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Abstract

In this paper, the Cauchy problem for variable-order fractional differential equations incorporating
the Mittag-Leffler kernel is explored. The variable-order derivative is modeled as a bounded function
that adapts to the underlying dynamics of the system. The existence of a solution by utilizing a fixed-
point theorem along with an iterative series that converges to the precise solution is established. The
uniqueness of the solution is guaranteed by enforcing conditions like generalized Lipschitz continuity
and linear growth conditions. This study contributes to the broader understanding of fractional
calculus and its applications in complex systems where classical models are insufficient.
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1 Introduction

Differential equations formulated using variable-order derivatives have recently attracted sig-
nificant interest from researchers due to their ability to more accurately understand and model
complex phenomena in fields such as physics, chemistry, engineering, biology, and economics.
Contrary to constant-order derivatives, mathematical models created using variable-order deriva-
tives have more clearly demonstrated memory effects or characteristics [1–4]. Variable-order
derivatives allow for a more practical modeling approach that can better capture complex phenom-
ena that exhibit memory effects or time-dependent behavior. Unlike constant-order derivatives,
variable-order derivatives based on the changing nature of the system, offering a more realistic
description of systems where the memory effect varies over time. For example, Patnaik et al.
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(2020) discuss how variable-order fractional operators realistic the modeling of complex physical
phenomena that cannot be adequately described by constant-order models [5].

Studies on fractional-order derivatives began in the 17th century with the work of Leibniz and were
later developed by Liouville and Riemann. This marked the rise of fractional calculus. Research in
this area has become a powerful mathematical tool for modeling processes with memory effects.
We know that factional calculus lies in the use of local and nonlocal operators. Local operators,
such as integer-order derivatives, do not take into account for past states of a system, whereas
nonlocal operators, including fractional derivatives, include memory effects, making them more
realistic for describing processes [6–10]. This can be presented as the motivation for studying
fractional-order derivatives.

One of the most commonly utilized functions in the analysis of fractional-order differential
equations is the Mittag-Leffler function, a generalization of the exponential function. The Mittag-
Leffler function is essential for solving fractional differential equations and plays a role similar
to that of the exponential function used in solving integer-order equations. In past years, the
Mittag-Leffler kernel with variable-order derivatives have been incorporated into the work of
many researchers, and the results obtained have made a significant contribution to the literature
[9–14].

Studying differential equations with variable-order derivatives and Mittag-Leffler kernels through
the Cauchy problem have proven beneficial for understanding many issues. It is possible to extend
the classical Cauchy problem, which specifies initial conditions for an unknown function and its
derivatives, to fractional and variable-order derivatives. Thanks to this generalization, researchers
interested in fractional order differential equations can study the dynamic properties of systems in
more detail. This approach allows for more accurate modeling of real-world problems. At the
same time, this approach based on the Cauchy problem not only investigates the fundamental
properties of equation solutions but also provides a systematic approach to the numerical solutions
of these systems. So this study presents a different way for examining existence and uniqueness
conditions within this context, supported with numerical examples.

We now provide a brief summary of fractional integrals and derivatives with Mittag-Leffler kernels
[11] in this subsection.

Several definitions of Mittag-Leffler operator

Definition 1 Let h ∈ H1(c, d), α ∈ (0, 1) then the Atangana-Baleanu derivative in the Caputo sense is
defined as follows:

ABC
c Dα

s h (s) =
AB(α)
1 − α

s∫
c

h
′
(τ)Eα

[
−α

(s − τ)α

1 − α

]
dτ, (1)

where ABC
c Dα

s is fractional operator with Mittag-Leffler kernel in the Caputo sense with order α with respect
to s and

AB(α) = 1 − α +
α

Γ(α)
, (2)

is a normalization function where

AB(0) = AB(1) = 1. (3)
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Definition 2 Let h ∈ H1(c, d), α ∈ (0, 1) and not differentiable then, the Atangana-Baleanu derivative
in the Riemann-Liouville sense is defined as follows:

