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Machine failure prediction is crucial for minimizing downtime and optimizing maintenance strategies 

in industrial settings. This study aims to enhance the accuracy of machine failure prediction models by 

integrating advanced hyperparameter optimization techniques with feature selection methods. Various 

optimization techniques, including Optuna, Hyperopt, and Spearmint, were evaluated, along with feature 

selection methods utilizing Grey Wolf Optimization (GWO) and Whale Optimization Algorithm 

(WOA). The findings reveal that the CatBoost model optimized with GWO and Optuna achieved the 

highest performance, with an accuracy of 88.3%, an F1 score of 88.3%, and a Matthews Correlation 

Coefficient (MCC) of 76.7%. In comparison, WOA demonstrated competitive yet slightly lower results, 

with the best accuracy of 85.9% achieved using CatBoost and Optuna. The study also highlights that 

Linear Discriminant Analysis (LDA), optimized with Optuna, showed notable performance, with an 

accuracy of 86.0%, an F1 score of 85.8%, and an MCC of 74.6% without feature selection, which 

improved to 87.8%, 87.8%, and 76%, respectively, with GWO-based feature selection. The overall 

results indicate that GWO outperforms WOA in improving model performance, particularly when paired 

with advanced hyperparameter tuning techniques. 
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1. INTRODUCTION 

The industrial maintenance strategies are devised in a way that they utilize the predictive failure methodology 

to avoid system failures and thus reduce the unplanned downtime of equipment, machines, and processes. To 

this end, accurate prediction of future failures is essential to ensure timely planning of maintenance activities. 

Failure prediction approaches utilize both past and market data which signify system states, events and 

operations to predict the outcomes. Accurately analyzing this data enables failures to be predicted and 

preventive maintenance activities to be carried out in a timely manner. Fault prediction plays a critical role in 

the safety, efficiency and cost effectiveness of industrial operations. Unplanned downtime can lead to 

production losses, increased repair costs and even customer dissatisfaction. For example, Amazon's 49-minute 

outage in 2013 resulted in $4 million in lost sales (Tweney, 2013). According to a survey conducted by the 

Ponemon Institute, an organization reportedly loses an average of $138,000 per hour due to an outage 

(Ponemon Institute, 2011). Preventing such losses requires the effective use of failure prediction methods. 
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Machine failures can be caused by various factors. These factors include mechanical wear and tear, improper 

assembly, improper use, environmental conditions such as excessive temperature and humidity. Mechanical 

wear can adversely affect the performance of components over time, leading to failures. Furthermore, uneven 

distribution of loads on equipment can also trigger the occurrence of failures. Incorrect installation situations 

can lead to improper machine operation and potential breakdowns, while incorrect usage scenarios can lead to 

unexpected downtime caused by operator errors. Environmental conditions, especially factors such as high 

temperature and humidity, stress the operating conditions of machines, increasing the likelihood of failure. 

Therefore, it is crucial for failure prediction systems to consider this variety of factors and analyze the data to 

make reliable predictions. Failure prediction increases the continuity and efficiency of industrial processes by 

identifying such situations in advance, enabling maintenance strategies to be implemented effectively (Zonta 

et al., 2020). 

Over the last few years, machine learning (ML) has become more and more relevant and vital to prediction 

model training, evaluation of model performance, and deployment in the production environment. ML-based 

failure prediction models are increasingly being adopted due to the rapid progress of machine learning 

algorithms along with their free accessibility in software packages, and the abundance of industrial data from 

big data analytics and stream processing platforms (Leukel et al., 2021). ML-based failure prediction models 

are known to be effective for various systems such as agricultural machinery, wind turbines, aircraft 

components, information and communication technology devices, and manufacturing plants. In studies on 

agricultural machinery, predicting failures using sensor data and operating conditions increases machine 

efficiency and reduces unexpected downtime (Abdallah et al., 2021). Models developed for agricultural 

machinery are critical, especially during harvest periods, and ensure the continuity of these machines. Wind 

turbines are another important application area. In wind turbine failure prediction, a wide range of parameters 

such as vibration analysis and power generation data are used to determine the probability of failure in advance 

(Jin et al., 2021). Such an approach increases energy efficiency and reduces maintenance costs. ML-based 

studies on aircraft components perform component life predictions and failure risk analysis to improve the 

safety of aircraft (Li et al., 2023). Information and communication technology devices are another area where 

ML applications are effective. Failure predictions on network devices develop proactive maintenance 

strategies by analyzing system monitoring data to improve user experience and minimize service interruptions 

(Rzayeva et al., 2023). In manufacturing plants, ML-based fault prediction systems are used to monitor the 

status of machines on production lines and detect abnormal behavior (Ayvaz & Alpay, 2021). 

The effectiveness of machine learning algorithms in the field of fault prediction is closely related not only to 

the selection of the right model, but also to the feature selection processes and hyperparameter optimization. 

Feature selection is a critical step that affects the success of the model, because in high-dimensional datasets, 

redundant or irrelevant features can increase the complexity of the model and lead to overlearning. Improper 

selection of features can negatively affect the overall performance of the model and lead to low accuracy in 
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failure predictions. Hyperparameter optimization is another important step to improve the performance of 

machine learning models. Proper tuning of hyperparameters can greatly affect the generalization ability of the 

model. However, the process of hyperparameter optimization is often time-consuming and can be costly in 

terms of computational resources depending on the size of the dataset. Moreover, the performance results 

obtained with a given combination of hyperparameters may vary depending on the complexity of the model 

and the features used. This makes it difficult to find optimal hyperparameters. These limitations may affect the 

accuracy and reliability of the ML models used in failure prediction, reducing the applicability of the results. 

