for a C-object (Y,7n), a map g: (X,£¢) — (Y,n) is a C-morphism
if and only if for all A€ A,go fy: (X, &) — (Y,n) is a C-morphism.
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(TC2) Fibre-smallness: For any set X, the C-fibre of X, i.e., the class of all C-structures
on X is a set.

Proposition 2.7 ([21]). The category LConvex is topological over Set.

Proof. We only note that for a set X, the final structure C* on X with respect to a
class {(Xx,C**)}ren of L-convex spaces and a family {fy : Xy — X}xeca of maps, is
determined by

CX={Aec L™ |VAeA, f{(A)eCc™).

By Proposition 2.7, a quotient space of an L-convex space can be defined.

Definition 2.8 ([40]). Let (X,C¥) be an L-convex space and f: X — Y is a surjective
map. Define C¥ ¢ LY by

CY ={BelL¥ | f~(B)eC*}.
Then (Y,CY) is called a quotient space of (X,C¥) and f is called a quotient map.

Since LConvex is topological over Set, there are the product spaces and the subspaces
of L-convex spaces in LConvex. Next, we recall the concepts of product spaces and
subspaces of L-convex spaces.

Definition 2.9 ([23]). Let {(X,C**)}ea be a family of L-convex spaces, {py : e Xu
— X }aca be a family of projection maps. The L-convex structure [Tyep C** on [Tyea X
generated by the subbase Ujep p) (CX*), is called the product structure, the pair

(TTxen X, [Thep CX2) is called the product space of {(Xy,C%¥*)}rea-

Proposition 2.10 ([23]). Suppose that A is a finite index set. Let {(Xx,C**) | Ae A} be
a family of L-convex spaces. Then its product L-convex structure is defined by

[Tc ={TICr| ¥ AeA, Crec®).
AeA AeA

Definition 2.11 ([40]). Let (X,C) be an L-convex space and Y ¢ X. The pair (Y,Cly)
is called a subspace of (X,C).

Concavity is dual to convexity. In a natural way, the concept of L-concave spaces can
be defined as follows.

Definition 2.12 ([17]). A subset C of L¥ is called an L-concave structure on X if it
satisfies

(LCA1) 1x,Tx €C;
(LCA2) {Ax}rea €C implies Vyep Ay € C, where A # @;
(LCA3) If {A}}jesc C is nonempty and co-directed, then Ajc; A; €C.

For an L-concave structure C on X, the pair (X,C) is called an L-concave space.

A map f: (X,C*) — (Y,CY) between two L-concave spaces is called L-concavity-
preserving provided that f<(B) e CX for each B eCY.

It is easy to check that L-concave spaces and their L-concavity-preserving maps form a
category, denoted by LConcave.

When L is a complete MV-algebra, L-convex structures and L-concave structures are
dual. So LConvex and LConcave are isomorphic in a categorical sense when L is a
complete MV-algebra. Hence, we will not distinguish them when it comes to categorical
properties in the sequel.
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3. Categorical properties of L-convex spaces

In this section, we will discuss the categorical properties of LConvex, including ex-
tensionality and productivity of quotients maps. We first recall the concept of partial
morphisms in a topological category.

In a topological category C, a partial morphism from X to Y is a C-morphism f: 27 —
Y whose domain is a subobject of X.

Definition 3.1 ([24]). A topological category C is called extensional if every C-object X
has a one-point extension X, in the sense that every C-object X can be embedded via
the addition of a single point oo into a C-object X such that for every partial morphism
f:Z— X fromY to X , the map f:Y — X defined by

Fp) = f(x), if xeZ,
f(z) {oo, ifxd¢Z

is a C-morphism.

It is well known that if a category is extensional, then quotient maps in this category are
hereditary. Next, we will show quotient maps in LConvex are not necessarily hereditary
via the following example.

