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ABSTRACT 
In recent years, the rapidly increasing use of artificial intelligence has begun to be incorporated into many fields 

in academia and the market. This study investigates the extent to which artificial intelligence is used in determining 

the sound absorption performance of materials, which have practical implications in improving indoor acoustic 

conditions. To this end, studies conducted over the past ten years based on three specified keywords were 

examined. Various constraints were applied during the review process. First, titles and keywords were scrutinized 

to filter the studies. Then, research articles were selected, while other studies were eliminated. Secondary keywords 

used in the studies were identified, and a field assessment was conducted using an analysis program. The results 

were evaluated by grouping them under different subheadings. The evaluation included the year the studies were 

conducted, the artificial intelligence methods used, and any additional inferences, if available. In the evaluation 

section, comments were made on the usability of artificial intelligence in sound-absorbing materials, and the 

shortcomings in the field were addressed. Suggestions for future studies were also presented. The review study is 

intended to serve as a guide, particularly for new studies in this field.  
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Malzemelerin Ses Yutma Performansının Değerlendirilmesinde Yapay 

Zeka Yaklaşımı: Sistematik İnceleme 

Öz 
Son yıllarda, yapay zekanın hızla artan kullanımı akademi ve piyasa dahil olmak üzere birçok alanda kendine yer 

bulmaya başlamıştır. Bu çalışma, malzemelerin ses yutma katsaysının belirlenmesinde yapay zeka kullanımının 

yerini araştırmaktadır. Bu amaçla, belirlenen üç anahtar kelime doğrultusunda son on yılda yapılan çalışmalar 

incelenmiştir. İnceleme sürecinde çeşitli kısıtlamalar uygulanmıştır. İlk olarak, çalışmaların başlıkları ve anahtar 

kelimeleri incelenerek bir ön eleme yapılmıştır. Daha sonra, yalnızca araştırma makaleleri seçilmiş ve diğer türdeki 

çalışmalar elenmiştir. Çalışmalarda kullanılan ikincil anahtar kelimeler belirlenmiş ve bir analiz programı 

kullanılarak alan değerlendirmesi yapılmıştır. Elde edilen sonuçlar farklı alt başlıklar altında gruplandırılarak 

değerlendirilmiştir. Değerlendirme, çalışmaların yapıldığı yılları, kullanılan yapay zeka yöntemlerini ve varsa ek 

çıkarımları içermektedir. Değerlendirme bölümünde, yapay zekanın ses yutucu malzemelerdeki kullanılabilirliği 

üzerine yorumlar yapılmış ve alandaki eksiklikler tartışılmıştır. Gelecek çalışmalara yönelik öneriler de 

sunulmuştur. Derleme çalışması, özellikle bu alanda yapılacak yeni araştırmalara yol gösterici olmayı 

amaçlamaktadır. 
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I.  INTRODUCTION 
 

Noise is generally defined as unwanted sounds that negatively affect people's daily activities and health. 

According to the World Health Organization (WHO) [1], noise was initially considered a minor threat 

to people's physical and psychological health. However, with the evolving and changing environmental 

conditions, it has become one of the primary disturbances threatening human health today. Daily, people 

are exposed to different types of noise, indoors and outdoors. In particular, in developed and some 

developing nations, noise limits are established by regulations and are strictly enforced. Noise can be 

prevented in various ways, either at the source, along the transmission path, or at the receiver. In 

enclosed spaces, while multiple methods exist for controlling noise, the most commonly preferred 

approach, and one frequently encountered in studies, is the improvement of indoor acoustic conditions 

using finishing materials.  

 

Studies on using materials for sound control can be traced back to ancient times. When examining the 

ruins of spaces such as theaters in Hellenistic and Roman cities, it is believed that the materials used in 

the construction and their geometric forms were chosen with an awareness of sound control. 

Additionally, various studies have shown that animal wool was used in different areas for sound control. 