Therefore, effective feature selection and hyperparameter optimization process is vital for the success of failure 

prediction systems. 

The field of failure prediction and industrial maintenance has witnessed substantial advancements through 

various research efforts, driven by the need to enhance operational efficiency and minimize unplanned 

downtimes. A significant body of work has focused on developing and refining methods for predicting failures 

in industrial systems, utilizing both traditional statistical approaches and modern machine learning techniques. 

These studies have contributed to a deeper understanding of failure mechanisms, improved predictive 

accuracy, and the development of more effective maintenance strategies. 

Wahid et al. (2022) present a novel forecasting method for predictive maintenance (PdM) which applies a 

hybrid model with convolutional neural networks (CNN) and long short-term memory (LSTM) that includes 

a skip connection (CNN-LSTM). This approach leverages the strengths of both CNNs for high-level feature 

extraction and LSTMs for analyzing long-term dependencies in time-series data. Experiments conducted with 

Microsoft's case study dataset, containing failure history, maintenance records, error conditions, and telemetry 

data, show that the hybrid CNN-LSTM model achieves the highest prediction accuracy for machine failure 

compared to individual CNN or LSTM models. 

Celikmih et al. (2020) focused on predicting aircraft system failures using machine learning models and a 

hybrid data preparation approach. They collected two years' worth of maintenance and failure data, identifying 

nine input variables and one output variable. Their method involves a two-stage process: using ReliefF for 

feature selection and a modified K-means algorithm to remove noisy data. The model's performance was 

evaluated with Multilayer Perceptron (MLP), Support Vector Regression (SVR), and Linear Regression (LR), 

using metrics such as Correlation Coefficient (CC), Mean Absolute Error (MAE), and Root Mean Square Error 

(RMSE). The study concludes that their hybrid approach effectively predicts failure counts. 

Mishra and Manjhi (2018) addressed the challenges faced by financial organizations in managing a mix of 

new and old technologies within their branches, including ATMs and self-service devices. They proposed a 

service-oriented, vendor-focused approach to integrate maintenance and technical support strategies 

effectively. Their study emphasizes the importance of predictive maintenance in optimizing branch operations 

by leveraging predictive analytics and machine learning technologies. The proposed method and machine 
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learning model predict the likelihood of device and component failures within a specified future timeframe, 

aiming to enhance customer satisfaction and improve overall business performance. 

Campos et al. (2019) investigated the use of heterogeneous ensembles of ML techniques for Online Failure 

Prediction (OFP). They highlighted that while individual ML models are effective, combining various 

algorithms into ensembles can enhance performance by leveraging different biases. The study assessed the 

effectiveness of different base learners and combination methods to improve prediction accuracy. Results 

indicated that certain combinations of learners and techniques, even if not the best individually, can 

significantly enhance failure prediction. Additionally, analyzing the interactions between learners in successful 

ensembles provided valuable insights into their improved performance. 

Wang et al. (2017) suggested a technique for performance monitoring and failure prediction in optical networks 

by means of machine learning. They assisted SVM (Support Vector Machine) and Double Exponential 

Smoothing (DES) to construct risk-aware models that are particular for equipment failure prediction. The study 

identified that this issue has not been thoroughly addressed before. Experimental results demonstrated that the 

DES-SVM method achieved an average prediction accuracy of 95% for forecasting optical equipment failures. 

This high accuracy indicates that the proposed method significantly improves traditional risk-aware models, 

enhancing the stability and reliability of optical networks by effectively predicting and mitigating equipment 

failure risks. 

Mohammed et al. (2019) have presented the issue of failure prediction in high-performance computing and 

cloud systems, which is critical. As these systems have become more complicated, traditional strategies of 

fault-tolerance like regular checkpointing and replication are no longer sufficient. This study aims to examine 

the role of machine learning in the enhancement of the accuracy of failure prediction. The scientists invent the 

model of predicting failure by applying time series analysis and various machine learning algorithms, such as 

SVM, RF, KNN, Classification and Regression Trees (CART), and LDA. Their experimental results showed 

that the SVM-based model achieved an average prediction accuracy of 90%, demonstrating its effectiveness 

in predicting system and application failures more accurately compared to other algorithms. This suggests that 

machine learning techniques can significantly improve failure management and proactive measures in high-

performance computing systems. 

Pellegrini et al. (2015) introduced the Framework for Building Failure Prediction Models (F2PM), a machine 

learning-based framework designed to predict the Remaining Time to Failure (RTTF) of applications 

experiencing software anomalies. F2PM operates independently of specific applications by focusing on 

system-level features, thus enabling its use across various contexts without requiring manual adjustments. The 

framework performs feature selection to identify key system features that significantly impact RTTF 

prediction, allowing the creation of optimized models tailored to different feature sets. Users can evaluate these 
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models based on prediction accuracy and model-building time, with experimental results demonstrating the 

framework's efficacy using the TPC-W e-commerce benchmark. 

