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Abstract: Accurate vapor-liquid equilibria (VLE) calculations of carbon dioxide and hydrogen sulfide mixtures are 
critical to gas processing and the affordable, safe design of flow assurance technologies. Inaccurate VLE predictions  
can lead to inaccurate gas hydrate phase equilibria predictions and ensuing safety and economic risks. This research 
paper explores the potential incorporation of Deep Neural Networks (DNNs) to support conventional expert systems 
within the context of predicting VLE. It facilitates more flexible and data-driven approaches that are required due to  
the growing intricacy and dynamic character of chemical processes. Moreover, various cubic and non-cubic equation 
of state (EoS) models (such as SRK, PR, CPA, SAFT, and PC-SAFT) were also examined to compare predicted VLE for 
various mixtures of CO2 and H2S. Prior to the comparison of DNN-predicted VLE with EOS models, binary interaction 
parameters were optimized for all  EOS with the available experimental  phase equilibria measurements. Model  
accuracies were compared and analyzed for various binary systems containing CO2/H2S + other associative and non-
associative components. The absolute average deviation in vapor and liquid phase composition/bubble pressure was 
calculated and compared for all five-state EOS with DNN predictions. The DNN and equation of states with BIP gave a 
reliable illustration of the phase behavior of CO2/H2S-containing systems compared to others as indicated by the 
lower AADP values. By contrasting the applied DNN model with conventional techniques, we explore the promising 
channel for future research directions and industry applications, as well as an opportunity for innovation and field  
advancement for modern expert systems.
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1. INTRODUCTION

Vapor-liquid equilibria (VLE) calculations are of utmost 
importance in chemical industries, including separation, 
flow  assurance,  CO2 sequestration, acid  gas  capture 
using  amines,  and  gas  hydrate  phase  equilibria 
prediction. While VLE of mixtures comprising of simple 
non-polar molecules (e.g., small hydrocarbons) can be 
reasonably  explained  using  traditional  estimation 

techniques  (e.g.,  cubic  EoS),  accurate  prediction  of 
phase  behavior  of  polar  associating  molecules  (e.g., 
water, alcohols, glycols) and acid gaseous species (e.g., 
CO2, H2S) is very difficult because of complex molecular 
arrangements as dictated by the nature and number of 
associating sites on the molecule. Errors in predicting 
phase behavior of these associating systems can lead to 
faulty  design  of  various  unit  operations.  Accurate 
prediction of VLE for CO2 and H2S gas mixture decides the 
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accuracy of the hydrate phase boundary and significant 
error in VLE may result in an inaccurate hydrate stability 
condition.
 
Various researchers have measured the VLE behavior of 
CO2 and H2S containing systems, as summarized in Table 
S1-S2.  For  example,  a  systematic  study  of  H2S  + 
hydrocarbon mixtures was carried out by Stamataki and 
Magoulas (Stamataki & Magoulas, 2000). They employed 
the  Jhaveri  and  Youngren's  volume  translated  (J-PR) 
Peng-Robinson EoS to investigate the phase equilibria 
and  volumetric  behavior  of  H2S containing  systems 
(Jhaveri & Youngren, 1988). A comprehensive evaluation 
of H2S containing ternary and quaternary systems (with 
methane,  ethane,  propane,  and CO2) was  performed 
using  cubic  plus  association  EoS  by  Tzirakis  et  al. 
(Tzirakis et al., 2016). Additional reviews and analysis of 
thermophysical properties and VLE of pure and mixed 
systems  can  be  obtained  from  the  following  studies 
(Azari et al., 2013; da Silva et al., 2018; Diamantonis et 
al., 2013; Espanani et al., 2016; Faúndez & Valderrama, 
2013; Ghosh, 1999; Lee & Lin, 2007; Nasrifar & Tafazzol, 
2010; Tzirakis et al., 2016; Young et al., 2018). 

Expert  systems  increase  the  effectiveness,  reliability, 
and safety of chemical engineering processes by utilizing 
state-of-the-art computational techniques and domain-
specific knowledge. Expert systems have the ability to 
optimize chemical process operations by suggesting and 
implementing advanced control methods. They can be 
particularly  useful  in  predicting  VLE  equilibrium  by 
combining domain knowledge, thermodynamic models, 
and computational methods. 