With the advent of the Industrial Revolution and the emergence of factory buildings, the need for noise 

control increased, while technological advancements in materials were also made. However, the concept 

of "acoustic materials" emerged in the 19th century through various studies. Particularly with changes 

in building technology, using materials like steel and concrete in larger spaces led to issues with 

reverberation, increasing the demand for acoustic materials [2]. Over time, the use of plant and animal 

fibers was followed by Helmholtz resonators, plastic-based foams and materials, and, more recently, the 

growing popularity of metamaterials. However, with the depletion of natural resources and the 

increasing emphasis on sustainability, natural materials have again become the focus of research and are 

being reconsidered under advanced technological conditions. In the future, materials that are smart and 

capable of self-adaptation to environmental conditions are expected to enter the market. 

 

In enclosed spaces, the surface area of finishing materials, their sound absorption coefficient, the 

material's placement within the space, and the space's volume are effective parameters in controlling 

acoustic conditions. In particular, the first intervention for ensuring acoustic comfort in an existing area 

is the selection of appropriate materials based on their sound absorption performance characteristics. 

 

A portion of the sound waves reaching the material is converted into thermal energy and dampened as 

they pass through the material. The remaining sound waves either continue through the material to the 

other surface or are reflected from the material's surface (Figure 1). The sound absorption coefficient 

(SAC) of a material is defined as the ratio of the energy absorbed by the material to the energy incident 

on the material, representing the material's sound absorption capacity. The SAC of materials ranges 

between 0 and 1. The closer the coefficient (α) is to 1, the more absorptive the material is.  

 

 
Figure 1. Schematic explanation of the principle of sound absorption. 

 

The impedance tube and reverberation room methods are the most commonly preferred methods used 

to determine the SAC of materials. The impedance tube measurement method frequently employs 

international standards such as ISO 10534-2:2023 [3] or ASTM E1050-12 [4]. The basic principle of 

the impedance tube method involves two microphones, usually one at the source and one at the sample 
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side, within the tube. Sound waves are transmitted from the source to the sample. Information about the 

material's sound absorption capacity is obtained by examining the reflected and absorbed energy when 

the sound waves hit the surface. The reflection coefficient (R), SAC (α), and acoustic impedance (Z) are 

calculated using the amplitude and phase information of the reflected and incident waves. This method 

is particularly favored in academic research due to the small sample sizes required. Additionally, 

measurements can be conducted in a controlled environment and at different frequencies. However, 

despite these advantages, there are some drawbacks. Since the samples are not in actual size, the results 

may differ in practical applications. Variations in edge constraints in different impedance tubes can 

affect measurement results. Furthermore, different frequency ranges are recommended in various 

standards, which can lead to variations in the results. The physical conditions of the measurement 

environment also inevitably affect the results. Therefore, while the impedance tube method is a valuable 

tool for studying the acoustic performance of materials, especially in academic research, the results' 

accuracy and reliability depend on the equipment's quality and experimental conditions. 

 

Standards such as ISO 354:2003 [5] or ASTM C423-17 [6] are commonly used in the reverberation 

room method. This method provides more accurate results because the sample sizes are realistic, and 

sound waves from the source are diffuse, unlike the perpendicular waves used in the impedance tube. 

The design of the reverberation room is crucial to ensure balanced sound distribution within the space. 

Hasan and Hodgson found that a 150 m³ room yielded better results than other room sizes [7]. Tang and 

Chuang indicated that the room size should not be smaller than 150 m³ in reverberation room 

measurements due to the critical frequency. They also noted that if the room size exceeds 500 m³, the 

results might be inaccurate due to the absorption of sound by the air [8]. While the reverberation room 

method may be preferred for its more realistic results, the impedance tube method is more frequently 

used, particularly in academic studies requiring practical results. Typically, preliminary studies are 

conducted using the impedance tube, followed by additional tests in a reverberation room during 

industrial material production. In such studies, an equation can convert SAC from the impedance tube 

into results from the reverberation room measurements. London proposed equation 1 below to convert 

direct sound wave absorption coefficient data from the impedance tube into diffuse sound wave data 

from reverberation room measurements. He conducted numerous experimental studies to derive this 

formula and stated that it is the most accurate with minimal error. The ASTM C384 – 04 [9] standard 

also references London's research. This conversion process is crucial for ensuring consistency and 

comparability of results across different measurement methods. 

