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Abstract
Cook’s distance is one of the renowned and classic tools for the detection of influential
observations. In this article, we propose to use Cook’s distance with different residuals in
the Beta regression model, which is appropriate for modeling the response variable that
undertakes a proportion data set. The influence of outlying observations on the basis of its
estimated parameters and mean squared error is examined, and performance of residuals
is compared. Based on the simulation results and the empirical application, it is observed
that the performance of the deviation and weighted residuals is better than that of the
rest of the residuals for the detection of influential observations. The observations deleted
by the deviance residuals have a large impact on the regression coefficients and on the
mean squared error for the Beta regression model.
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1. Introduction
A class of beta regression model (BRM) was proposed by Ferrari and Cribari-Neto

[14], which are similar to generalized linear models (GLM) in many aspects. The beta
distribution is a continuous type of distribution and they considered situations where the
response is restricted to the interval (0; 1), such as percentages, proportions, rates, and
fractions. Outliers or influential observation(s) are not appreciated in the data sets. In
practice, this situation is violated in the linear regression model (LRM) and in GLM,
affecting the estimation of the parameters and the related inference [15]. Therefore, it is
necessary to diagnose and then treat these unusual points before fitting a model.
A vast amount of literature is available that provides different diagnostic techniques for
LRM; see [4, 6, 7, 18, 27], among others. With reference to GLM, Pregibon [22] took
initiative to study the diagnostic of influential observations in the logistic regression model
using Cook’s distance, which was followed by many researchers who proposed different
diagnostic methods for different regression models. The residuals play a significant role
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in regression diagnostics and different modified forms of famous residuals along with new
types have been presented, e.g., [1,17,23,26,28–31,41] among others. Specifically, for BRM,
Espinheira et al. [10, 11] proposed some residuals and the likelihood distance method for
influential diagnostics. Simas et al. [33] generalized the results [10] and constructed some
residuals, and a Portmanteau test for serial correlation. Rocha and Simas [24] also worked
on the influence diagnostics of the beta regression model. Anholeto et al. [2] studied the
adjusted Pearson residuals for the beta regression model. Espinheira et al. [12] proposed
a model selection criterion that is directly related to the leverage, residuals, and influence
of the observations. Pereira [21] proposed quantile residuals for BRM and Caribari-Naeto
et al. [35] developed tests of correct specification for the BRM model. So, according
to the literature, researchers focused on proposing new residuals and illustrated their
performance, but the impact of different residuals has not been studied, especially with
Cook’s distance technique.
The objective of this study is to highlight the performance of different residuals in Cook’s
distance and to highlight how much their detected observations influence them. This
means that after the exclusion of suspected observations, how do the model coefficients,
p-values, mean squared errors, etc. respond? This would help the researchers identify the
suitable residual with the Cook’s distance in BRM.

The paper unfolds as follows. Section 2 presents the BRM, Cook’s distance, and the
associated residuals. A simulation study has been conducted in Section 3. Real data
examples of reading skills are presented in Section 4. Finally, concluding remarks are
given in Section 5.

2. The Beta regression model, Cook’s distance, and residuals
In this section, we summarize the BRM, Cook’s distance, influence diagnostics, and

associated residuals.

2.1. The Beta regression model
Let y be the dependent variable which comes from the beta distribution type I, with

shape parameter µ and scale parameter ϕ, which is denoted as Beta (α,β) and the prob-
ability density function of the beta distribution is given as

f(y;α, β) = yα−1(1 − y)β−1

B(α, β)
, y ∈ (0, 1), α > 0, β > 0 (2.1)

where B(α, β)) = Γ(α)Γ(β)/Γ(α + β) . The mean and variance of beta distribution are
α

α+β and αβ
(α+β)2(α+β+1) , respectively. For the formulation of BRM, consider the following

notation.
By following [14], [32] and [36], we re-parametrize Equation (2.1) as µ = α