Recently,  Deep  Neural  Networks  (DNNs)  have  been 
applied to predict various VLE data sets over range of T, 
and P conditions (Azari et al., 2013; Carranza-Abaid et 
al., 2023; Del-Mazo-Alvarado & Bonilla-Petriciolet, 2022; 
Eze & Masuku, 2018; Kamari et al., 2020; Nguyen et al., 
2007; Roosta et al., 2019; Sharma et al., 1999; Vaferi et 
al.,  2018;  Wu  et  al.,  2015;  Zarenezhad  &  Aminian, 
2011). A DNN is trained on an extensive dataset obtained 
from  chemical  engineering  scenarios  as  part  of  the 
standard  technique.  In  order  to  produce  more 
sophisticated and precise predictions, the trained model 
seeks  to  identify  complex  patterns  and  relationships 
within the data. The expert system's current knowledge 
base can be combined with DNN results, allowing rule-
based  reasoning  and  data-driven  insights  to  work  in 
harmony.

TensorFlow integrates the Keras library, which includes 
the  Functional  APIs  for  constructing  complex  Neural 
Network  (NNs)  in  flexible  and  powerful  ways.  The 
Functional APIs have not been often studied or used in 
chemical processes like Vapor-Liquid Equilibrium (VLE) 
prediction.  In  the  context  of  chemical  processes, 
especially VLE prediction, we may come across situations 
where the input data includes a combination of several 
categories (e.g.,  molecular structures,  thermodynamic 

parameters, etc.) In these circumstances, the Functional 
API's capacity to manage common layers and numerous 
inputs  and  outputs  can  be  useful.  In  non-linear 
regression  analysis,  it  is  challenging  to  estimate  the 
functional  relationship  between  the  multi-dimensional 
independent and target variables. With the availability of 
APIs through the modern libraries of neural networks, it 
is convenient to design, and train customized NNs for 
better  prediction  of  target  data.  The  models  created 
using functional APIs are more flexible than sequential 
designs, especially when prediction of multiple outputs 
are required using multidimensional input features. Such 
models are quite suitable to work with shared layers, 
non-linear  topologies,  or  multi-dimensional  regression 
problems  where  the  multiple  output  with  different 
physical meanings depends on the same input dataset.

The  measurement  of  vapor-liquid  equilibria  for 
multicomponent systems over a range of temperature 
and pressure conditions is a costly, time-consuming, and 
laborious task. Hence, the accurate estimation of VLE is 
of utmost importance for the accurate design of process 
equipment  and  chemical  applications.  Conventionally, 
the equation of state coupled with the flash algorithm is 
the most common technique to estimate phase equilibria 
and thermophysical properties. Over the past decades, 
there have been many attempts to accurately estimate 
the equilibrium properties of hydrocarbons with gases of 
acids as highlighted in the following studies (Diamantonis 
et al., 2013; Li, 2008; Li & Yan, 2009; Wong & Sandler, 
1984). However, there is a need to compare all different 
EoS models to evaluate their effectiveness in predicting 
phase  equilibria.  The  current  study  highlights  the 
effectiveness  of  various  EoS  models  such  as  Soave 
Redlich Kwong (SRK), Peng Robinson (PR), cubic plus 
association  (CPA),  Statistical  Associating  Fluid  Theory 
(SAFT), and perturbed chain SAFT (PC-SAFT) for phase 
equilibria  prediction  with  optimized  binary  interaction 
parameters. Moreover, a DNN model was also created by 
using  functional  APIs  of  Keras  to  predict  the VLE  of 
hydrogen sulfide and carbon dioxide-containing binary 
systems.  The  model  can  predict  pressure  and  vapor 
phase  mole  fraction  very  close  to  their  experimental 
values.  Expert  systems  typically  employ  domain 
knowledge  and  rule-based  procedures,  but  utilizing 
Keras' Functional API can enhance system performance, 
especially for applications that benefit from deep learning 
techniques.  To  compare  the  model  accuracies  EoS 
algorithm was implemented with a reliable multiphase 
flash  algorithm  for  predicting  VLE.  Finally,  VLE 
predictions utilizing DNN were compared with various 
EoS mentioned earlier.

2. METHODOLOGY

The significant breakthrough in the field of NN occurred 
with the concept of backpropagation that deal with the 
adjustment of weights while training a multi-layer NN for 
minimum prediction error  (Li et al., 2012). Meanwhile, 
the implementation of  deep learning became possible 
with  the  help  of  modern  computing  resources,  like 
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powerful machines, advanced algorithms, and availability 
of larger datasets. It served many disciplines and solved 
complex problems in computer vision, healthcare, stock 
trading, social networks, and real-world problems from 
numerous  branches  of  engineering  (Mahfooz  et  al., 

2023; Mahfooz et  al.,  2022; Zhong et  al.,  2021).  In 
chemical engineering, the use of DNN is highly valuable 
for solving complex problems. Some major applications 
of DNNs have been observed in certain areas like quality 
control,  process  modeling  and  control,  predictive 
maintenance,  material  design,  energy  efficiency,  flow 

assurance, water treatment, etc. (Han et al., 2019; Han 

et al., 2023; Zhang & Zhang, 2022). While solving real-
world chemical engineering problems, high-quality data, 
architecture  of  DNN,  and  a  robust  training 
implementation are among the crucial requirements of 
using a DNN. Multiple  layers of  interconnected nodes 
make up a DNN, which is often divided into three basic 
types: An input layer, single or numerous hidden layers, 
and an output layer (see Figure 1). The term "deep" 
refers to the availability of multiple hidden layers, which 
allows learning of complex data representations.