This study distinguishes itself from existing research by not only examining the performance of various 

machine learning algorithms for failure prediction but also comprehensively evaluating the combined impact 

of nature-inspired feature selection methods and modern hyperparameter optimization techniques. While 

previous studies often focus on specific approaches in isolation, this research integrates GWO and WOA for 

feature selection with hyperparameter optimization techniques including Optuna, Hyperopt, and Spearmint. 

GWO, inspired by the natural hunting behavior of grey wolves, provides an efficient mechanism for selecting 

optimal features, while WOA, based on whale hunting strategies, excels in handling complex data structures. 

For hyperparameter optimization, Optuna dynamically automates optimization processes, Hyperopt leverages 

Bayesian optimization for efficient searches in high-dimensional parameter spaces, and Spearmint enhances 

performance when the objective function is uncertain. The study evaluates these techniques on machine 

learning models, including Random Forest (RF), Gradient Boosting (GB), CatBoost, LDA, and K-Nearest 

Neighbors (KNN), to identify the most effective combinations for fault prediction. The findings aim to reveal 

how the integration of feature selection and hyperparameter optimization can enhance model reliability and 

efficiency, ultimately improving predictive maintenance strategies in industrial applications. 

2. MATERIAL AND METHOD 

This section outlines the dataset characteristics, details of the machine learning algorithms employed, the 

performance metrics used for algorithm comparison, and the data preparation procedures. The objective is to 

establish a robust methodological and analytical framework for the research, thereby enhancing the scientific 

contribution of the study and ensuring its reproducibility. 

2.1. Dataset 

The dataset used in this research is publicly available on the Kaggle platform. It contains sensor data collected 

from various types of machinery, such as industrial pumps, air compressors, and CNC machines, with the aim 

of predicting machine failures in advance. The dataset comprises 944 entries and is composed of multiple 

features recorded from sensors installed on the machines, along with a binary indicator of machine failures. A 

detailed description of each feature included in the dataset is provided in Table 1. 

The heatmap in Figure 1 presents the correlation coefficients between various operational parameters of a 

machine and the binary failure indicator. Notably, the “fail” variable demonstrates a moderate positive 

correlation with the AQ (r = 0.58), indicating that elevated air pollution levels are associated with a higher 

likelihood of machine failure. Conversely, there is a moderate negative correlation between “fail” and the CS 

readings (r = -0.47), suggesting that reduced electrical current usage may be linked to an increased risk of 

failure. Additionally, the heatmap reveals significant interdependencies among features, such as a strong 
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positive correlation between VOC levels and fail rate (r = 0.80), highlighting the complex interactions within 

the machine's operational environment. 

Table 1. Dataset Features and Descriptions 

Feature Description 

footfall The count of people or objects passing by the machine. 

tempMode The temperature setting or mode of the machine. 

AQ The air quality index near the machine. 

USS Ultrasonic sensor readings indicating the proximity of objects to the machine. 

CS Electrical current usage of the machine as measured by current sensors. 

VOC The level of volatile organic compounds detected near the machine. 

RP The rotational position or revolutions per minute (RPM) of the machine parts. 

IP The pressure of the input supplied to the machine. 

Temperature The current operating temperature of the machine. 

fail A binary indicator of machine failure (1 indicates failure, 0 indicates no failure). 

 

 

Figure 1. Heatmap of the Dataset 

2.2. Data Preparation 

The descriptive statistics of the dataset reveal varying scales and distributions among the features. For instance, 

the footfall variable exhibits a wide range (0 to 7300) with a mean of 306.38 and a high standard deviation of 
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1082.61, indicating significant variability in the number of people or objects passing by the machine. In 

contrast, other parameters, such as the AQ, USS, and CS, have more limited ranges and are approximately 

normally distributed, with moderate standard deviations (1.44, 1.38, and 1.27, respectively). Data 

normalization was conducted to minimize the quite large disparities between different features; thus, all the 

variables can affect equally the model's performance. The dataset is complete with no missing values, thereby 

the implemented methods of imputation were unnecessary. 

2.3. Ensemble Learning 

Ensemble learning is a powerful machine learning approach that combines multiple base models to improve 

overall prediction performance and robustness. In this study, two ensemble methods were employed: Voting 

Ensemble Classifier (VEC) and Stacking Ensemble Classifier (SEC). Both methods leverage the strengths of 

multiple classifiers to achieve better generalization compared to individual models. The VEC combines the 

predictions of several base learners through a majority voting scheme (hard voting) or by averaging their 

predicted probabilities (soft voting) (Lasotte et al., 2022). The prediction of the VEC is formally defined, as 

given in (1). 

 𝑦̂ =  argmax ∑ 𝜔𝑖

𝑁

𝑖=1

∙ 𝑓𝑖(𝓍) (1) 

where 𝑦̂ represents the final predicted class, 𝜔𝑖 denotes the weight assigned to the 𝑖-th base classifier 𝑓𝑖(𝓍), 

and 𝑁 is the total number of classifiers. 

The SEC, on the other hand, is a more sophisticated approach that trains a meta-classifier to the ensemble of 

predictions obtained from various base classifiers. In this technique, the outputs of the base classifiers are used 

as input features for the meta-classifier, which learns to optimally combine them to minimize error (Rajadurai 

& Gandhi, 2022). The prediction formula for SEC is expressed, as given in (2). 