ABR
c Dα

s h (s) =
B(α)
1 − α

d
ds

s∫
c

h(τ)Eα

[
−α

(s − τ)α

1 − α

]
dτ, (4)

where Mittag-Leffler operator defined as below:

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
. (5)

The related fractional integral is given by:

AB
c Iα

s h(s) =
1 − α

AB(α)
h(s) +

α

Γ(α)AB(α)

s∫
c

h(τ)(s − τ)α−1dτ. (6)

2 Existence and uniqueness in Cauchy Problems for variable-order derivatives with
Mittag-Leffler kernels

In this section by replacing the fractional order in derivatives and integrals with a bounded
function, we will consider our Cauchy problem via variable-order fractional derivatives and
integrals. Similar results were also developed in [15] by Atangana and Koca. Consequently, we
examine the Cauchy problems for a variable-order derivative with a Mittag-Leffler kernel as
follows: { ABC

0 Dα(t)u(t) = f (t, u(t)),
u(0) = u0.

(7)

Now applying the Atangana-Baleanu integral, this implies,

u(t) =
1 − α(t)

AB(α(t))
f (t, u(t)) +

α(t)
Γ(α(t))AB(α(t))

t∫
t0

f (τ, u(τ))(t − τ)α(τ)−1dτ. (8)

To facilitate application in physical models, the order function is usually restricted such that
0 < α (t) ≤ 1. In this paper, we examine α (t) over two subintervals, where

m = min {α (t) , t ∈ I} ,

and

M = max {α (t) , t ∈ I} ,

where the minimum and maximum value of order function α (t) over interval I, respectively. In
this work also we defined the following norm
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∥u∥∞ = sup
t∈Dy

|u(t)| . (9)

Let us give now sufficient conditions for which the Cauchy problems for variable-order fractional
derivative with power kernel has a unique equation if the nonlinear function f (t, u(t)) satisfies
the following conditions [16, 17].

1) ∀t ∈ [0, T], the function α (t) is a differentiable and bounded nonzero and non-constant functions
and

0 < m < α (t) < M ≤ 1.

2) ∀t ∈ [0, T], α′ (t) ̸= 0.

3) f (t, u(t)) is a nonlinear function and twice differentiable and bounded.

4) | f (t, u(t))|2 < G
(

1 + |u|2
)

(Linear Growth Condition).

5) | f (t, u1(t))− f (t, u2(t))|
2 < G |u1 − u2|

2 (Lipschitz Condition).

Then the Cauchy problem has a unique solution in L2([t0, T], R). Now we give the proof of
existence and uniqueness of the solution of the Cauchy problem for global derivative with Mittag-
Leffler kernel.

We would like to note that we will consider the following equation to help readers better under-
stand the proofs later on. Let us define

Iα(t)
t =

(T − t0)
2α(t)−1

Γ2(α(t)) (2α(t)− 1)
, (10)

IM
t =

(T − t0)
2M−1

Γ2(M) (2M − 1)
. (11)

∀l ≥ 1, we define the following sequence:

ul(t) =
1 − α(t)

AB(α(t))
f (t, ul(t)) +

α(t)
Γ(α(t))AB(α(t))

t∫
t0

f (τ, ul(τ))(t − τ)α(τ)−1dτ, (12)

and

|ul(t)|
2 ≤ 2

∣∣∣∣ 1 − α(t)
AB(α(t))

f (t, ul(t))
∣∣∣∣2 (13)

+ 2

∣∣∣∣∣∣∣
α(t)

Γ(α(t))AB(α(t))

t∫
t0

f (τ, ul(τ))(t − τ)α(τ)−1dτ

∣∣∣∣∣∣∣
2

.

We remember that ∀t ∈ [0, T], the function α (t) is a differentiable and bounded nonzero and
non-constant function and

0 < m < α (t) < M ≤ 1.