Figure 1. A generalized deep neural network structure. 

Here,  we  have  implemented  a  functional  API  for 
designing and training a DNN. It  offers  an adaptable 
approach  to  create  neural  network  architectures  by 
defining  the  connections  between  layers  in  a  more 
evident and practical pattern. It is more flexible than its 
competitor i.e., the sequential approach for constructing 
neural networks. Functional API is useful for multi-model 
and multitask learning as it conveniently affords multiple 
input and output layers. This adaptability empowers to 
build intricate network structures that concurrently offers 
multiple  predictions  on  diverse  types  of  data.  A 
mathematical representation for a simple DNN using the 
Functional API with one shared layer and one non-shared 
(specific) layer is provided below. This example considers 
a DNN with two branches of input data, one shared layer, 
and one specific layer:
Input Layers:
Input for the first branch: X1

Input for the second branch: X2

Shared Layer:
Linear Transformation: Zs=Ws⋅X1+bs

Activation Function: As=gs(Zs)
Specific Layer:
Linear Transformation: Zn=Wn⋅X2+bn  
Activation Function: An=gn (Zn) 
Where, X1 and X2 are inputs for first and second branch, 
respectively. Zs and As are the outputs of the shared layer 
after applying a linear transformation and the activation 
function.  Similarly,  Zn and,  An are  the  output  of  the 
specific layer after applying the linear transformation and 
the activation function. Ws, bs, Wn, and bn represent the 
weights and biases for the shared and specific layers. 
Here, gs and gn represent the activation functions applied 
to  the  shared  and  specific  layers,  respectively.  The 
shared layer is normally used for feature extraction and 
the specific layer is used for task-specific processing. The 
input data from branches are processed separately that 
allows for different data types to be processed differently 
in  the  network.  A  simplified  block  flow  diagram 
representing DNN implementation is illustrated in Figure 
2.
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Figure 2. A block flow diagram representing DNN implementation. 

Conventionally, VLE is predicted utilizing cubic EoS and 
statistical associating fluids theory models (such as SAFT 
and  PC-SAFT).  Among  cubic  EoS,  the Redlich-Kwong 
equation was the first reported modification to original 
van der Waal EoS (vd-EoS). Redlich and Kwong (RK) 
modified  the  vd-EoS  with  a  T-dependent  energy-
associated  term ‘a(T)’ to  correct  the PVT properties  of 
fluids (Redlich & Kwong, 1949). The RK-EoS equation is 
given in by Equation 1:

P= RT
v−b

− aα
v ( v+b ) (1)

Wherea , b  and α are described in Table S3.
To improve phase behavior calculations at higher 

T and P, Soave suggested the revision in the RK EoS by 
encompassing a more complicated T dependence term to 
the attraction parameter, as given in Equation 2 (Soave, 

1972).

P= RT
v−b

− a
v ( v+b ) (2)

v  is molar-volume

a&b  are energy and volume parameters for SRK EoS
.
The detailed information about SRK EoS parameters is 
discussed  in  Table  S3  (provided  in  supplementary 
information). Moreover, the SRK-EoS energy parameter (
a ) for mixture is estimated by utilizing Equation 3:

a=∑
i

c

∑
j

c

xi x jaij

and,

ai
j
=(1−ki j )(aia j )

0 .5

(3)

Furthermore, Peng and Robinson (1976) introduced an 
EoS by transforming the attractive term's denominator 
and  developed  a  modified  form  for  the  EOS 
parameters (such  as  a and b), which  offers  additional 
benefits to the SRK-EOS in predicting liquids, as shown in 
Equation 4 (Peng & Robinson, 1976).