α+β and ϕ = α+β,
so after reparameterization beta density function becomes

f(y;α, β) = Γ(ϕ)yµϕ−1(1 − y)ϕ−µϕ−1

Γ(µϕ)Γ(ϕ− µϕ)
, y ∈ (0, 1), 0 < µ < 1 (2.2)

where ϕ is precision parameter and reciprocal of ϕ is dispersion parameter.
Let yi = (y1, y2, . . . , yn)′, i = 1, 2, . . . , n, be the vector of the independent response
variable, where Y ∼ βe(µ, ϕ). Different link functions can be used for BRM, such as logit,
probit, loglog, complementary loglog, and Cauchy link functions. Ferrari and Cribari-Neto
[14] suggested using the logit link function as g(µi) = ηi = xT

i β = logit(µi), where

µi = exp(xT
i β)

1 + exp(xT
i β)

.
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Here, xT
i = (1, xi1, . . . , xip)′ is the matrix of (p + 1) explanatory variables, and β =

(β0, β1, . . . , βp)′ is a vector of regression coefficients.
The log-likelihood function of the beta distribution (2.2) is given as

n∑
i=1

li(µi, ϕ) =
n∑

i=1
[lnΓ(ϕ)−lnΓ(µi, ϕ)−lnΓ(ϕ−µiϕ)+(µiϕ−1)lnyi+(ϕ−µiϕ−1)ln(1−yi)].

The maximum likelihood (ML) estimators for µ̂ and ϕ̂ can be observed by solving following
simultaneously equations

ψ(µ̂) − ψ(µ̂+ ϕ̂) = n−1
n∑

i=1
lnyi.

ψ(ϕ̂) − ψ(µ̂+ ϕ̂) = n−1
n∑

i=1
ln(1 − yi).

where ψ(.) is the digamma function using the iterative weighted least squares (IWLS)
method or Fishers scoring algorithm [13]. For parameter estimation, we used R package
betareg, which based on the auxiliary linear regression of the transformed response as
initial values for estimation [8].

2.2. Influence diagnostics
Outliers are first noted by [3] as unusual values in regression modeling that affect param-

eter estimation and statistical inference. Extreme value in the response variable termed an
outlier while extreme value in the explanatory variable(s) known as influential observation.
Although an influential observation strongly affects the parameter estimates and fitted val-
ues, outliers may or may not affect the parameter estimates. It is necessary to address
these values while fitting any regression model. Various tools for influence diagnostics are
available in the literature, as we mentioned before, for LRM and GLM. Some of them are
discussed here for the influence diagnostics of BRM because limited work has been done on
this issue. Residuals analysis has a vital role in formulating theories and their validation
in regression modeling. In this study, we used the popular measure, i.e. Cook’s distance,
to detect influential observations for the BRM. The Cook’s distance results using eight
different residuals are calculated for BRM and they are Pearson, Deviance, Response,
Working, Standardized, Weighted, Sweighted and Sweighted2. The details are available
in Table 1.

2.3. Cook’s distance and considered residuals
Cook’s distance was first proposed by [6] for the LRM and Pregibon [22] later applied

this technique to GLM, to identify influential observations. It measures the overall change
in the fitted model when the ith observation is deleted from the model. The Cook’s distance
statistic for the BRM is defined as

CDi =
(β̂ML − β̂ML(i))′X ′WX(β̂ML − β̂ML(i))

(k + 1)ϕ̂
. (2.3)

where β̂ is the estimated BRM coefficients vector for full model and β̂ML(i) is the estimated
BRM coefficients vector after deleting the ith observation. McCullagh and Nelder [19],
simplify Equation (2.3) as

CDi = π2
i

k + 1
hii

1 − hii
. (2.4)

where hii is the ith value of the hat matrix and πi is the residual ith, which we explain
later. The largest value of Cook’s distance indicates that ith is the influential observation.
Cut-off point for the detection of influential observation using Cook’s distance statistics
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Table 1. Summary of residuals.

Type Mathematical notation Reference

Pearson Residual (P) rt = yt−f̂(xt)√
f̂(xt)

[9]Deviance Residual (D) rd
t = sign(yt − µ̂t)

√
(dt)

Working Residual (Wor) rt = yt−f̂(xt)
f̂(xt)

Response Residual (R) rt = yt − f̂(xt)
Weighted Residual (W) r∗

t = y∗
t −µ̂∗

t√
ϕνt

Standardized Weighted Residual (SW) rω
t = y∗

t −µ̂∗
t√

νt
[10]

Standardized Weighted 2 Residual (SW2) rωω
t = rω

t√
1−htt

Standardized Residuals (St) rt = yt−µ̂t√
ˆvar(yt)

in the BRM is 2*mean (Cook’s distance) [16]. We consider residuals summarized in Table
1 for Cook’s distance.