Example 3.2. Let X = {a,b,c,d}, Y = {a,b,c}, L = {1,T}, cX = {ix,T{a7c},T{b7d},Tx}
and C¥ = {1y, Ty}. Then (X,C¥) and (Y,C") are L-convex spaces. Define f: X — Y
by
a, if r=a,
f(z)=1b, ifx=b,
¢, if x=c,d.
Then f is a surjective map and D € CY if and only if f<(D) e C¥X for each D e LY. So f
is a quotient map.
Let A= B = {a,b} and let (A,C%|4) and (B,CY|B) be the subspaces of (X,C¥) and
(Y,CY), respectively. Then C¥|4 = {14, T{a}, Tpy, Ta} and CY|g ={1B,Tp}. The restric-
tion of f on A, denoted by f|4: A — B, is defined by

fla(z) ={

a, if r=a,
b, if x=>b.
Take Ty € LB. Then it is easy to check that fla(Tqay) = Tay € CX|4 and T{a} ¢ cYlp.
This shows that f|4: (A4,C%|4) — (B,CY|p) is not a quotient map.

By Example 3.2, we can obtain the following proposition.
Proposition 3.3. In LConvex quotient maps are not hereditary.

Since quotient maps in an extensional category must be hereditary, we have
Theorem 3.4. The category LConvex is not extensional.

In the following, we will go on exploring the productivity of quotient maps in LConvex.
The following theorem illustrates that LConvex is closed under the formation of finite
products of quotient maps.

Theorem 3.5. Suppose that A is a finite index set. Let {(Xx,C**) | X e A} be a family
of L-convex spaces. If {fx : (Xx,C**) — (Y3,C¥) }ren is a family of quotient maps in
LConvex, then the product map

[TA:(TTXTT¢) — (T T1e™)

AeA AeA AeA AeA AeA
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s a quotient map in LConvex.

Proof. Define
f= 1A (0% =TT X0 [1eM), (vie") = (T T1C™).

AeA AeA AeA AeA AeA
Let
(x.c¥) —L—— v.e”)
Px ax
(X, C*N) — (Y),C™)

be the product communication diagram with respect to sets. Since {fy : (X),C*) —
Y1, C¥)}aen is a family of quotient maps in LConvex, for each By € L¥*, we have
y

By €C™ < fi(B)) e C**.
Let CY be the quotient structure of (X, CX) with respect to f. Then
cY ={BeLY | f(B)eCc*).

It suffices to verify that CY =CY .
On the one hand, take any B € LY. Then

BeC¥ <« 3IB),eC™ for each A€ A, s.t.B:HBA

AeA
<« 3 B, eC™ for each A€ A, s.t. f(B) = ( H f)\)e( H BA) = H I (By)
AeA AeA AeA
= 3 ByeC™ foreach Ae A, st. f(B)=[]fr(By)e[[Cc*=C¥.
AeA AeA

This shows that C¥ cCY .
On the other hand, take any B e LY. Then

BeCY «— f=(B)eC¥

<> 3 A, eC™ foreach Ae A, s.t. f7(B) =[] Ax
AeA

— 3 A, € C** for each AeA, s.t. B:f”(HA,\) = (Hf,\)_)(HA,\) =Hf;(AA)

— 3 A,eC® foreach Ae A, st. f7(B) = ( I1 f,\)e( I1 f;(AA)) = Hf;(f;(Ak))-

AeA AeA
This implies that
FoB) =TA4x =TI (N (A)).
AeA AeA
Then it follows that fy (fy (Ax)) = Ay € C** for each A € A. Since f) : (X,C**) —
(Y),C*) is a quotient map, we have f;"(Ay) € C**. This implies that B = [Tyea f1 (Ax) €
CY. By the arbitrariness of B, we have C} cCY. g

Extensionality is an important categorical property. Regretly, LConvex is not exten-
sional. This motivates us to find an extensional structure that is closely related to L-convex
or L-concave structures. Inspired by L-filter convergence structures in L-topological spaces
[12], we will consider convergence structures in L-convex spaces or L-concave spaces. To
this end, we need to determine the filter analogues as the tools to define a convergence
structure in an L-convex or L-concave space, which is exactly the L-co-Scott closed sets
in the following section.



The categories of L-convex spaces and L-convergence spaces 1263

4. L-convergence space and its relationship with L-concave space

In this section, we will first propose L-co-Scott closed sets and study its basic properties.
Then we will use L-co-Scott closed sets to define L-convergence structures and study their
relationship with L-concave structures.