 𝑦̂ =  𝑔(𝑓1(𝓍), 𝑓2(𝓍), … , 𝑓𝑁(𝓍)) (2) 

where 𝑔 is the meta-classifier function, and 𝑓1(𝓍), 𝑓2(𝓍), … , 𝑓𝑁(𝓍) are the base classifiers. 

The choice of ensemble methods in this study was driven by their ability to address the limitations of single 

classifiers, such as overfitting and high variance, particularly in complex datasets with multiple operational 

parameters. For the VEC, base learners were selected to provide diverse perspectives: CatBoost, known for its 

effectiveness with categorical data and boosting capabilities; RF, which offers robustness through an ensemble 

of decision trees; and KNN, valued for its simplicity and ability to capture local patterns. In contrast, the SEC 

employs a meta-learning approach where a meta-learner is trained to optimally combine the outputs of several 

base learners. For this study, CatBoost was selected as the meta-learner due to its proficiency in managing 
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complex interactions and its ability to effectively synthesize predictions from the base models, which include 

CatBoost, RF, and KNN. 

2.4. Feature Selection 

In this study, the GWO and the WOA were utilized for feature selection. The choice of features is a very 

important stage in the technique of machine learning, targeting to improve the performance of the model by 

recognizing the most relevant features and minimizing the dimensionality. This process helps in mitigating 

overfitting, improving model interpretability, and reducing computational costs. The GWO began by 

initializing a population of potential solutions, each representing a different subset of features from the dataset. 

These solutions were organized into a social hierarchy consisting of alpha, beta, delta, and omega wolves. The 

alpha wolves, representing the best-performing feature subsets, guided the optimization process, while the beta 

and delta wolves provided additional guidance to prevent premature convergence and maintain diversity in the 

search process (El-Kenawy & Eid, 2020). Throughout the optimization process, the GWO algorithm simulated 

the natural hunting strategies of grey wolves, consisting of three main phases: encircling, hunting, and 

attacking the prey. In the encircling phase, wolves updated their positions based on the locations of the alpha, 

beta, and delta wolves, enabling them to concentrate on the most promising areas of the feature space. During 

the hunting phase, the GWO calculated a weighted average of the positions of the top wolves, balancing 

exploration of new areas with exploitation of known good solutions. As the optimization progressed into the 

attacking phase, the algorithm increased its emphasis on exploitation to converge on the optimal subset of 

features. 

The WOA, based on the hunting behavior of humpback whales, was also utilized for feature selection. WOA 

mimics the bubble-net feeding strategy of whales, which involves encircling prey and employing a spiral 

search technique. This approach enables WOA to navigate the feature space effectively and identify optimal 

feature subsets. WOA’s strength lies in its capacity to escape local optima and converge towards global 

solutions, thereby selecting features that contribute significantly to the model’s performance (Khaire & 

Dhanalakshmi, 2022). 

2.5. Validation Method 

Cross-validation is a widely used technique for assessing the performance and generalization ability of 

machine learning models. In this context, 5-fold cross-validation was implemented to ensure a comprehensive 

evaluation of the models. This method involves partitioning the dataset into five distinct subsets or "folds." In 

this process, every fold is used once as a test set while the remaining four folds are joined together to create 

the training set. This process is carried out a total of five times, with each fold serving as the test set once and 

only once. The 5-fold cross-validation procedure can be described using the following equation, as shown in 

(3). 
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 CV =  
1

𝑘
∑ Performance(𝐷𝑖)

𝑘

𝑖=1

 (3) 

Formally, let 𝐷 denote the entire dataset, and 𝐷𝑖  represent the 𝑖-th fold, where 𝑖 ranges from 1 to 5. 

2.6. Performance Metrics 

To evaluate the performance of the models, several key metrics were utilized: Accuracy, F1 Score, and MCC. 

Each of these metrics provides different insights into the model's predictive capabilities and overall 

performance. 

Accuracy: The accuracy is calculated as the number of correctly classified instances divided by the total 

number of instances. It is defined as (4): 

 Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

where 𝑇𝑃 is the number of true positives, 𝑇𝑁 is the number of true negatives, 𝐹𝑃 is the number of false 

positives, and 𝐹𝑁 is the number of false negatives. 

F1 Score: The F1 Score is the harmonic mean of Precision and Recall which gives a balance between the two 

metrics. It is particularly useful for imbalanced datasets. The F1 Score is provided in (5). 

 F1 Score = 2 ×  
Precision × Recall

Precision + Recall
 (5) 

where Precision is defined as (6): 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

and Recall is defined as (7): 

 Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

MCC: MCC provides a balanced measure of classification performance that considers all four categories of 

the confusion matrix. The MCC is calculated as shown in (8). 

 MCC =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 (8) 
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2.7. Model Setups 

The dataset is divided into two parts, with 80% allocated for training and 20% for testing, using a random state 

of 42 to ensure reproducibility. For determining the hyperparameters, three optimization techniques -Optuna, 

Hyperopt, and Bayesian optimization (Spearmint)- were employed, each bringing distinct advantages to the 

optimization process.  