3. Simulation study
The primary objective of this section is to compare the performance of the Cook’s

distance on BRM through a simulation study. The following Monte Carlo simulation
study is considered with 1000 replications.
The dependent variable of the BRM is generated from the Beta distribution as yi ∼ B(µ, ϕ)
for i = 1, 2, . . . , n, where µi = E(yi) = 0.5 is the arbitrary mean, and ϕ is the dispersion
parameter that is assumed to take arbitrary values ϕ = 0.5, 1, 3, 10. These values represent
low-, medium-, and high-variance conditions. Two explanatory variables x1 and x2 are
kept fixed throughout the simulation study. Here, the design matrix X, with no influential
points, of the sample sizes n = 25, 50, 100, and 200, is generated as

Xij ∼ U(0, 0.5), i = 1, 2, . . . , n; j = 1, 2,
and then we make the 5th, 10th, 15th, 20th, and 25th points influential in X as

xij = a0 + xij , i = 5, 10, 15, 20, 25; j = 1, 2,
where a0 = x̄j + 100. The simulated outlier detection rate (in percentage) of the BRM
Cook’s distance under different factors such as sample size, dispersion parameter, and
different types of residuals is presented in Table 2. For a better picture, we obtained the
average detection rate along with the standard deviation for all methods in n and ϕ and
presented them in the last two rows of Table 2.

Table 2 reveals that the performance of Cook’s distance is very poor with all residuals in
detection of influential observations for small sample size. It becomes worse with residual
working and for low dispersion, that is, ϕ = 0.5, 1, but the increase in sample size with
highly dispersed data makes the detection percentage very appropriate in all cases. For
ϕ = 10, performance of Cook’s distance is remarkable with almost all sample sizes and
it performs a tremendous with large sample size. Table 2 indicates that the percentage
of detection of an outlier for all residuals increases as the sample size increases. The
dispersion parameter also affects directly on the BRM Cook’s distance in detecting the
influential observations. The detection power of the BRM Cook’s distance is increased
for diagnosing the influential observations when the value of the dispersion parameter is
increased. By comparing the performance of all residuals of BRM, we find that Cook’s
distance with weighted and deviance residuals performed better than rest of residuals,
and working residual performed worse. It is important to mention that Cook’s distance
with Weighted and Standardized Weighted residual are performing exactly the same in
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detection of influential observations for each sample size and dispersion. Espinheira et
al. [10] showed that the SWeighted2 residual is the best choice to be used in likelihood
displacement (LD) but the SWeighted2 residual fails to perform best with Cook’s distance
in detection of influential observations, although its performance is acceptable.

Table 2. Estimated outlier detection rate (%) of the BRM influence diagnostics
with different residuals.

n ϕ P D R W SW SW2 Wor

25

10 27.5 28.8 28.1 28.4 28.4 26.5 0.8
3 22.6 24.9 22 23.1 23.1 20.5 0.7
1 10.6 17.7 12.2 21.1 21.1 19.6 0.1

0.5 5.7 13.2 9.2 20.2 20.2 19.2 0.2

50

10 86.9 87.3 86.9 87.3 87.3 83.5 51.7
3 88.5 90.6 88.4 89.8 89.8 86.3 48.2
1 82.3 80.3 80.5 83.1 83.1 78.1 40.5

0.5 72.9 83.9 71.1 88.1 88.1 86.3 31.2

100

10 98.3 98.7 98.3 98.7 98.7 96.8 90
3 98.1 98.3 98.3 98.8 98.8 96.6 89.4
1 98.2 98.8 97.9 99.4 99.4 98.9 92

0.5 97.1 98.2 97.1 99.8 99.8 99.3 92.5

200

10 99.8 99.8 99.9 99.8 99.8 99.4 98.5
3 99.8 99.9 99.7 99.9 99.9 99.8 99.2
1 99.7 100 99.9 99.9 99.9 99.8 99.3

0.5 99.5 99.7 99.6 99.9 99.9 99.9 98.3
Mean 74.2 76.3 74.3 77.3 77.3 75.7 58.3
SD 35.5 33.6 34.9 32.8 32.8 33.1 41.2

4. Real data applications
BRM with Cook’s distance can be widely used in different fields of life where large

values are not appreciated, e.g. medical, engineering, agriculture, etc. To illustrate its use
in diverse fields, we examine the performance of Cook’s distance on BRM through two
different real-life datasets where detecting influential observations is critical.