68 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 5, 64–78

So we can rewrite the inequality as below:

|ul(t)|
2 ≤ 2

∣∣∣∣ 1 − M
AB(M)

f (t, ul(t))
∣∣∣∣2 + 2

∣∣∣∣∣∣∣
M

Γ(M)AB(M)

t∫
t0

f (τ, ul(τ))(t − τ)M−1dτ

∣∣∣∣∣∣∣
2

.

Leveraging the linear growth assumption in conjunction with Hölder’s inequality, which provides
a powerful tool for estimating integrals and controlling the growth of functions, we derive the
following result. The advantages of Hölder’s inequality, particularly its ability to handle non-linear
terms effectively, play a crucial role in our analysis. So by applying the linear growth assumption
and Hölder’s inequality, we obtain

|ul(t)|
2 ≤ 2G

(
1 + |ul(t)|

2
)( 1 − M

AB(M)

)2
(14)

+ 2G
M

AB(M)Γ(M)
IM
t

t∫
t0

(
1 + |ul(τ)|

2
)

dτ,

max
t0≤k≤t

|ul(k)|
2 ≤ 2G

(
1 + max

t0≤k≤t
|ul(k)|

2
)(

1 − M
AB(M)

)2
(15)

+ 2G
M

AB(M)Γ(M)
IM
t

t∫
t0

(
1 + max

t0≤r≤τ
|ul(r)|

2
)

dτ.

By taking the expectation, we obtain

E
(

max
t0≤k≤t

|ul(k)|
2
)

≤ 2G
(

1 + E
(

max
t0≤k≤t

|ul(k)|
2
))(

1 − M
AB(M)

)2
(16)

+ 2G
M

AB(M)Γ(M)
IM
t

t∫
t0

(
1 + E

(
max

t0≤r≤τ
|ul(r)|

2
))

dτ.

If we move equations into a more acceptable position, then we will get

E
(

max
t0≤k≤t

|ul(k)|
2
)

≤ 2G
(

1 + E
(

max
t0≤k≤t

|ul(k)|
2
))(

1 − M
AB(M)

)2
(17)

+ 2G
M

AB(M)Γ(M)
IM
t

t∫
t0

(
1 + E

(
max

t0≤r≤τ
|ul(r)|

2
))

dτ.

Adding 1 to both sides gives us

1 + E
(

max
t0≤k≤t

|ul(k)|
2
)

≤ 2G
(

1 + E
(

max
t0≤k≤t

|ul(k)|
2
))(

1 − M
AB(M)

)2
(18)

+ 2G
M

AB(M)Γ(M)
IM
t

t∫
t0

(
1 + E

(
max

t0≤r≤τ
|ul(r)|

2
))

dτ.
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So finally we get

E
(

max
t0≤k≤t

|ul(k)|
2
)

≤ 1 + 2G
(

1 + E
(

max
t0≤k≤t

|ul(k)|
2
))(

1 − M
AB(M)

)2
(19)

+ exp
[

2G
M

AB(M)Γ(M)
IM
t (T − t0)

]
.

Let u1 (.) and u2 (.) be the solution of the Cauchy problem. Then u1 (.), u2 (.) ∈ L2([t0, T], R). So
we have

|u1(t)− u2(t)|
2 ≤ 2

∣∣∣∣ 1 − M
AB(M)

( f (t, u1(t))− f (t, u2(t)))
∣∣∣∣2 (20)

+ 2

∣∣∣∣∣∣∣
t∫

t0

M
AB(M)Γ(M)

( f (τ, u1(τ))− f (τ, u2(τ))) dτ

∣∣∣∣∣∣∣
2

,

using the Lipschitz condition for function f (t, u(t)) then we obtain

|u1(t)− u2(t)|
2 ≤ 2G

(
1 − M

AB(M)

)2
|u1(t)− u2(t)|

2 (21)

+ 2G
(

M
AB(M)Γ(M)