Note that many results in this section parallel to that in [8], where L-convergence
structures were defined via L-ordered co-Scott closed sets. So we only give some necessary
proofs herein.

4.1. L-co-Scott closed sets

In this subsection, we will focus on L-co-Scott closed sets on L¥.

Definition 4.1. A map F : LX — L is called an L-co-Scott closed set on L if it satisfies

(LCSC1) F(Tx)=T;
(LCSC2) S(A,B) * F(A) < F(B) for each A, B e LX;
(LCSC3) Ajes F(Aj) < F(Ajes Aj) for each {Aj}jEJ(_:CdiTLX_

Remark 4.2.

(1) If L ={1,T}, then an L-co-Scott closed set on LX reduces to a co-Scott closed set
on the powerset of X in the classical case [9].

(2) An L-co-Scott closed set F is called stratified if it further satisfies (LCSCs): a *
F(A) < F(ax A) for each aw € L and A € C; an L-co-Scott closed set F is called
co-stratified if it further satisfies (LCSCcs): a@ > F(A) < F(aw - A) for each v e L
and A € C. Hence, an L-co-Scott closed set in Definition 4.1 is a little different from
an L-ordered co-Scott closed set in [8] by relaxing the stratified and co-stratified
conditions with respect to * and - on L.

Let Cr,(X) denote all L-co-Scott closed sets on LX. For an L-co-Scott closed set F on
LX, the pair (X, F) is called an L-co-Scott closed set space. An order on Cr,(X) can be
defined by F < G if and only if F(A) < G(A) for each A e L.

Example 4.3. Let X be a nonempty set.

(1) Define a map [z]: X — L by [2](A) = A(z) for each A € LX and x € X. Then
[:E] € CL(X)

(2) Let f: X — Y be a map and F € C;(X). Then the map f=(F): LY — L
defined by f=(F)(B) = F(f(B)) for each B € LY, is an L-co-Scott closed set,
which is called the image of F under f in [11].

(3) For a family of L-co-Scott closed sets {Fx}ren € Cr(X), define Ayep Fy: LY — L
by

VAeLX,(AA)(A):A/\AfA(A).

Obviously, /\)\QA]:)\ € CL(X)

Proposition 4.4. Suppose that L is join continuous. Let F,G be two L-co-Scott closed
sets on L. Define FvG: LX — L by (FVG)(A) = F(A)vG(A) for each Ae LX. Then
F VG is the supremum of F and G in Cr(X).

Proof. By the definition of F v G, we only need to verify that F v G satisfies (LCSC1)—
(LCSC3). (LCSC1) and (LCSC2) are straightforward, so we prove (LCSC3).
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For (LCSC3), take any {Aj}ngngiTLX. Then

AFVIA) = A (F(A)vGAy))

jed jeJ
JARAN (T(Ajl) v Q(Ajg)) (by the co-directedness of {A;};es)
Jied jaed

= /\ }—(Ajl)v /\ g(Aj2)

J1edJ joed

P 42)v9( A 4)

JieJ JaeJ

= (fvg)( A Aj)-

jeJ

IN

IN

]
Proposition 4.5. Let f: X — Y be a map and G € C,(Y). Define f<(G): LX — L by
VALY, fT(G)(A)= V G(B).

f<=(B)<A
Then f<(G) eCr(X).
Proof. Adopting the proof of Proposition 3.4 in [8]. O
The L-co-Scott closed set f<(G) is called the inverse image of G under f.
Proposition 4.6. Let (X,C) be an L-concave space. Define N : LX — L by

VAe LY, N3(A)= \/ B(x).
BeC,B<A

Then NF € Cr(X).
Proof. Adopting the proof of Proposition 3.5 in [8]. O

By Proposition 4.6, we have A € C if and only if N7(A) = A(z) for each z € X. For an
L-concave space (X,C), define Ne:LX — LX by

Ne(A) () = NE(A)
for each A e LX and x € X. Then we have
Lemma 4.7. Let (X,C) be an L-concave space and x € X. Then
NE(A) = NE(Ne(4))
for each A e LX.
Proof. Adopting the proof of Lemma 4.10 in [8]. O

Proposition 4.8. Let f: X — Y be a map, Fe€Cr(X) and GeCr(Y). Then
(1) f<(f7(F)) <F. If f is injective, then f<(f7(F)) =F;
(2) G f7(f(G)). If f is surjective, then G = f~(f(G)).