4.1. Reading skills data
This application is based on the data set given in [20] which was analyzed by [25].

In this data set, the response variable (y) is the scores on a reading accuracy test of 44
children, and the covariates are dyslexia versus non-dyslexia status (x1), nonverbal IQ
converted to z scores (x2) and an interaction variable (x3). Participants (19 dyslexics and
25 controls) were recruited from primary schools in the Australian Capital Territory. The
ages of the children ranged from eight years and five months to twelve years and three
months. The covariate x1 assumes the value 1 when the child is dyslexic and −1 otherwise.
The observed scores y were linearly transformed from their original scale to the open unit
interval (0, 1).

Table 3 shows that the mean accuracy score is 0.900 for non-dyslexic readers and 0.606
for the dyslexic group. The scores ranged from 0.459 to 0.990, with the overall mean score
of 0.773.
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Table 3. Basic statistics of reading skills data.

Accuracy Dyslexia IQ
Mean 0.7727616 -0.1363636 -2.272727e-05

Standard Deviation 0.1790063 1.002112 1.000064

Table 4. Parameter estimates of reading skills data.

Parameter β0 β1 β2 β3

Estimate 1.334 -0.974 0.161 -0.219
p-value 0.0000 0.0000 0.2317 0.1049

Table 4 contains the estimates of β’s, where the only covariate that is statistically
significant at the usual nominal levels is the dyslexia status. This indicates an unexpected
result: IQ makes little or no clear independent contribution. For details, see [25].

Espinheira et al. [10] computed and analyzed different residuals for the constant dis-
persion BRM using the reading accuracy data described above. They mentioned that the
standardized weighted residual 2 was more successful in identifying influential observa-
tions. Espinheira et al. [11] used a Cook-like distance, called likelihood displacement.
They identified observation 1 as atypical and showed that this observation is only slightly
omitted in the index plot of the standardized weighted residuals. Here, we considered all
the residuals mentioned above in Cook’s distance in Equation (2.4) and display in Figure
1. We used 2 × mean (Cook’s distance), which was recommended by [11].

Table 5. Summary of outliers identified by different residuals using Cook’s dis-
tance in reading skills data.

S. No. Residuals Outliers
1 Pearson 6, 8, 17, 19, 23, 24
2 Deviance 6, 7, 8, 14, 17, 18, 19, 20, 23, 24, 25
3 Response 6, 8, 17, 19, 23, 24
4 Weighted 6, 8, 15, 22
5 SWeighted 6, 8, 15, 22
6 Sweighted2 6, 8, 15, 22
7 Working 6, 8, 17, 19, 23, 24, 28, 38
8 Standardize 32, 33

Figure 1 reveals the high impact of the residual type on Cook distance statistics. Using
different residuals, different observations are detected and the summary of all suspected
outliers can be seen in Table 5, where the outliers detected by the class of weighted
residuals are the same. Deviance residual is most sensitive as it detects many observations
as outliers. Similarly, standardized residual detects only two observations as outliers. For
this purpose, all alleged are excluded one by one and βs and MSE are calculated and
presented in Table 6. The group deletion is made for all residuals and their βs and MSE
are presented in Table 7.
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Figure 1. Real reading skills data Cook’s distance with different residuals



8 Javaria Ahmad Khan, Atif Akbar, B M Golam Kibria

Table 6. Parameter estimates, standard errors (S.E.), relative changes in esti-
mates due to one-by-one exclusion, and respective p-values with MSE.

Obs Intercept Dyslexia IQ Dyslexia × IQ MSE

Full
Estimate 1.3338 -0.9736 0.1608 -0.2186

0.0096S.E. 0.1357 0.1335 0.1344 0.1345

p-value 0.0000 0.0000 0.2317 0.1049

6
Estimate 1.3922 -1.0303 0.1185 -0.1766

0.0093S.E. 0.1407 0.1385 0.1386 0.1387

p-value 0.0000 0.0000 0.3920 0.2030

7
Estimate 1.3715 -1.0103 0.1412 -0.1991

0.0096S.E. 0.1388 0.1365 0.1355 0.1356

p-value 0.0000 0.0000 0.2970 0.1420

8
Estimate 1.2541 -0.8916 0.2663 -0.3245

0.0090S.E. 0.1325 0.1306 0.1368 0.1369

p-value 0.0000 0.0000 0.0516 0.0178

Table 7. Parameter estimates, standard errors (S.E.), relative changes in esti-
mates due to group exclusions, and respective p-values with mean squared error
(MSE).