)2
IM
t

t∫
t0

|u1(τ)− u2(τ)|
2 dτ,

thus

E

(
sup

t0≤k≤t
|u1(k)− u2(k)|

2

)
≤ 2G

(
1 − M

AB(M)

)2
E

(
sup

t0≤k≤t
|u1(k)− u2(k)|

2

)
(22)

+ 2G
(

M
AB(M)Γ(M)

)2
IM
t

t∫
t0

E

(
sup

t0≤r≤τ
|(u1(r)− u2(r))|

2

)
dτ

≤ 2G
(

1 − M
AB(M)

)2
E

(
sup

t0≤k≤t
|u1(k)− u2(k)|

2

)

+ 2G
(

M
AB(M)Γ(M)

)2
IM
t

t∫
t0

E

(
sup

t0≤r≤τ
|(u1(r)− u2(r))|

2

)
dτ,

(
1 − 2G

(
1 − M

AB(M)

)2
)

E

(
sup

t0≤t≤T
|u1(t)− u2(t)|

2

)
(23)

≤ 2G
(

M
AB(M)Γ(M)

)2
IM
t

t∫
t0

E

(
sup

t0≤r≤τ
|(u1(r)− u2(r))|

2

)
dτ,
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E

(
sup

t0≤t≤T
|u1(t)− u2(t)|

2

)
≤

2G
(

M
AB(M)Γ(M)

)2
IM
t

t∫
t0

E

(
sup

t0≤r≤τ
|(u1(r)− u2(r))|

2

)
dτ(

1 − 2G
(

1−M
AB(M)

)2
) , (24)

E

(
sup

t0≤t≤T
|u1(t)− u2(t)|

2

)
≤ ϖ1

t∫
t0

E

(
sup

t0≤r≤τ
|(u1(r)− u2(r))|

2

)
dτ, (25)

where

ϖ1 =
2G
(

M
AB(M)Γ(M)

)2
IM
t(

1 − 2G
(

1−M
AB(M)

)2
) , (26)

with following condition

2G
(

1 − M
AB(M)

)2
̸= 1. (27)

Applying Gronwall inequality

E

(
sup

t0≤t≤T
|u1(t)− u2(t)|

2

)
= 0, ∀t ∈ [t0, T]. (28)

So we have

u1(.) = u2(.) ∀t ∈ [t0, T]. (29)

Our proof is completed for the existence of the solution.

Existence of solution

Same as the earlier part, we put Picard’s recursive approach

ul(t) =
1 − α(t)

AB(α(t))
f (t, ul−1(t)) +

α(t)
AB(α(t))Γ(α(t))

t∫
t0

f (τ, ul−1(τ))(t − τ)α(τ)−1dτ. (30)

Now we have to show that ∀l ≥ 0, ul(t) ∈ L2([t0, T], R). Here we suppose that u0(.) = u0 is the
initial condition. For the case when l = 1,

u1(t) =
1 − α(t)

AB(α(t))
f (t, u0(t)) +

α(t)
AB(α(t))Γ(α(t))

t∫
t0

f (τ, u0(τ))(t − τ)α(τ)−1dτ, (31)

u1(t) ≤ 1 − M
AB(M)

f (t, u0(t)) +
M

AB(M)Γ(M)

t∫
t0

f (τ, u0(τ))(t − τ)M−1dτ.
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As a result of the preceding steps, we consequently arrive at the following conclusion. This
outcome follows directly from the logical progression of the argument and the application of the
relevant mathematical tools as before

E

(
sup

t0≤t≤T
|u1(t)|

2

)
≤ 2G

(
1 − M

AB(M)

)2 (
1 + E |u0|

2
)

(32)

+ 2G
(

M
AB(M)Γ(M)

)2
IM
t

t∫
t0

(
1 + E |u0|

2
)

dτ,

E

(
sup

t0≤t≤T
|u1(t)|

2

)
≤ 2G

(
1 − M

AB(M)

)2 (
1 + E |u0|

2
)

(33)

+ 2G
(

M
AB(M)Γ(M)

)2
IM
t

(
1 + E |u0|

2
)
(T − t0) .