 

                                                                  (1) 

 

In equation: 

 

αe: the SAC for diffuse sound waves (random incidence) 

 

α0: the SAC for direct sound waves (normal incidence) 

 

The concept of 'artificial intelligence' (AI), which began to be used in engineering, mathematics, and 

physics, has expanded to many different disciplines. It was first introduced by John McCarthy in 1956 

[10]. McCarthy stated that AI is similar to understanding human intelligence through computers, but AI 

does not have to be restricted by biological methods [11]. One of the fields where AI has been 

increasingly utilized, especially in recent times, is materials science engineering. Experiments and 

density functional theory (DFT) based calculations have been primary methods for learning and under-

standing materials' chemical and physical properties. Experimental processes are exceptionally costly 

and time-consuming. Although DFT calculations are more cost-effective, they can lead to significant 

differences in results due to the experimental setup's physical conditions [12]. With the wealth of data 

ac-cumulated from experimental work, the trial-and-error method, and subsequent DFT-based research, 

AI has started to play a role in designing data-driven approaches in materials science. Recently, the use 

of AI and machine learning to gain deeper insights into materials through increasing experimental and 
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simulation-based data sets has become common [13]. With the growing popularity of AI research, a new 

field known as 'materials informatics' has emerged, integrating all three traditional paradigms of 

materials science: theory, experimentation, and computation/simulation [14]. The key reason for AI's 

suitability in material design is its ability to handle large data volumes and high-dimensional analyses 

[15]. A literature review shows that AI usage in materials science engineering spans a broad range, from 

chemical studies of materials to examining their physical properties. 

 

A review of research on the use of artificial intelligence in architectural acoustics indicates that it has 

become a popular and widely used technique, particularly in the past decade. Studies have explored AI 

approaches in various areas, including soundscape design [16; 17; 18; 19; 20], building acoustics [21; 

22], noise prediction [23; 24; 25], interior acoustic design [26; 27], and the prediction of acoustic 

materials' sound insulation and absorption [28; 29; 30]. Numerous examples of research exist in these 

areas, with only a few references provided here as examples. It is evident from these studies that the use 

of artificial intelligence in architectural acoustics is an undeniable reality, offering innovative 

alternatives in the field. 

 

Experimental studies on sound absorption in materials are time-consuming and costly, leading to the 

suggestion of alternative models such as empirical models proposed by Delany and Bazley (1970), Miki 

(1990), Mechel (1976), and Garai and Pompoli (2005), and phenomenological models proposed by 

Allard and Champoux (1992), Kino and Ueno (2008), and Attenborough (1983). Although these models 

provide accuracy on various parameters, their evaluation is a complex process. Therefore, in the past 20 

years, significant attention has been given to studies involving artificial neural networks (ANNs) and 

fuzzy logic (FL) [31]. 

 

The research question of this study is: "How widely is artificial intelligence used in determining the 

SAC of materials, and can it serve as an alternative method?" In this context, the research methodology 

involves identifying critical terms in the field and conducting a general literature review on the relevance 

of these terms. The findings include publication years, researchers' countries, material properties, 

material parameters beyond SAC, measurement methods, and the compatibility of artificial intelligence 

algorithms. The evaluation section discusses the findings and the applicability of artificial intelligence. 
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II. METHODOLOGY 

A.1 Literature Search Strategy and Inclusion/Exclusion Criteria 

A systematic literature review is a research method designed to answer specific research questions using 

a systematic and transparent approach, enabling the identification of results from studies included in the 

research and providing a critical evaluation [32]. In systematic research, since all studies addressing a 

particular question are examined, an impartial summary of the conducted research is presented [33]. The 

transparency of this process ensures the integrity of the study. 

This study meticulously employed a systematic research method to answer the research questions. The 

main categories examined and the progression of the research process are presented in Figure 2. The 

literature searches were conducted with utmost care, and keywords were identified. A comprehensive 

field search was first carried out to determine the keywords. For this purpose, a preliminary search was 

conducted on Google Scholar using the keywords "Artificial Intelligence," "Architectural Acoustics," 

"Sound Absorbing Materials," and "Sound Absorption Coefficient." A total of 26 publications were 

reviewed, and the research study's keywords were finalized as "Artificial Intelligence," "Sound 

Absorption," and "Material. 