Optuna is a self-tuning hyperparameter optimization framework which finds optimal hyperparameters by 

applying a dynamic and efficient search algorithm. It employs a tree-structured Parzen estimator (TPE) for 

Bayesian optimization but is also capable of other search strategies like grid search or random search. Optuna 

allows for the definition of an objective function and performs optimizations in a highly flexible and scalable 

manner (Parra-Ullauri et al., 2023). It can prune unpromising trials early in the optimization process, speeding 

up the search and enhancing computational efficiency. Hyperopt is another popular hyperparameter 

optimization tool that focuses on efficient searching through large, high-dimensional spaces. It is based on 

Bayesian optimization, using the TPE as a surrogate model to guide the search process towards promising 

areas. Unlike traditional grid or random searches, Hyperopt incrementally builds a model of the objective 

function, enabling it to make informed decisions on where to sample next (Luo, 2016). This allows Hyperopt 

to effectively explore and exploit the hyperparameter space, particularly for complex and high-dimensional 

optimization tasks. Spearmint is a specific implementation of Bayesian optimization that is designed to handle 

black-box optimization problems where the objective function is expensive to evaluate (Archetti & Candelieri, 

2019). It models the objective function using Gaussian processes and utilizes the expected improvement 

criterion to choose the next set of hyperparameters to evaluate (Young et al., 2018). Spearmint is particularly 

effective in scenarios where the evaluation of each set of hyperparameters is time-consuming or costly, as it 

aims to minimize the number of evaluations required to find the optimum solution. In this study, only the 

hyperparameter settings obtained through Optuna are presented, as it yielded the best results. Table 2 provides 

the optimized hyperparameter settings for the models. 

For Optuna, the configuration included a total of 100 trials with the TPESampler for efficient search and the 

MedianPruner to eliminate fewer promising trials early. Hyperopt was utilized with a maximum of 100 

evaluations, employing the TPE algorithm for Bayesian optimization, and incorporated various 

hyperparameter distributions such as uniform and choice. Bayesian Optimization, specifically Spearmint, was 

configured with 100 iterations and used the Expected Improvement acquisition function, with parameters set 

to kappa=1.96 and xi=0.01 to balance exploration and exploitation. Table 3 presents the hyperparameter 

settings used for each optimization technique. 

The data analysis and model testing were conducted using the Python programming language. For data 

processing and manipulation, the pandas and NumPy libraries were employed, providing robust tools for 

handling large datasets. The scikit-learn library was utilized for model development and evaluation, offering a 
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comprehensive range of machine learning algorithms and performance metrics. All analyses were performed 

within the Jupyter Notebook environment, which integrates code, text, and visualizations seamlessly. The 

computational experiments were executed on a PC equipped with an AMD Ryzen 7800X3D processor, 

operating at 4.2 GHz, and an NVIDIA GeForce RTX 4070 Ti GPU, supported by 32 GB of 6000 MHz DDR5 

RAM. The system ran on Windows 11, ensuring a stable and efficient development environment. 

Table 2. Hyperparameter Settings for Models Optimized Using Optuna 

Model Hyperparameter Settings 

RF n_estimators, max_depth, min_samples_split, 

min_samples_leaf 

120, 12, 3, 2 

GB n_estimators, learning_rate, max_depth, 

min_samples_split, min_samples_leaf 

221, 0.07, 6, 3, 2 

CB iterations, learning_rate, depth, l2_leaf_reg, 

bagging_temperature 

545, 0.03, 8, 3, 0.9 

LDA solver, shrinkage, n_components, tol “lsqr”, “auto”, 1, 0.0001 

KNN n_neighbors, weights, algorithm, leaf_size, p 7, “distance”, “auto”, 30, 2 

VEC estimators, weights [(“CatBoost”, CB()), (“RF”, RF()), 

("KNN", KNN())], [1, 2, 1] 

SEC estimators, final_estimator [(“CatBoost”, CB()), (“RF”, RF()), 

(“KNN”, KNN())], CatBoost 
 

Table 3. Hyperparameter Settings for Optimization Techniques 

Optimization Technique Settings 

Optuna n_trials=100, sampler=TPESampler, pruner=MedianPruner 

Hyperopt max_evals=100, algo=tpe.suggest, domain=hp.choice, hp.uniform 

Bayesian Optimization n_iter=100, acq_func=Expected Improvement, kappa=1.96, xi=0.01 

3. EXPERIMENTAL STUDY AND FINDINGS 

The experimental phase of the study is examined in four distinct stages. In the first stage, the model 

performances on sub-datasets without feature selection and hyperparameter optimization are investigated and 

compared. The second stage focuses on the application of hyperparameter optimization techniques, Optuna, 

Hyperopt, and Spearmint, without feature selection. The third stage involves an evaluation of feature selection 

combined with hyperparameter optimization methods using GWO. Finally, the fourth stage assesses the impact 

of WOA on hyperparameter optimization methods. Table 4 provides the results for model performance without 

feature selection and hyperparameter optimization. 

When examining Table 4, it is evident that among the evaluated models, CatBoost stands out with the highest 

performance across all metrics. It achieved an Accuracy of 0.797, an F1 Score of 0.795, and an MCC of 0.716. 