Proof. (1) Take any A € L*. Then
F=UFNA)

V7 (F)B)

f<(B)<A

V  F(f(B)
f<(B)<A
F(A).

IA
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This shows that f<(f7(F)) < F. If f is injective, then A = f(f7(A)). This implies
that F < f=(f7(F)).
(2) Take any B € LX. Then

f7U=@)B) = f7(G)((B))
= Vo 60
f(C)<f=(B)
> G(B).
This shows that G < f=(f<(G)). If f is surjective, then C' = f~(f(C)) < f~(f(B)) =
B. This implies that f~(f<(G)) <G. O

Remark 4.9. By Proposition 4.8, we know (f<,f7) : CL(Y) — Cr(X) is a Galois
correspondence between Cr,(Y') and Cr(X). Moreover, f< is the left adjoint and f~ is
the right adjoint.

Definition 4.10. A map f: (X,F) — (Y,G) between L-co-Scott closed set spaces is
called continuous if f<(G) < F.

It is easy to check that L-co-Scott closed set spaces and their continuous maps form a
category, denoted by LCSC.

For F € Cr(X) and G € C1(Y'), by Propositions 4.4 and 4.5, we can obtain an L-co-Scott
closed set F x G on LX*Y in the following way:

FxG=px(F)vpy(9),
where px : X xY — X and py : X xY — Y are the projection maps.

Definition 4.11. Suppose that L is join continuous. For F € C1(X) and G € C1(Y), FxG
is called the product of F and G.

Definition 4.12. For two L-co-Scott closed sets F and G on LX , (X,G) is called coarser
than (X,F) if idx : (X, F) — (X,G) is continuous.

It is easy to verify that (X x Y, F x G) is the coarsest L-co-Scott closed set space on
LXY such that py : (X xY,FxG) — (X,F) and py : (X xY,F xG) — (Y,G) are
continuous. The next proposition shows that (X x Y, F x G) is exactly the product object
in the category LCSC.

Proposition 4.13. Suppose that L is join continuous. Let (X,F), (Y,G) be two L-co-
Scott closed set spaces. Then the pair (X x Y, F x G) is the product object of (X,F) and
(Y,G) in LCSC.

Proof. 1t suffices to verify that for each L-co-Scott closed set space (Z,H) and two con-
tinuous maps f : (Z,H) — (X,F) and g : (Z,H) — (Y,G), there exists a unique
continuous map h : (Z,H) — (X xY,F x G) such that py oh = f and py oh = g. Let
h = fxg, where (f xg)(2) = (f(2),9(2)) for each z € Z. By Definition 4.10, we need to
show h=(F xG) <H.

Since f<(F) <H and g=(G) < H, we have

K(FxG) = h™(px(F)vpy(9))

h=(px (F))vh=(py (G)) (by Remark 4.9)
(px o h)=(F) v (py o h)™(G)
FT(F)vg™(9)
< H.

This shows that h=(F x G) < H, as desired. O
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Adopting Definition 4.11, the product of arbitrary finite L-co-Scott closed sets can be
defined.

Definition 4.14. Suppose that A is a finite index set and L is join continuous. Let
{Xx}aea be a family of nonempty sets, px : [I,en Xy —> X be the projection maps,
Fr € Cp(Xy) (A € A). Then [Tyean Fa = VaeaDy (Fa) is an L-co-Scott closed set on
LMxea X3 which is called the product of {Fy}ea.

Proposition 4.15. Suppose that A is a finite index set and L is join continuous. Let
{Xo}aen be a family of nonempty sets, px : Tlen Xy — X be the projection maps,
FreCr(Xy) (NeA) and F € C(ITxen Xr). Then the following statements hold:

(1) Thheapy (F) < F;

(2) Fu<py (Txea F):

(3) P (IThea PX (F)) =) (F).