After the keywords were established, the publishers and databases included in the research were 

carefully selected based on the results from Google Scholar. Accordingly, articles published in 

ScienceDirect, Taylor and Francis (TandF), MDPI, Springer, and Sage, which are widely recognized for 

their academic rigor, were included in the scope of the study. In the initial phase, the keyword-based 

search yielded 1835 publications on TandF, 126 on MDPI, 115 on ScienceDirect, 63 on Springer, and 7 

on Sage. 

Due to the increasing significance of research involving artificial intelligence in recent years, the study 

period was set to ten years between 2014 and 2024. Only articles published in English were selected for 

review. Accordingly, the number of studies identified was updated to 542 in TandF, 126 in MDPI, 96 in 

ScienceDirect, 63 in Springer, and 7 in Sage. 

 

In this study, which aims to examine the usage rate of artificial intelligence in determining the SAC of 

materials, search criteria were restricted to include only 'research articles' among the obtained 

publications. As a result of this limitation, the number of articles identified was 359 in TandF, 56 in 

ScienceDirect, 20 in Springer, and 6 in Sage. A specific issue was identified with MDPI. A limited 

number of publications were found when conducting AI-related searches directly on MDPI’s site, with 

other research articles showing keywords like "machine learning" instead. Therefore, the search for 

MDPI research articles was conducted through Google Scholar. Consequently, MDPI was excluded 

from subsequent restrictions, and all 126 articles were screened manually.   

 

Following the article type limitation, a subject-specific restriction was applied to ensure that the studies 

were directly related to the determination of sound absorption coefficients. Given that each publisher's 

site offered different options, field limitations were applied under the engineering category using 

"Materials Science," "Computer Science," and "Environmental Science" as the selected fields. After this 

restriction, 51 articles were identified in ScienceDirect, 46 in TandF, 15 in Springer, and 6 in Sage. 

 

In the final stage, all articles’ titles, keywords, and abstracts were reviewed, and those directly related 

to the topic were selected for further analysis. As a result, 27 articles were examined in this study: 15 

from ScienceDirect, 7 from MDPI, 2 from TandF, 2 from Springer, and 1 from Sage.  
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Figure 2. Flowchart of literature review steps. 

 

A. 2. Data Synthesis and Analysis 

The "Quantitative and Comparative Synthesis with Graphical Analysis" method was employed in the 

literature review. This approach involves collecting and organizing quantitative data, visualizing results 

using graphical tools, and comparing different variables to gain insights. A comparative synthesis is an 

approach that examines similarities and differences by making comparisons between different datasets, 

methods, or results. Quantitative synthesis is carried out transparently and consistently, with clear 

methodology statements, providing scientifically summarized information [34]. In comparative 

synthesis, instead of asking "Is something good?" the question "Is something better than another?" is 

addressed [35]. The graphical analysis method examines and presents datasets using visual tools. This 

method involves creating graphs, charts, and diagrams to identify data trends, relationships, and patterns. 

After establishing the necessary limitations within the scope of the study, the first step was data 

collection, and the collected data were organized by creating Excel tables. The headings under which 

the data were grouped are listed below: 
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• Year of publication 

• Research keywords and other keywords used in the articles 

• Publisher/database where the research was published 

• Country where the research was conducted 

• Material examined/produced within the research 

• Material parameters included in the research 

• Method used to determine the SAC in the study 

• AI method examined in the research 

• Analysis of the correlation between the model and measurement results 

After grouping the data under the main headings and creating tables, visualizations were made to observe 

trends and outcomes. Subsequently, a comparative analysis was conducted among the results, and the 

findings/conclusions were summarized. 
 

 

III. FINDINGS 
 

After applying all the restrictions, 245 research articles were initially identified. Following a review of 

the titles, keywords, and abstracts, 27 of these articles were relevant to investigating the applicability of 

artificial intelligence methods in determining the SAC of materials. The studies were organized 

according to the nine categories outlined in Section A.2. 

 

Figure 3 presents the distribution of studies conducted in this field over the past ten years (2014-2024).  

 

 
Figure 3. Graph of the distribution of academic studies on determining the sound absorption co-efficient 

using artificial intelligence from 2014 to 2024 by year. 

Accordingly, research on predicting the SAC using artificial intelligence has notably increased over the 

past five years. This finding reflects the impact of advancing technology and the increasing accessibility 

of artificial intelligence tools. 