We know that u0 ∈ L2([t0, T], R), thus E |u0|
2 < ∞.

In that case

E

(
sup

t0≤t≤T
|u1(t)|

2

)
< ∞. (34)

We make the assumption that ∀l ≥ 1, yl(t) ∈ L2([t0, T], R). It is necessary to prove that yl+1(t) ∈
L2([t0, T], R).

ul+1(t) =
1 − α(t)

AB(α(t))
f (t, ul(t)) (35)

+
α(t)

AB(α(t))Γ(α(t))

t∫
t0

f (τ, ul(τ))(t − τ)α(τ)−1dτ,

ul+1(t) ≤ 1 − M
AB(M)

f (t, ul(t))

+
M

AB(M)Γ(M)

t∫
t0

f (τ, ul(τ))(t − τ)M−1dτ.

So we get

|ul+1(t)|
2 ≤ 2G

(
1 − M

AB(M)

)2 (
1 + |ul(t)|

2
)

(36)

+ 2G
(

M
AB(M)Γ(M)

)2
Iα(t)
t

(
1 + |ul(τ)|

2
)

dτ,

E

(
sup

t0≤t≤T
|ul+1(t)|

2

)
≤ 2G

(
1 − M

AB(M)

)2
(

1 + E

(
sup

t0≤t≤T
|ul(t)|

2

))
(37)

+ 2G
(

M
AB(M)Γ(M)

)2
Iα(t)
t

t∫
t0

(
1 + E

(
sup

t0≤r≤τ
|ul(r)|

2

))
dτ.
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By inductive hypothesis, ul(t) ∈ L2([t0, T], R) hence we have E

(
sup

t0≤t≤T
|ul(t)|

2

)
≤ Ω. So we

obtain

E

(
sup

t0≤t≤T
|ul+1(t)|

2

)
≤ 2G (1 + Ω)

{ (
1−M

AB(M)

)2
+
(

M
AB(M)Γ(M)

)2
Iα(t)
t (T − t0)

}
(38)

< ∞.

Therefore we get

ul+1(t) ∈ L2([t0, T], R). (39)

According to the principles of induction, we can conclude that ∀l ≥ 0, ul(t) ∈ L2([t0, T], R). We
now analyze,

E
(
|u1(t)− u0|

2
)

≤ 2G
(

1 − M
AB(M)

)2 (
1 + E

(
|u0|

2
))

(40)

+ 2 (T − t0) G
(

1 + E
(
|u0|

2
))( M

AB(M)Γ(M)

)2
IM
t ,

and

E
(
|u1(t)− u0|

2
)
≤ γ2, (41)

where

γ1 = 2G
(

1 − M
AB(M)

)2 (
1 + E

(
|u0|

2
))

(42)

+ 2 (T − t0) G
(

1 + E
(
|u0|

2
))( M

AB(M)Γ(M)

)2
Iα(t)
t .

Now ∀l ≥ 1,

E

(
sup

t0≤t≤T
|u1(t)|

2

)
≤
(

2G
(

1 + E |u0|
2
)){ (

1−M
AB(M)

)2
+
(

M
AB(M)Γ(M)

)2
(T − t0) Iα(t)

t

}
. (43)

|ul+1(t)− ul(t)|
2 ≤ 2G

(
1 − M

AB(M)

)2
|ul(t)− ul−1(t)|

2 (44)

+ 2G
(

M
AB(M)Γ(M)

)2
IM
t

t∫
t0

|ul(τ)− ul−1(τ)|
2 dτ.
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Considering induction for ∀l ≥ 0, we get

E

(
sup

t0≤t≤T
|ul+1(t)− ul(t)|

2

)
≤ γ2

(β2 (t − t0))
l

l!
, t0 ≤ t ≤ T. (45)

We assume that the inequality holds for all l ≥ 1. We need to demonstrate its proof at tl+1.
At tl+1, we have

E

(
sup

t0≤t≤T
|ul+2(t)− ul+1(t)|

2

)
≤ γ2

(β2 (t − t0))
l

(l + 1)!
(t − t0) ≤ γ2

(β2 (t − t0))
l+1

(l + 1)!
,

t0 ≤ t ≤ T.