Proof. By Proposition 4.8 and Remark 4.9, it is straightforward and is omitted. (|

4.2. L-convergence spaces

In this subsection, adopting the approach in [8], we will use L-co-Scott closed sets
instead of L-ordered co-Scott closed sets to define L-convergence structures.

Definition 4.16. A map lim : C;,(X) — L~ is called an L-convergence structure on X
if it satisfies

(LCS1) Vz e X, lim[z](x) = T;

(LCS2) S(F,G) *limF(x) <limG(x) for each F,G € Cr(X).
For an L-convergence structure lim on X, the pair (X,lim) is called an L-convergence
space.

A map f: (X, lim*™ ) —(Y, limY) between two L-convergence spaces is called continu-
ous provided that lim® F(z) < lim* f=(F)(f(z)) for each F ¢ Cr(X) and z € X.

It is easy to check that L-convergence spaces and their continuous maps form a category,
denoted by LCS.

Theorem 4.17. The category LCS s a topological category over Set.

Proof. We only note that for a set X, the initial structure im™ on X with respect to a
class {(Xy, im™*)}yea of L-convergence spaces and a family {fy : X — X }rea of maps,
is determined by
lim® F(2) = A Iim™ f7 (F) (fa(2))
AeA
for each F € Cr(X) and x € X. O

Remark 4.18. For a set X, the final structure im* on X with respect to a class
{(X,lim* )} ca of L-convergence spaces and a family {fy : Xy — X}ea of maps,
is determined by

. T, if F>[z],
lim* F(z) = vV V Vo lm®™Fy(x)), otherwise
AeA fa(zx)=z [T (FA)<F
for each F € Cp(X) and x € X. In particular, the definition of quotient maps is available
in LCS. Concretely, let f: X — Y be a surjective map with (X,lim™) € [LCS|. If the
structure lim* on Y is final with respect to f : (X, lim*X ) — Y in the sense that

im G(y)= \V/ V lim*F(x)
F(@)=y [~ (F)<g
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for each G € C1,(Y) and y € Y, then the map f : (X,1im”) — (¥, lim") is called a quotient
map.

Since LCS is topological over Set, there are the product and subspace of L-convergence
spaces in LCS. We now introduce the concepts of the product and subspace of L-
convergence spaces.

Definition 4.19. Let {(X),lim**)} . be a family of L-convergence spaces and {py :
[T, Xy — Xx}aea be the source formed by the family of the projection maps {px}aea-
The initial structure with respect to {py : Myer Xy — X }aen is called the product of
{lim** } yea, denoted by [Tyealim™. The pair ([Tyepa X, [Trealim™*) is called the product
space of {(Xy,lim**)}yea. Hence, for each F € Cp([Txea X)) and z € [Tyep X, we have

([T1m™)F (@) = A ™ py (F) (pa(@)).
AeA AeA
Definition 4.20. Let (X,lim™) be an L-convergence space, Y ¢ X and iy : Y — X
be the source. The initial structure with respect to iy : Y — X is called the subspace
convergence structure, denoted by lim* |y. The pair (Y,1im™ |y) is called the subspace of
(X, lim™ ). Hence, we have

m™ |y F(y) = lim™ iy (F)(y).

In an L-convergence space (X,lim), a special L-co-Scott closed set can be defined in
the following way.

xT

Proposition 4.21. Let (X,lim) be an L-convergence space and x € X. Define

LX — L by "
(A= A (lmF(2) > F(4))
FeCr(X)
for each Ae LX. Then Nif_ eCr(X).
Proof. 1t is straightforward and is omitted. O

Definition 4.22. An L-convergence space (X,lim) is called preconcave if it satisfies
(Lep) limF(z) = SN, F)

for each F e Cr(X) and z € X.

Lemma 4.23. Let F €Cr(X) and a€ L. Then o > F € Cr(X).

Proof. 1t is straightforward and is omitted. O

For an L-convergence space (X, lim), we consider the following axioms:
(Len) For each z € X, im N (2) = T;
(Leq) For each {F}jes € CL(X), Ajes lim Fj =lim(Ajes Fj) and lim(a > F) = o -
lim F.