The average performance across models is an Accuracy of 0.787, an F1 Score of 0.785, and an MCC of 0.700, 

with a standard deviation of 0.0080 for Accuracy, 0.0078 for F1 Score, and 0.0107 for MCC. 
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Table 4. Model Performance without Feature Selection and Hyperparameter Optimization 

Models Accuracy F1 MCC 

CatBoost 0.797 0.795 0.716 

LDA 0.790 0.788 0.701 

GB 0.791 0.789 0.705 

KNN 0.775 0.773 0.684 

RF 0.780 0.779 0.694 

Avg. 0.787 0.785 0.700 

Std. Dev. 0.0080 0.0078 0.0107 

VEC 0.785 0.782 0.703 

SEC 0.790 0.787 0.708 

Table 5 presents the performance metrics of various models optimized with different hyperparameter tuning 

techniques, specifically Optuna, Hyperopt, and Spearmint. Among the evaluated models, LDA optimized with 

Optuna achieved the highest performance, with an Accuracy of 0.860, an F1 Score of 0.858, and an MCC of 

0.746. This indicates that LDA, when combined with Optuna for hyperparameter optimization, outperforms 

the other algorithms in terms of Accuracy, F1 Score, and MCC. When comparing these results to those 

presented in Table 4, where models were assessed without feature selection and hyperparameter optimization, 

we observe a notable improvement. For instance, CatBoost's performance increased from an Accuracy of 

0.797, an F1 Score of 0.795, and an MCC of 0.716 to 0.823 with Optuna, 0.858 with Hyperopt, and 0.812 with 

Spearmint. Similarly, LDA's performance improved from an Accuracy of 0.790, an F1 Score of 0.788, and an 

MCC of 0.701 to the highest values with Optuna. The average performance metrics across models with 

hyperparameter optimization are also higher compared to those without. Specifically, the average Accuracy, 

F1 Score, and MCC are 0.829, 0.828, and 0.720 with Optuna; 0.823, 0.820, and 0.715 with Hyperopt; and 

0.799, 0.797, and 0.708 with Spearmint. This improvement underscores the significant impact of 

hyperparameter tuning on enhancing model performance. The standard deviations of the performance metrics 

reveal variability among the different optimization techniques. Optuna shows standard deviations of 0.0194 

for Accuracy, 0.0194 for F1 Score, and 0.0155 for MCC. Hyperopt exhibits higher variability with standard 

deviations of 0.0267 for Accuracy, 0.0263 for F1 Score, and 0.0239 for MCC, while Spearmint has the lowest 

variability, with standard deviations of 0.0098 for Accuracy, 0.0102 for F1 Score, and 0.0150 for MCC. Figure 

2 shows the accuracy performance of different models optimized using Optuna, Hyperopt, and Spearmint 

without applying feature selection. 

Table 6 illustrates the performance of various models optimized using GWO with three different 

hyperparameter tuning methods. Among the models evaluated, CatBoost optimized with Optuna achieves the 

highest performance, with an Accuracy of 0.883, an F1 Score of 0.883, and an MCC of 0.767. When comparing 

these results with those from Table 5, which showcases models without feature selection, it is evident that 
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GWO significantly enhances performance. For instance, CatBoost's performance with GWO and Optuna 

(Accuracy of 0.883, F1 Score of 0.883, MCC of 0.767) surpasses its performance without feature selection 

(Accuracy of 0.823, F1 Score of 0.821, MCC of 0.720). Similarly, LDA's performance improved from an 

Accuracy of 0.860, an F1 Score of 0.858, and an MCC of 0.746 with Optuna to 0.878, 0.878, and 0.760 

respectively with GWO and Optuna. The average performance metrics with GWO are generally higher than 

those without. Specifically, the average Accuracy, F1 Score, and MCC are 0.874, 0.874, and 0.748 with 

Optuna; 0.858, 0.855, and 0.736 with Hyperopt; and 0.854, 0.851, and 0.731 with Spearmint. This highlights 

the effectiveness of GWO in improving model performance. Figure 3 presents the accuracy performance of 

various models optimized using Optuna, Hyperopt, and Spearmint with GWO-based feature selection. 

Table 5. Model Performance without Feature Selection 

Models 
Optuna Hyperopt Spearmint 

Accuracy F1 MCC Accuracy F1 MCC Accuracy F1 MCC 

CatBoost 0.823 0.821 0.720 0.858 0.855 0.740 0.812 0.810 0.729 

LDA 0.860 0.858 0.746 0.832 0.830 0.725 0.802 0.800 0.712 

GB 0.843 0.842 0.723 0.835 0.832 0.730 0.804 0.802 0.717 

KNN 0.809 0.807 0.699 0.779 0.777 0.672 0.783 0.780 0.686 

RF 0.812 0.811 0.711 0.810 0.808 0.707 0.794 0.792 0.698 

Avg. 0.829 0.828 0.720 0.823 0.820 0.715 0.799 0.797 0.708 

Std. Dev. 0.0194 0.0194 0.0155 0.0267 0.0263 0.0239 0.0098 0.0102 0.0150 

VEC 0.817 0.815 0.736 0.795 0.792 0.710 0.790 0.788 0.703 

SEC 0.828 0.826 0.746 0.800 0.796 0.715 0.795 0.792 0.710 

 

 

Figure 2. Model Accuracy Across Optimization Techniques Without Feature Selection 
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Table 6. Model Performance with GWO-based Feature Selection and Hyperparameter Optimization 