Residuals Intercept Dyslexia IQ Dyslexia × IQ MSE

Deviance
Estimate 1.7816 -1.4000 -0.0014 -0.0601

0.00394S.E. 0.1497 0.1488 0.1857 0.1857

p-value 0.0000 0.0000 0.994 0.746

• Pearson

• Response

Estimate 1.6490 -1.2692 0.1573 -0.2185
0.00421S.E. 0.1343 0.1333 0.1317 0.1318

p-value 0.0000 0.0000 0.2324 0.0974

• Weighted

• SWeighted

• SWeighted2

Estimate 1.1386 -0.7707 0.3911 -0.4502
0.00803S.E. 0.1331 0.1320 0.1424 0.1425

p-value 0.0000 0.0000 0.0060 0.0016

Working
Estimate 1.6674 -1.2592 0.1675 -0.2111

0.00368S.E. 0.1339 0.1328 0.1322 0.1323

p-value 0.0000 0.0000 0.2050 0.1110

Standardized
Estimate 1.3498 -0.9392 0.1829 -0.1922

0.00995S.E. 0.1622 0.1598 0.1579 0.1579

p-value 0.0000 0.0000 0.2470 0.2240

From Table 6, it is observed that elimination of single suspected outlier has no signif-
icant effect neither on MSE nor on estimates. So, it is better to deal with a group of
observations that are identified as outliers. Although some observations are commonly
detected by most residuals, Cook’s distance detected ’11’ observations as outliers, that is,
[6, 7, 8, 14, 17, 18, 19, 20, 23 24, 25]. The standardized residuals are the least delicate
because they identify only two observations, i.e. [32, 33], which are not detected by any
other residual, and also exclusion of these observations leads to an increase in MSE. Due
to this, we stopped using the standardized residual further.
Cook’s distance with Weighted, Sweighted and Sweighted2 residuals proposed by [10],
detected same observations, i.e. 6, 8, 15, 22. The omission of these observations has
no prominent effect on MSE but makes all covariates significant which are nonsignificant
earlier, i.e. IQ and interaction of dyslexia and IQ. The detection of observations by using
working residuals provides minimum MSE as compared to other residuals. So, the perfor-
mance of working residual is best due to least MSE. Performance of Pearson and Response
residuals are similar with Cook’s distance; both types identified same observations as out-
liers [6, 8, 17, 19, 23, 24]. Elimination of such an observation has a significant impact on
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MSE but has no effect on estimates.
It can be seen that the minimum MSE is obtained using the working residual, which
detected ’8’ observations as outliers and the Deviance residual has the second minimum
MSE among all residuals with the highest number of suspected outliers. Moreover, the
use of the Deviance residual results in a negative coefficient of the variable ’IQ’, which is
positive in all other cases after eliminating the alleged outliers. Such a dramatic change
in relation turned out that these observations have a strong influence on the data and the
addition of such observations is recommended rather than removal [5].

4.2. Crude Oil Conversion Data
This empirical application is based on a data set from [37]. It has four explanatory

variables; the first is the gravity of crude oil (x1), which is measured using the index
suggested by the American Petroleum Institute, and these variables measure the density
of a liquid. Second, is the vapor pressure of the crude oil (x2), and this variable is
measured using the Reid vapour pressure defined as the pressure needed to keep the liquid
from vaporizing at 100 degrees Fahrenheit. Third, the temperature (degrees Fahrenheit) at
which 10 percent of crude oil has vaporized (x3) and the temperature (degrees Fahrenheit)
at which all gasoline is vaporized (x4). The proportion of crude oil converted to gasoline
after distillation and fractionation is a dependent variable (y).
Atkinson [38] used LRM to analyze this data set and examined that the error term is not
symmetric and transformed the dependent variable. Then, Lemonte et al. [39] used this
data set and considered that the dependent variable follows a beta distribution. Ferrari
and Cribari-Neto [40] used the data for the detection of outliers and found observation 4
to be influential. The data set is also part of R package betareg.
Now, we consider this data set to examine the role of residuals in detection. Table 8
presents the basic statistics of the data considered, and Table 9 provides the estimates of
β’s, where x3 and x4 are statistically significant covariates.