Figure 4 presents the number of publishers/databases where the studies were published. The graph shows 

that most studies in this field were published in ScienceDirect and MDPI.  
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Figure 4. Number of publications in the last ten years (2014-2024) by publisher/database. 

Figure 5 shows the distribution of studies on artificial intelligence models for SAC prediction by country 

across the identified publishers/databases. As illustrated in the figure, China encompasses the majority of 

researchers. China's larger population influences this compared to other countries, but it also reflects 

China's perspective on technological advancements and innovative approaches. Following China, Italy is 

identified as another significant country where innovative research on determining the SAC of materials 

is predominantly conducted.  

 

 
Figure 5. Percentage distribution of studies on artificial intelligence models for predicting SAC by country 

in the last ten years . 

Figure 6 presents the keywords “Artificial Intelligence,” “Sound Absorption,” and “Material” used in the 

research process according to their usage proportions in the articles. The proportions are predominantly 

distributed across ‘Artificial Intelligence’ and ‘Sound Absorption,’ in line with the research title. 
Keywords used in the examined studies beyond the main keywords have been synthesized to provide 

insights for future research and are grouped under the main keyword headings, as shown in Figures 7, 8, 

and 9.  

 
Figure 6. Percentage usage of keywords examined in the research across studies. 
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Figure 7. Additional keywords used in studies under the primary heading of sound absorption. 

 

 
Figure 8. Additional keywords used in studies under the primary heading of artificial intelligence. 

 

 
Figure 9. Additional keywords used in studies under the primary heading of materials. 

Upon reviewing the results, it is observed that while "sound absorption" is predominantly used as a main 

heading, the method for "Artificial Intelligence" is directly included in the keywords. Similarly, for the 

"materials" group, the specific material is often included as a keyword. Detailed keyword usage for 

specific studies is considered a positive approach. 

Another key heading in the study is the material parameters examined in the research. Various physical 

parameters affecting the SAC in materials have been considered to analyze the factors influencing sound 

absorption. As shown in Figure 10, material thickness is frequently investigated as a parameter affecting 

sound absorption in materials. Material thickness is particularly effective at low frequencies, so assessing 

thickness is beneficial when proposing innovative materials. Another significant parameter is the pore 

width in porous materials. The width of the pores affects the amount of friction as sound waves travel 

through the material, making it a crucial parameter to investigate in porous and fibrous materials. Beyond 

these two parameters, studies have also explored the effects of fiber physical properties (such as fiber 

diameter, fiber size, and fiber arrangement), material density, the number of layers in layered materials, 

and air gaps in Helmholtz resonators and layered structures on sound absorption. These material 

parameters are used as inputs in AI models, highlighting their importance in detailing model design.  
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Figure 10. Material parameters examined in studies that affect sound absorption. 

The methods used in the articles to determine the SAC in materials were examined in the next phase of 

the study. As shown in Figure 11, it is evident that, as mentioned in the introduction, the impedance tube 

method is the most commonly preferred method for determining the SAC in academic studies. The second 

most preferred method for SAC determination is COMSOL Multiphysics. In COMSOL, after defining 

the material properties and sound source, the necessary algorithms are created according to the acoustic 

defects. The sound absorption coefficient is determined based on the ratio between the incoming sound 

energy and the absorbed energy. Although practical for reaching results, there can be issues with the 

accuracy of the results due to environmental conditions in measurements like impedance tubes or 

reverberation rooms. Calculations have also emerged as another preferred method in the studies. Other 

methods have been used in various studies as well. Nevertheless, in studies using methods such as 

simulations, it is recommended to use the impedance tube method comparatively for reliability. 

 

 
Figure 11. Number of measurement/calculation methods used in academic studies for determining SAC. 

In the final stage of the findings, the AI programs used for SAC prediction in the articles were examined, 

and the results are presented in Figure 12. The AI models and techniques were categorized into five 

groups. Table 1 presents the methods within these five groups and provides a reference table for the re-

search articles examined in the systematic review that utilized these techniques. 

 

 
Figure 12. AI Techniques and Models Used in Studies for Predicting SAC. 
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Table 1. Categorized AI models and techniques. 