Models 
Optuna Hyperopt Spearmint 

Accuracy F1 MCC Accuracy F1 MCC Accuracy F1 MCC 

CatBoost 0.883 0.883 0.767 0.873 0.869 0.754 0.873 0.868 0.754 

LDA 0.878 0.878 0.760 0.855 0.851 0.742 0.855 0.852 0.742 

GB 0.878 0.878 0.756 0.861 0.859 0.737 0.855 0.852 0.731 

KNN 0.862 0.862 0.725 0.849 0.844 0.718 0.842 0.839 0.709 

RF 0.867 0.867 0.734 0.854 0.850 0.728 0.846 0.843 0.719 

Avg. 0.874 0.874 0.748 0.858 0.855 0.736 0.854 0.851 0.731 

Std. Dev. 0.0087 0.0087 0.0180 0.0092 0.0097 0.0137 0.0119 0.0112 0.0179 

VEC 0.873 0.873 0.745 0.858 0.855 0.733 0.850 0.847 0.724 

SEC 0.878 0.878 0.757 0.865 0.860 0.748 0.868 0.865 0.750 

 

 

Figure 3. Model Accuracy Across Optimization Techniques Using GWO-Based Feature Selection 

Table 7 presents the performance metrics of various models optimized using WOA with three different 

hyperparameter tuning methods. Among the models assessed, CatBoost with Optuna stands out with an 

Accuracy of 0.859, an F1 Score of 0.860, and an MCC of 0.759. This indicates that CatBoost, when optimized 

with WOA and Optuna, delivers superior performance compared to other models and tuning methods. 

Comparing these results with those from Table 6, which showcases models optimized with GWO, the 

performance metrics with WOA are slightly lower. For instance, CatBoost's performance with WOA and 

Optuna (Accuracy of 0.859, F1 Score of 0.860, MCC of 0.759) is marginally lower than its performance with 

GWO and Optuna (Accuracy of 0.883, F1 Score of 0.883, MCC of 0.767). Similarly, other models such as 

LDA and GradientBoost also show a reduction in performance with WOA compared to GWO. The average 
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performance metrics with WOA are slightly lower than those achieved with GWO. This highlights that while 

WOA still provides strong results, GWO tends to deliver slightly better performance across the models 

evaluated. Figure 4 illustrates the accuracy results of models optimized with Optuna, Hyperopt, and Spearmint 

under WOA-based feature selection. 

Table 7. Model Performance with WOA-based Feature Selection and Hyperparameter Optimization 

Models 
Optuna Hyperopt Spearmint 

Accuracy F1 MCC Accuracy F1 MCC Accuracy F1 MCC 

CatBoost 0.859 0.860 0.759 0.846 0.847 0.742 0.791 0.794 0.732 

LDA 0.872 0.874 0.754 0.857 0.859 0.742 0.797 0.799 0.716 

GB 0.869 0.871 0.751 0.855 0.857 0.738 0.803 0.805 0.725 

KNN 0.851 0.854 0.710 0.837 0.840 0.688 0.788 0.790 0.675 

RF 0.854 0.856 0.724 0.842 0.844 0.702 0.785 0.788 0.695 

Avg. 0.861 0.863 0.739 0.847 0.849 0.722 0.792 0.795 0.708 

Std. Dev. 0.0091 0.0090 0.0214 0.0085 0.0082 0.0255 0.0072 0.0069 0.0233 

VEC 0.866 0.868 0.735 0.855 0.858 0.725 0.814 0.816 0.720 

SEC 0.871 0.872 0.752 0.855 0.856 0.740 0.804 0.805 0.724 

 

 

Figure 4. Model Accuracy Across Optimization Techniques Using WOA-Based Feature Selection 

Figure 5 illustrates the comparison of Optuna accuracy scores across different feature selection techniques 

applied to various machine learning models. The feature selection methods include no feature selection 

(Without FS), Grey Wolf Optimization-based feature selection (GWO-based FS), and Whale Optimization 

Algorithm-based feature selection (WOA-based FS). Among the models, the highest accuracy was observed 

with CatBoost under the GWO-based FS approach, achieving a value of 0.883. Similarly, high accuracy was 
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recorded for SEC and GB models under GWO-based FS, both reaching values of 0.878. In comparison, the 

WOA-based FS technique also produced competitive results, such as 0.872 for the GB model and 0.871 for 

the SEC model. Models without feature selection consistently demonstrated lower accuracy across all cases, 

with the KNN model yielding the lowest accuracy of 0.809. This indicates that the application of optimization-

based feature selection methods significantly enhances model performance compared to scenarios without 

feature selection. 

 

Figure 5. Comparison of Optuna Accuracy Across Different Feature Selection Techniques 

4. DISCUSSION 

The findings from this study provide a comprehensive analysis of the impact of hyperparameter optimization 

and feature selection techniques on the performance of various machine learning models. The results 

demonstrate that both hyperparameter optimization and feature selection significantly contribute to enhancing 

model performance, with some variations depending on the specific algorithms and optimization methods 

employed.  