Table 8. Basic statistics of crude oil conversion data

Fractionation Gravity Pressure Temp10 Temp
Mean 0.1965938 39.25 4.18125 241.5 332.0938

Standard Deviation 0.1072242 5.635429 2.61983 37.54138 69.75596

Table 9. Parameter estimates of crude oil conversion data.

Parameter β0 β1 β2 β3 β4

Estimate -2.694942 0.004541 0.030413 -0.011045 0.010565
p-value 0.0000 0.524871 0.279117 0.0000 0.0000

We also consider all the residuals mentioned above in Cook’s distance (4) and display
them in Figure 2 with the same cut-off point used in the previous example. A summary
of basic statistics and the alleged outliers can be examined in Tables 8 and 9, respectively,
which shows a strong influence of residuals on detection. Figure 2 shows the suspected
outliers that have been mentioned in Table 9. Following the previous pattern, all suspected
are excluded one by one, and s and MSE are calculated. In addition, the group deletion is
made for all residuals and their s and MSE are observed. Its related results are presented
in Tables 10 and 11.
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Figure 2. Real crude oil conversion data Cook’s distance with different residuals
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Table 10. Summary of outliers identified by different residuals using Cook’s dis-
tance

S. No. Residuals Outliers
1 Pearson 4, 9, 14, 31
2 Deviance 4, 14, 21, 31
3 Response 4, 14
4 Weighted 4, 14, 21, 31
5 SWeighted 4, 14, 21, 31
6 Sweighted2 4, 14, 21, 31
7 Working 1, 4, 9, 11, 21, 25, 31
8 Standardize 3, 4

Table 11. Parameter estimates, standard errors (S.E.), relative changes in esti-
mates due to one-by-one exclusion, and respective p-values with MSE