 
AI Main  

Category 

AI Secondary  

Category 
References 

Neural Networks 

ANN (Artificial Neural 

Networks) 

[36]; [37]; [38]; [39]; [40]; 

[31]; [41]; [42]; [43]; [44]; 

[45]; [46]; [47] 

DNN (Deep Neural Networks) [48]; [49]; [50] 

CNN (Convolutional Neural 

Networks) 
[51]; [52]; [53]; [54] 

DAE (Denoising Autoencoder) [55]; [48] 

GRNN (General Regression 

Neural Networks) 
[56] 

ICAN (Independent 

Component Analysis Network)  
[50] 

ANFIS (Adaptive Neuro-Fuzzy 

Inference System) 
[36]; [31] 

GENFIS (Genetic Fuzzy 

Inference System) 

 

[36] 

Machine Learning 

Algorithms 

SVR (Support Vector 

Regression) 
[57] 

KNN (K-Nearest Neighbors) [40] 

LR (Linear Regression) [37] 

Evolutionary 

Algorithms 

GA (Genetic Algorithm) [31]; [54]; [58] 

SAGA (Self-Adaptive Genetic 

Algorithm) 
[54] 

EGA (Evolutionary Genetic 

Algorithm) 
[54] 

Optimization And 

Training Techniques 

LMA (Levenberg-Marquardt 

Algorithm) 
[38]; [45] 

RLT  (Reinforcement Learning 

Techniques) 
[15]; [60] 

Dimensionality 

Reduction 

Techniques 

PCA (Principal Component 

Analysis) 
[59] 

In the studies, approximately 35% of the different AI models were used together, and comparisons were 

made between measurement results and AI models. In some studies, regression results (R2) were 

provided, while in others, it was stated that there was a high correlation with the measurement results, but 

no numerical value was given. In some cases, the absolute error margin (MSE) was reported. Indicators 

of the agreement between AI models and measurement results are presented in Table 2. 
 

Table 2. AI Model-calculation/measurement compatibility. 

 
AI Model Compatibility References 

 

 

 

Neural Networks / ANN 

R2 = 0.95 [44] 

R2 = 0.8 [45] 

R2 = 0.93 [42] 

R2 = 0.99 [46] 

R2 = 0.986 [39] 

R2 = 0.894 [41] 

Comment: High [43]; [47] 

 

Neural Networks / DAE and DNN 

MSE = 0.00487 

Comment: DNN > DAE 
[48] 

Neural Networks / DAE MSE = 0.0122 (DNN) [55] 

 

Neural Networks / CNN 

MSE = 0.028 [52] 

R2 = 0.98 [53] 

Comment: High [51] 

Neural Networks / GRNN MSE = 0.017 [56] 

Neural Networks / ICAN MSE = 0.04 [50] 

Machine Learning Algorithms / SVR MSE = 0.98149 [57] 

Evolutionary Algorithms / GA and SAGA and EGA Comment: High [54] 
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Optimization And Training Techniques / RLT Comment: High [60] 

Neural Networks / ANN and Evolutionary Algorithms / GA MSE = 0.11 [31] 

Neural Networks / ANFIS and Evolutionary Algorithms / GA MSE = 0.17 [31] 

 

AI Model Compatibility References 

Neural Networks / ANN and ANFIS and GENFIS Comment: ANFIS has a 

higher correlation 

[36] 

Neural Networks / ANN and Machine Learning Algorithms / 

LR 

R2 = 0.989 (ANN)          

R2 = 0.571 (LR) 

[37] 

Neural Networks / ANN and Optimization And Training 

Techniques / LMA 

R2 = 0.9 [38] 

Neural Networks / ANN and Machine Learning Algorithms / 

KNN 

Comment: High [40] 

Dimensionality Reduction Techniques / PCA Comment: Higher    

correlation but needs 

more research 

[59] 

 

 

IV. DISCUSSION 
 

This study reviews the literature on using artificial intelligence (AI) models for determining sound 

absorption coefficients. 2,146 articles were retrieved from Science Direct, Taylor and Francis, MDPI, 

Springer, and Sage databases. After applying filters based on year, article type, research area, title, and 

abstract, 27 articles were selected for in-depth analysis. These articles were categorized and evaluated 

based on publication year, keywords, publisher, country, material properties examined, SAC 

determination methods, and AI model performance. The following summary highlights the observed 

trends in existing research within the literature: 

 

- In recent years, the application of Artificial Intelligence (AI) techniques in predicting the sound 

absorption coefficient (SAC) has increased significantly, primarily due to the high costs and time 

demands of experimental processes. China has emerged as the leading country in this field, with 

approximately 80% of studies utilizing experimental measurements conducted through 

impedance tubes, followed by optimization studies employing AI. By substituting experimental 

measurements with AI models, these studies aim to achieve significant savings in both time and 

cost. 