Proposition 4.24. Let (X,lim) be an L-convergence space. Then (Len) <= (Lcp) <—
(Lcq).

Proof. Adopting the proof of Proposition 4.6 in [8].

For an L-convergence space (X,lim), define My, : LX — LX by
Nim (A4)(2) = N (4)

for each A € LX and z € X. Then we have
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Proposition 4.25. Let (X,lim) be an L-convergence space and x € X. Then Nif oMin €
Cr(X).

Proof. Adopting the proof of Proposition 4.7 in [8]. O

Definition 4.26. A preconcave L-convergence space (X, lim) is called concave if it satisfies
(LCt) hm = '/\[hm °© 'A[llm

The full subcategory of LCS consisting of concave L-convergence spaces is denoted by
CLCS.

Theorem 4.27. CLCS is isomorphic to LConcave.
Proof. Adopting the proof of Propositions 4.9, 4.12, 4.13 and 4.15 in [8]. O

Remark 4.28. In [8], the authors showed concave L-convergence spaces via L-ordered
co-Scott closed sets are categorically isomorphic to strong L-concave spaces. Herein, we
relax L-ordered co-Scott closed sets and strong L-concave spaces. Then we obtain the iso-
morphism between concave L-convergence space via L-co-Scott closed sets and L-concave
spaces. Since most of the proofs can be adopted from the corresponding ones in [8], we
only presented some necessary proofs in this subsection.

5. Categorical properties of L-convergence spaces

In this section, we will discuss the categorical properties of LCS, including extension-
ality and productivity of quotients maps.

Firstly, let us explore the extensionality of the category of L-convergence spaces.

For convenience, let (X,1im”) be an L-convergence space, X = X U {co} with oo ¢ X
and ix : X — X denote the inclusion map.

Proposition 5.1. Let (X,1im™) be an L-convergence space. Define lim~ :Cr(X) — X
by
V FeCr(X),¥ zeX, lim™F(z) = lim™ i (F)(z) v T (o0} ().

Then (X, limf) is an L-convergence space.

Proof. Tt suffices to verify that im™ satisfies (LCS1) and (LCS2).

For (LCS1), if # = oo, then limy[oo](oo) =T. If z € X, then i ([z]) = [z] and
lim*[z](z) = T. So limy[x](x) =T.

For (LCS2), take any F,G € Cr(X). If & = oo, then the conclusion holds. If z € X, then

S(F, Q) »lim~F(z) = S(F,G)*lim™ig(F)(x)

< S(IX(F),ix(9)) * im™ i (F)(2)
< hmfz}?(g)(x)
= lim*G(z).

Theorem 5.2. The category LCS is extensional.

Proof. Let (X, lim* ) be an L-convergence space. By Proposition 5.1, we obtain an
L-convergence structure lim* on X. It suffices to show that (X, lim~ ) is a one-point
extension of (X,1im™).

Firstly, we show that (X,lim*) is a subspace of (X, limy), that is, lim~ = limyl X-
Take any F € Cr,(X) and x € X. Since i (i3 (F)) = F, we have

im ¥ |y F(2) = im~ i3 (F)(z) = im*i$(6% (F))(2) = im~ F(z).
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Next, let (Y,lim"") be an L-convergence space, (Z,1im?) be a subspace of (V,lim?") and
f:(Z,1im?) — (X,1im*) be continuous. For the inclusion map iy : Z — Y and the
extensional map f:Y — X of f defined by f(y) = f(y) for each y € Z, and f(y) = oo
otherwise, there exists a commutative diagram in the category Set of sets as follows:

z—L o x

iz ‘/iX

Y — X
In order to prove f : (V,lim¥) — (X, limY) is continuous, it suffices to verify that
limY G(y) < limyf:'(g)(f(y)) for each G € C,(Y) and y € Y. Now we divide into two
cases:
Case 1: Z(y) =00, i.e., yeY/Z;
Case 2: f(y) # o0, i.e,yeZ.