The first stage of the study, which analyzed model performance without feature selection and hyperparameter 

optimization, highlighted CatBoost as the best-performing model across all metrics. However, the results 

indicated considerable room for improvement with the application of optimization techniques. In the second 

stage, applying hyperparameter optimization methods without feature selection resulted in notable 

performance improvements, with LDA combined with Optuna yielding the highest accuracy. This suggests 

that LDA is particularly well-suited to benefit from fine-tuning using the Optuna framework. Significant gains 

observed in CatBoost’s performance across all three optimization methods further underscore the model’s 

adaptability. Optuna demonstrated consistent effectiveness, as evidenced by its lower standard deviation in 

performance metrics compared to Hyperopt and Spearmint. Recent findings in the literature highlight Optuna’s 

efficient hyperparameter optimization capabilities, particularly in balancing exploration and exploitation 

during the search process (Yu & Zhu, 2020). Unlike traditional approaches like random or grid search, Optuna 
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leverages an adaptive search mechanism using Tree-structured Parzen Estimators (TPE) and early stopping, 

which dynamically adjusts the search space based on previous iterations, optimizing computational resources 

(Akiba et al., 2019). Optuna’s pruning mechanism, which discards suboptimal trials early, further enhances its 

efficiency and robustness, particularly for high-dimensional datasets (Hassanali et al., 2024). Comparatively, 

Hyperopt and Spearmint, while effective, exhibit higher variability in performance metrics. Hyperopt’s 

reliance on TPE without adaptive pruning and Spearmint’s use of Gaussian Processes for optimization can 

lead to challenges in scalability and consistency in high-dimensional search spaces, resulting in higher variance 

in results (Chen et al., 2022; Tørring & Elster, 2022). 

The third stage, which evaluated the combination of feature selection and hyperparameter optimization using 

the GWO method, showed that GWO is highly effective for improving model performance. CatBoost 

optimized with GWO and Optuna achieved the highest overall metrics, surpassing results from earlier stages, 

highlighting GWO's ability to enhance both feature selection and hyperparameter tuning to maximize machine 

learning model performance. The effectiveness of GWO stems from its nature-inspired algorithm, which 

mimics the hunting behavior of grey wolves, balancing exploration and exploitation in complex search spaces 

(Hatta et al., 2019). This dynamic search capability helps prevent premature convergence to local optima, a 

common issue in optimization tasks. Recent studies have highlighted GWO's advantages over traditional 

algorithms like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), particularly in feature 

selection and parameter tuning tasks (Seyyedabbasi & Kiani, 2021). By integrating feature selection, GWO 

not only identifies the most relevant features but also fine-tunes model hyperparameters, leading to significant 

improvements in predictive performance. This dual approach aligns with findings that metaheuristic 

algorithms like GWO often outperform traditional methods, especially in high-dimensional datasets where 

overfitting risks are greater (Shen & Zhang, 2022). Therefore, GWO provides a robust and efficient framework 

for optimizing machine learning models, confirming its potential for advanced data science applications. 

The fourth stage, which assessed the impact of the WOA on hyperparameter optimization methods, further 

underscored the critical role of feature selection when combined with optimization strategies. Although WOA 

contributed to improved model performance, the results were generally lower than those achieved with the 

GWO method. The differences in performance between WOA and GWO can be attributed to the unique 

optimization strategies and the exploration-exploitation mechanisms inherent in each algorithm. WOA mimics 

the bubble-net hunting strategy of humpback whales, emphasizing a more stochastic exploration of the search 

space, which may lead to broader but less precise search outcomes (Mirjalili & Lewis, 2016). In contrast, 

GWO, which is inspired by the social hierarchy and hunting behavior of grey wolves, has been shown to 

maintain a more balanced trade-off between exploration and exploitation, allowing for more refined 

convergence to optimal solutions (Mirjalili et al., 2014). The slightly inferior performance of WOA compared 

to GWO may also reflect WOA's potential limitations in navigating the optimization landscape for certain 

types of datasets and models, particularly when complex interactions among features are present (Qaraad et 
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al., 2022). Studies have demonstrated that while WOA can be highly effective for certain optimization tasks, 

its performance may be less consistent across diverse problem domains than GWO, which tends to offer a 

more stable optimization process due to its dynamic adaptation to the search environment (Wang et al., 2021). 

These findings suggest that while WOA offers valuable improvements, GWO may provide a more reliable 

approach for achieving optimal performance across a range of models and datasets. 

5. CONCLUSION 

This study investigated the impact of various hyperparameter optimization techniques and feature selection 

methods on the performance of machine learning models for machine failure prediction. The results 

demonstrate that integrating feature selection with hyperparameter optimization significantly enhances 

predictive performance. Among the evaluated methods, GWO paired with Optuna emerged as the most 

effective combination. Specifically, the CatBoost model optimized with GWO and Optuna achieved the 

highest performance, with an accuracy of 88.3%, an F1 score of 88.3%, and an MCC of 76.7%. LDA also 

showed considerable improvement, with its accuracy increasing from 86% without feature selection to 87.8% 

with GWO-based feature selection. Similarly, GB and SEC models achieved accuracy levels of 87.8% and 

87.8%, respectively, under the GWO approach. In comparison, the WOA produced competitive results, with 

CatBoost achieving an accuracy of 85.9% and an MCC of 75.9%, though it consistently underperformed 

relative to GWO. These differences are attributed to the contrasting exploration-exploitation strategies of 

GWO and WOA. Overall, the findings confirm that GWO, particularly when combined with Optuna, provides 

a solid and effective framework for optimizing machine learning models in predictive maintenance tasks, 

offering a pathway to enhance industrial reliability and operational efficiency. 
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