 

- The fact that studies have been conducted in both developed countries, such as Italy, and 

developing countries, such as Ecuador, indicates an interest in sustainability across nations with 

varying economic and geographic conditions, as reflected in the preference for natural fibrous 

materials. The evaluation of natural materials using artificial intelligence models for determining 

sound absorption coefficients in these studies represents a significant step toward promoting 

alternative materials aligned with environmental sustainability goals. 

 

- The analysis reveals that neural network-based techniques are the most commonly used methods, 

with Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Deep 

Neural Networks (DNN) standing out among these models. This preference can be attributed to 

these models' strong learning capacities and ability to effectively process complex data 

relationships in predicting sound absorption coefficients. Specifically, ANN is valued for its 

broad applicability, CNN for its high accuracy with visual and spatial data, and DNN for handling 

more complex prediction tasks due to its deep-layered structure. In particular, ANN is a cost-

effective and fast option for smaller datasets. Given its over 90% correlation with measurement 

results, ANN is expected to see increased application in this field. 

 

- Less commonly used models, such as General Regression Neural Network (GRNN) and 

Denoising Autoencoders (DAE), may be less favored due to their limitations in handling a 

smaller range of materials and parameters. Although one study [56] using the GRNN model 

reported a low mean absolute error of 0.017, it would be premature to make general conclusions 
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based on the limited number of studies available. Similarly, another study [59] employing the less 

frequently used Self-Organizing Maps (SOM) and Principal Component Analysis (PCA) 

suggested that PCA could potentially be used for predicting sound absorption coefficients. 

However, it also highlighted the need for further research with a larger sample size. 

 

- The impact of hybrid model usage on correlation was also examined in the studies. In one study 

[31], which combined ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS) models with 

Genetic Algorithms (GA), the integration of ANN with GA enabled the model to reach optimal 

results more quickly; however, such algorithms require high computational power and, 

consequently, adequate hardware. In another study [54], which utilized GA, Self-Adaptive 

Genetic Algorithm (SAGA), and CNN, the combined method known as the Elitist Genetic 

Algorithm (EGA) appeared advantageous for solving complex problems. Still, they were not 

ideally suited for predicting sound absorption coefficients due to the extensive data requirements. 

 

- As seen in Table 1, AI models are suitable as an alternative method for determining the sound 

absorption coefficient of materials. Over time, training AI models with more materials and 

parameters can increase their applicability. Creating a comprehensive material database will 

provide a significant foundation for improving the reliability of these models. 

 

As the next step in this research, a comprehensive study on the physical and sound absorption properties 

of sound-absorbing materials is planned to make AI models usable within this framework.  
 

 

V.  CONCLUSION 
 

This literature review examines existing studies in artificial intelligence approaches for determining the 

sound absorption performance of materials, highlighting key trends and gaps in the literature. Within the 

scope of this study, five keywords were identified, and publications from five different 

publishers/databases were reviewed, with restrictions based on publication year, article type, and research 

field. Publications obtained under these restrictions were further filtered by closely examining titles, 

abstracts, and, where necessary, content details to exclude works that, despite keyword alignment, did not 

align with the study's content focus. The findings reveal prominent topics such as the applicability and 

advantages of using AI in determining sound absorption coefficients for materials while identifying 

underexplored or overlooked areas in the literature. In particular, environmental factors like temperature 

and humidity significantly impact the sound absorption performance of materials; however, such data are 

often overlooked in computer-based studies, underscoring the need for further research in this area. Future 

studies incorporating environmental conditions as inputs for AI predictions are expected to enhance the 

knowledge base in this field. In conclusion, this study provides a framework that emphasizes the 

applicability of AI methods in assessing the acoustic performance of sound-absorbing materials, offering 

a time- and cost-effective approach that can guide future research in this domain.  
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