For case 1, by the definition of lim~, we have limY G(y) < limyfﬁ(g)(f(y)).
For case 2, take any B € LY and z € X. Then

[~z (B))(2)

V iz (B)(2)
f()=a

B(2)
f(z)=a

=V B()

F(y)=x
= ix(f(B)().
It follows that f~ (i (B)) = i%(f (B)). Take any A € LX. Then
737 (G))(4) iz (9)(f7(4))
V  46(B)

iy (B)<f<(A)

= \/ G(B)

f=(iz(B))<A

= \/  G(B)

ix(J7(B))<A

V' G(f (D))

ig(D)<A

i (F7(9)(A).

This shows that [~ (i3 (G)) < Z§(7j(g)) Then by G <i7 (i5 (G)), we have
lim" G(y) lim"i7 (i (G))(y)

lim”i (G)(y)

lim™ £ (i7 () (f(v))

< 1imfi§(?:(g))(f(y))

= m* 7 (G)(F(v)).

Hence, we obtain that f: (V,lim") — (X, limy) is continuous. O

IN

IA

IA
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Next, we will show that finite products of quotients maps are quotient maps in LCS.
To this end, we first give an important property of L-co-Scott closed sets.

Lemma 5.3. Suppose that A is a finite index set and L is join continuous. Let {fy :
X\ — Y }aea be a family of surjective maps and {Fx}xen be a family of L-co-Scott closed
sets with Fy € Cp.(Xy) for each A e A. Then

( [I fx)ﬁ( I1 -7:>\) = [T/ (F).

AeA AeA AeA

Proof. Let
T X, [Txea /2 I Ys
AeA AeA

S
X o Y)

be the product commutation diagram with respect to sets, where p, and ¢, denote the
corresponding projective maps.

MY
On the one hand, take any B € LY and A e L " such that q) (B) < A. Then

(TI4) Gxa@m)) = (T1H) (frep) (B)

AeA AeA

(AI;Ifo)ﬁ((QA ° /\l;[\f,\)e(B))
(T14) o (I1H) @ @)

AeA AeA
= o\ (B)
< A
It follows that
VAN (B)) < V Fa(C).
a5 (B)<A (ITaea £2)7 (5 (C))<A
On the other hand, assume ([Tyep f2)” (P (C)) < A. Take any y € Y. Then
o (INE@NW) = KN(O)(aa(y)
= Vo Cx)
Ix(@a)=ax(y)
= V o e (O)(z)
(Taea fr)(2)=y
(since {fy: X\ — Y)}rea are surjective maps)
= (I1H) Gr (@)
AeA
This implies that g3 (3 (C)) = (ITxea 1)~ (p5 (C)). Then
FAC) = V  A()
(Ixea S~ (5 (C))=A a5 (fy(C))<A
<V AUTB).
g5 (B)<A

So

O =V A(B).
(Maea £2)7 (25 (€))<A a5 (B)<A
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Take any A € LIIxeaYx Then

(IT fx):'( [17)(4)

AeA AeA

(I#)(I5) )
(Vor@E)(I4 ) (@)
- \/pT(ﬂ)(( f) (4))

AeA

=V \/ FA(C)

AeA p5 (C)<(TTxea 1)~ (A)

=V V FA(0)

ASA (TTxea /)~ (p5(C))<A

=V V. AUNB)

AeA gy (B)<A

=V V SFE)B)

XeA g (B)<A

= Vo (TR

AeA

= [T/ ENA).

AeA

This implies that

(I14) (I1#) -1 @,

AeA AeA AeA
O

Theorem 5.4. Suppose that A is a finite index set and L is a completely distributive
lattice. If {f: (XA,limX*) — (YA,limYA)})\EA is a family of quotient maps in LCS, then
the product map

[T/ (ITX [Tim™ ) — (] va, [Ttim™)

AeA AeA AeA AeA AeA
is a quotient map in LCS.