So at l + 1, the inequality is proven through the principle of mathematical induction.

We can conclude that the Borel-Contelli lemma helps to find a positive integer number

l0 = l0(ε), (46)

∀ε ∈ Π that

sup
t0≤t≤T

|ul+1(t)− ul(t)|
2 ≤ 1

2l , l ≥ l0. (47)

It continues that the sum

u0(t) +
l−1∑
k=0

[uk+1(t)− uk(t)] = ul(t), (48)

converges uniformly in [0, T]. Now, if we take

lim
n→∞ul(t) = u(t). (49)

Therefore, we obtain

E |ul+1(t)− ul(t)|
2 ≤ β2 |ul(t)− u(t)|2 . (50)

Taking as l → ∞, the right side of equality goes to zero, so we obtain

u(t) =
1 − M

AB(M)
f (t, u(t)) +

M
AB(M)Γ(M)

t∫
t0

f (τ, u(τ))(t − τ)M−1dτ, (51)

u(t) =
1 − α(t)

AB(α(t))
f (t, u(t)) +

α(t)
AB(α(t))Γ(α(t))

t∫
t0

f (τ, u(τ))(t − τ)α(τ)−1dτ.

This completes the proof.
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An illustrative application

In this subsection, we demonstrate the effectiveness of our approach by addressing a straightfor-
ward example of a Cauchy problem involving a variable-order fractional differential equation
with the Atangana-Baleanu derivative. Let us consider the following Cauchy Problem

ABCDα(t)u(t) = sin t + u(t)2, t ∈ [0, T], (52)

u(0) = 0,

where

α(t) = 0.3 + 0.4 sin t. (53)

Let us check the conditions for which the Cauchy problems for variable-order fractional derivative
with Atangana-Baleanu derivative has a unique equation if the nonlinear function f (t, u(t))
satisfies the following conditions.

1) We see that α(t) = 0.3 + 0.4 sin t, this function is differentiable and bounded for t ∈ [0, T]. It
satisfies the condition 0.3 < α (t) < 0.7, thus

0 < m < α (t) < M ≤ 1. (54)

2) ∀t ∈ [0, T], α′ (t) = 0.4 sin t ̸= 0.

3) We have that f (t, u(t)) = sin t + u(t)2. This function is a nonlinear function and twice differen-
tiable and bounded.

4) Let’s examine in this section if the function f (t, u(t)) meets the linear growth criterion specified
by

| f (t, u(t))|2 < G
(

1 + |u|2
)

. (55)

Now we consider the norm ∥φ∥∞ = sup
t∈Dφ

|φ(t)| and put the existence and uniqueness of the

solution for [0, T] . For [0, T1], there exist two positive constant U1 and U2 < ∞ such that

∥u1∥∞ < U1, (56)

∥u2∥∞ < U2.

Let’s reconsider the right-hand side of the Cauchy problem equation and apply the necessary
steps in order.

| f (t, u(t))|2 =
∣∣∣sin t + u(t)2

∣∣∣2 (57)

≤
∣∣∣sin2 t

∣∣∣+ 2 |sin t| |u(t)|2 + |u(t)|4 .