Obs Intercept Gravity Pressure Temp10 Temp MSE

Full
Estimate -2.694942 0.004541 0.030413 -0.011045 0.010565

0.0005665989SE 0.762569 0.007142 0.028101 0.002264 0.000515

p-value 0.0000 0.524871 0.279117 0.0000 0.0000

1
Estimate -2.549369 0.002959 0.024494 -0.011551 0.010735

0.0005819624SE 0.7772915 0.0073450 0.0287146 0.0023251 0.0005491

p-value 0.00104 0.68708 0.39365 0.0000 0.0000

3
Estimate -2.63853 0.00392 0.02887 -0.01114 0.01056

0.0005801207SE 0.808101 0.007697 0.029211 0.002333 0.000524

p-value 0.001090 0.610610 0.322930 0.000002 0.0000

4
Estimate -3.15597 0.00970 0.04017 -0.01060 0.01091

0.0005256371SE 0.780426 0.007420 0.027751 0.002207 0.000538

p-value 0.000053 0.191000 0.148000 0.000002 0.0000

9
Estimate -2.77136 0.00562 0.02617 -0.01118 0.01078

0.0005195174SE 0.723555 0.006787 0.026686 0.002145 0.000500

p-value 0.000128 0.407735 0.326684 0.000000 0.00000

11
Estimate -2.64444 0.00341 0.03493 -0.01084 0.01037

0.0005568741SE 0.750206 0.007054 0.027766 0.002229 0.000523

p-value 0.000424 0.628896 0.208412 0.000001 0.00000

14
Estimate -2.54809 0.00166 0.03288 -0.01163 0.01087

0.0004894554SE 0.723588 0.006872 0.026580 0.002156 0.000509

p-value 0.000429 0.808693 0.216150 0.000000 0.0000

21
Estimate -2.77954 0.00664 0.02867 -0.01061 0.01031

0.0005400972SE 0.722436 0.006839 0.026605 0.002150 0.000502

p-value 0.000119 0.331584 0.281205 0.000001 0.0000

25
Estimate -2.69799 0.00560 0.02666 -0.01088 0.01041

0.0005401782SE 0.735051 0.006926 0.027165 0.002183 0.000505

p-value 0.000242 0.418980 0.326315 0.000001 0.0000

31
Estimate -2.45230 0.00402 0.02424 -0.01200 0.01064

0.0005628977SE 0.758392 0.006983 0.027610 0.002290 0.000506

p-value 0.001220 0.564540 0.379980 0.000000 0.0000

As we suggested earlier its better to deal with a group of observations that are identified
as outliers than handle every single observation. Other results also support our previous
findings. Firstly, some observations are commonly detected, too, by most of the residuals.
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Secondly, the use of standardized residuals identifies only two observations (3, 4), no other
residual has detected observation ’3’ as an outlier, and the detection of these observations
has no significant effect either on coefficients or on MSE. Third, Cook’s distance with De-
viance, Weighted, SWeighted, and SWeighted2 residuals detected the same observations,
i.e. [4, 14, 21, 31].
The detection of observations by using the Pearson residual provides a minimum MSE
compared to other residuals. So, the performance of Pearson residual is best due to the
least MSE. Performance of Response and Working residuals are similar in Cook’s distance;
surprisingly, both types identified different observations as outliers, but the elimination of
such observations has a similar significant impact on MSE. It can be seen that the Work-
ing residual detects a maximum number of observations as outliers, but the elimination of
such observation does not provide minimum MSE and the Working residual has maximum
MSE among all residuals with a minimum number of suspected outliers.

Table 12. Parameter estimates, standard errors (S.E.), relative changes in esti-
mates due to group exclusions and respective p-values with MSE

Residuals Intercept Gravity Pressure Temp10 Temp MSE

Pearson
Estimate -2.94378 0.00845 0.03562 -0.01242 0.01174

0.0003035964SE 0.608371 0.005747 0.021529 0.001767 0.000454

p-value 0.000001 0.142000 0.098000 0.000000 0.000000

Response
Estimate -3.09845 0.00753 0.04576 -0.01119 0.01138

0.0004000963SE 0.708165 0.006758 0.025270 0.002015 0.000519

p-value 0.000012 0.265500 0.070200 0.000000 0.000000

• Deviance • Weighted

• SWeighted

• SWeighted2

Estimate -2.90106 0.00855 0.03762 -0.01188 0.01126
0.0003626837SE 0.645177 0.006130 0.022838 0.001886 0.000489

p-value 0.000007 0.163300 0.099500 0.000000 0.000000

Working
Estimate -2.88642 0.01052 0.02417 -0.01122 0.01066

0.0004209662SE 0.629558 0.006076 0.022469 0.001851 0.000508

p-value 0.000005 0.083500 0.282000 0.000000 0.000000

Standardize
Estimate -3.40166 0.01244 0.04635 -0.01023 0.01100

0.0005381028SE 0.872704 0.008540 0.029576 0.002296 0.000562

p-value 0.000097 0.145000 0.117000 0.000008 0.0000

5. Some concluding remarks
This paper considers Cook’s distance for the BRM with different residuals. The BRM

is used for a positively skewed continuous dependent variable. Comparisons of residuals
with Cook’s distance are assessed through a simulation study and by real data sets, which
yielded important conclusions. First, Cook’s distance for BRM can be helpful in determin-
ing the choice of residual related to the motive of the study. If the goal of the researcher
is to observe the influence on estimators, then deviation is the best choice, which can
change the relationship scenario. The use of this residual also reduces the MSE. Similarly,
if purpose is to just reduce the mean squared error, then working and deviance residu-
als are the best choice with Cook’s distance. Secondly, the percentage of the detection
rate exhibits the performance for different sample sizes and for different values of the dis-
persion parameter. It reveals how the sample size and dispersion effect the detection of
influential observations. Thirdly, the Cook distance presented in this paper may be useful
in determining whether one should dummy the model in order to account for parameter
non-constancy. The diagnostic measures presented in this article can help practitioners
identify a typical observation and assess the specification of the model. In particular,
a systematic relationship between influential observations and covariates is indicative of
model misspecification.
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6. Future recommendations
As mentioned in the previous section, the performance of Cook’s distance is not worth

for a small size with all considered residuals, so it is better to use any other diagnostic
measure to detect outliers. Similarly, other residuals that might perform better than the
existing ones may also be proposed, e.g., a class of adjusted residuals, a quantile residual.
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