Proof. Define
fi= T A (Xm ™) = (T X, [T 1im™), (v,lim") = ([T va, [T tim™).
AeA AeA AeA AeA AeA

Let

(X, lim*) —L 5 (v, limY)

(X, lim™*) — (Yy, lim™)
A

be the product communication diagram with respect to sets. Since {fy : (X A,limX*) —
(Y, im™ )} yea is a family of quotient maps in LCS, for each Hy € Cr(Yy) and yy € Y,
we have

™ Ho () = \V/ \V lim™ Fy ().
Ia(@a)=yx 5 (Fa)<sHA

Suppose that lim! is the quotient structure with respect to f. Then

imHy) =V V lim*G(z).
F(@)=y f=(9)<H
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It suffices to verify that lim) =lim" .
On the one hand, for each G € C(X),H € Cr(Y) with f7(G) <H and for each y e Y
with f(x) =y, since fyopy=qyo f, we have
I opX (G) =ax o f7(G) <qx (H)
and
fropa(z) =qno f(z) = qr(y)
for each A\ € A. It follows from the continuity of f) o py that

Hm™*G(x) <lm™ (fr0pa)7(G)(fropa(z)) <Hm™ g5 (H) (e ().

Hence, we have

im!H(y)= \V V  lm¥G(z) <lim™ g7 (H)(ar(y))
@)=y 1= (G)<H

for each A € A. This implies that lim¥ #(y) < Axea lim™ g5 (H)(gr(y)) = lim¥ H(y).
On the other hand, let

Ga={GreCL(X) | 17 (G0 a5 (W)

for each \ € A and let

HG)\={gIA—>UG)\|V)\GA,g()\)EG,\}

AeA
be the set of choice functions. Then

VAeA, 3GreCL(Xy), st f[Y(Gr) <ay (H) <=3 ge [[ Gy, st. ¥ Xe A, [T (g(N) <qy (H).
AeA

Furthermore, we have

[T/ () < [Tay (H) <A,

AeA AeA
which implies
= (TTeM) = (T14) (ITeW) =TT £ (V) < H.
AeA AeA AeA AeA
Let
Hy={zxe Xy | fa(za) =arn(y)}
for each X\ € A and let
[[Hx= {h A —[JHN |V AeA, fi(h(N)) = (D\(y)}
AeA

be the set of choice functions. Then

VAeA, FayeXy, st fis(@y) =qa(y) <= 3T he [[ Hy, st. VXeA, fr(h(N)) =ax(y).
AeA

Furthermore, we have

F(ODser) = (TTH)((AOOa) = (ARG = (), =v.

AeA
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Then for each H € Cr(Y) and y € Y, we have

lim" 4 (y) A/\A Hm™ g3 (H) (ar(y))

= ANV V Hm™** G, ()

AeA fa(zx)=gr(y) £ (GA)<qy (H)

-V A \/ Hm™** Gy (h(N))

hE)\I—IA Hy AeA f7(Gx)<ay (H)

= V.V Alm™g(W)(h((N)
he T Hy ge TT G AeA
XeA XeA

he I1 H geAI;\[f(G)\ Q\thAp?( E\Q(A))(p,\( /\I}\h()\)))

=V m™([Te)(TTrW)
he)\I;[A H)y ge)\]![A Gx AeA AeA

VoV lim¥G(2)
f(@)=y f=(G)<H
= lim} H(y)

IA

IA

This shows that lim¥ H(y) < limY H(y). As a consequence, we obtain lim? = lim} . O

6. Conclusions

In this paper, we first studied that the categorical properties of L-convex spaces and its
corresponding convergence spaces and showed that: (i) the category of L-convex spaces is
not extensional and is closed under the formation of finite products of quotient maps; (ii)
the category of concave L-convergence spaces is isomorphic to that of L-concave spaces;
(iii) the category of L-convergence spaces is extensional and closed under the formation
of finite products of quotient maps.

Next we list some of our future work related to this paper.

(1) Whether the conclusion of Theorems 3.5 and 5.4 can be extended to the case of
infinite product.

(2) It is well known that Cartesian closedness is an important categorical property.
We will consider the Cartesian closedness of the category of L-convergence spaces.

(3) Introducing the concept of L-co-Scott closed set spaces, considering its categorical
properties and establishing its categorical relationship with L-convergence spaces.
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