Now we need to ensure that∣∣∣sin2 t
∣∣∣+ 2 |sin t| |u(t)|2 + |u(t)|4 ≤ G

(
1 + |u(t)|2

)
. (58)
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Here we have to find a constant G to satisfy the condition.

| f (t, u(t))|2 ≤
∣∣∣sin2 t

∣∣∣+ 2 |sin t|
∣∣∣u(t)2

∣∣∣+ ∣∣∣u(t)4
∣∣∣ (59)

≤ 1 + 2
∣∣∣u(t)2

∣∣∣+ sup
t∈[0,T]

∣∣∣u(t)4
∣∣∣

≤ 1 + 2
∣∣∣u(t)2

∣∣∣+ ∥∥∥u4
∥∥∥∞

≤
(

1 +
∥∥∥u4

∥∥∥∞)
(

1 +
2

1 + ∥u4∥∞ |u(t)|2
)

≤ G
(

1 + |u(t)|2
)

.

Here

G = max
(

1 +
∥∥∥u4

∥∥∥∞) , (60)

and under the conditions below

max
(

2
1 + ∥u4∥∞

)
≤ 1. (61)

5) Let’s check in this section whether the function f (t, u(t)) satisfies the Lipschitz condition is
given by:

| f (t, u1(t))− f (t, u2(t))|
2 ≤ G |u1 − u2|

2 . (62)

Our goal is to obtain the above expression for our own equation.

| f (t, u1(t))− f (t, u2(t))|
2 =

∣∣∣u1(t)2 − u2(t)2
∣∣∣2 (63)

≤ |u1(t) + u2(t)|
2
|u1(t)− u2(t)|

2

≤
{ ∣∣u1(t)2

∣∣+ 2 |u1(t)| |u2(t)|
+
∣∣u2(t)2

∣∣ }
|u1(t)− u2(t)|

2

≤



sup
t∈[0,T]

∣∣u1(t)2
∣∣

+2 sup
t∈[0,T]

|u1(t)| sup
t∈[0,T]

|u2(t)|

+ sup
t∈[0,T]

∣∣u2(t)2
∣∣


|u1(t)− u2(t)|

2

≤
{

∥u1∥4∞ + 2 ∥u1∥∞ ∥u2∥∞
+ ∥u2∥4∞

}
|u1(t)− u2(t)|

2

≤ G |u1(t)− u2(t)|
2 ,

where

G = max
{
∥u1∥4∞ + 2 ∥u1∥∞ ∥u2∥∞ + ∥u2∥4∞}

. (64)



76 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 5, 64–78

The solution to our Cauchy problem exists and is unique since all conditions are satisfied.

3 Conclusion

In this study, we have investigated the Cauchy problem for differential equations with variable-
order derivatives and Mittag-Leffler kernels, emphasizing the significance of these mathematical
tools in capturing complex, real-world phenomena. The investigations into the existence and
uniqueness of solutions have demonstrated that variable-order derivatives, coupled with the
Mittag-Leffler function, offer a powerful framework for extending traditional models to accom-
modate time-dependent and spatially-dependent memory effects. Our findings contribute to the
growing body of knowledge in the field of variable-order systems, with potential applications
spanning physics, engineering, finance, and beyond. Future research may focus on refining
the stability analysis, developing more efficient numerical techniques, and exploring additional
applications of these concepts in modeling complex dynamic systems.

Declarations

Use of AI tools

The author declares that he has not used Artificial Intelligence (AI) tools in the creation of this
article.

Data availability statement

There are no external data associated with the manuscript.

Ethical approval (optional)

The author states that this research complies with ethical standards. This research does not involve
either human participants or animals.

Consent for publication

Not applicable

Conflicts of interest

The author declares that he has no conflict of interest.

Funding

No funding was received for this research.

Author’s contributions

The author has written, read and agreed to the published version of the manuscript.

Acknowledgements

Not applicable

References

[1] Atangana, A. Fractional Operators with Constant and Variable Order with Application to Geo-
hydrology. Academic Press: United Kingdom, (2017).

[2] Goufo, E.F.D. and Atangana, A. Dynamics of traveling waves of variable order hyperbolic
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