P= RT
v−b

−
a(T )

v ( v+b )+b( v−b ) (4)

Concerning non-cubic equation of states, Chapman et al. 
(Chapman et al., 1989) proposed a SAFT EoS model to 
estimate accurate fluid phase equilibria, established on 
the  Statistical  Associating  Fluid  Theory  (SAFT). 
The SAFT-EoS can be expressed in terms of Helmholtz 
free energy (A) by the generalized form as described by 
Equation 5:

Ares=A seg+Achain+A Assos
(5)

In contrast to SAFT, the PC-SAFT EoS regard molecules 
as chains consist of hard spherical-segments, and the 
effect of chain-length is considered for both repulsive and 
dispersive contributions. Moreover, the PC-SAFT EoS also 
considers the association term is  to account for,  and 
model systems containing polar organic molecules (H2S, 
CO2),  organic  hydrate  inhibitors  (alcohols,  glycols), 
hydrocarbons (low to medium hydrocarbon) and water. 
(Gross  &  Sadowski,  2001).  The  PC-SAFT  EoS  is 
implemented  in  the  current  work  for  various  binary 
systems of H2S/CO2 + hydrocarbon and given by Equation 
6.
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Ares=A seg+Achain+A Assos
(6)

Cubic plus association (CPA) EoS is an expansion of SRK 
EoS  with  an  additional  term  for  the  association  of 
molecules and is given by Equation 7.

A (T ,V ,n )−A IGM (T ,V ,n )=Δ A phy+Δ A Assos  (7)
where, Aphy is the Helmholtz free energy (A) contribution 
term which considered the variation due to the presence 
of repulsive and attractive interactions and AAssos is the 
Helmholtz free energy term that account for the changes 
in A because of association of molecules. 

The  Aphy and  AAssos term of the CPA equation of 
state is given in (Equations 8 & 9) (Soave, 1972). 

ΔA phy=n(−log (1−
bm
V

)−
am
RTbm

log (1+
bm
V

)
(8)

 


S

assos X
XnRTnVTA )

2

1
(ln),,(

(9)

Moreover, the  XA which  is  defined  as  the  fraction  of 
species  not  bonded  at  site  A,  and  is  calculated  by 
(Equation 10) (Chapman et al., 1989; Huang & Radosz, 

1991).







  




B

ABBX XA 1
1

(10)

The XA for mixtures is calculated by utilizing Equation 
(11):

X A i
= 1

1+ρ∑
j

x j∑
B j

X B j
Δ
AiB j

(11)

A  generalized  algorithm  representing  optimization  of 
pure component and binary interaction parameters for 
numerous fluid phase models is illustrated in Figure 3. 
Additional  details  and  parameters  used  in  above 
mentioned  EoS  are  provided  in  the  supplementary 
materials (Equations S1-S12).

Figure 3. A generalized algorithm illustrating VLE prediction and model parameters (BIP & pure component) 
optimization using equation of states. 

3. EXPERIMENT AND RESULTS

3.1. Data for Vapor Liquid Equilibria 
Nevertheless, to achieve erroneous prediction of vapor-
liquid equilibria using DNN and equation of states (both 
cubic  and  non-cubic  EOS),  vapor-liquid  equilibria 
experimental data was also collected over a wide range 
of pressure, temperature, and compositions. Tables S1 & 
S2 enlist the VLE experimental measurements for various 
binary mixtures of hydrogen sulfide and carbon dioxide in 
the  presence  of  hydrocarbons.  The  collection  of 
thermodynamically  corrected data  is  essential  as  any 

source  of  unreliable  data  sets  may  lead  to  model 
inaccuracies. The current data set is adapted from Khan 
et  al.  (2016)(Khan  et  al.,  2016).  The  experimental 
dataset will ensure the accurate optimization of binary 
interaction parameters before the prediction of  phase 
envelopes  utilizing  cubic  and  non-cubic  equations  of 
state.  The  absolute  average  deviation  in  predicting 
pressure and compositions is entirely dependent on the 
goodness  of  experimental  data  as  the  coupled 
uncertainties may result in error-based prediction.
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3.2. Deployment of DNN to Estimate Fluid Phase 
Equilibria
The imprecise knowledge of VLE becomes critical for the 
operation  and  control  of  chemical  processes.  The 
predictions  with  thermodynamics  models  often  show 
deviation  from the  experimental  VLE  data  and  some 
exclusively  data-driven  models  with  their  parameter 
fitting  approach  may  not  exactly  specify  data-fitting 

function. Moreover, these models normally use iterative 
algorithms with significant computational cost. A neural 
network  model  trained  on  a  dataset,  can  efficiently 
predict better results, and can be integrated with any 
existing software packages for data evaluations. Figure 4 
shows the architecture of the designed neural network 
model that is constructed by utilizing TensorFlow and 
functional APIs of Keras (Abadi et al., 2016).

Figure 4.  VLE neural network for prediction of pressure (P) and vapor phase composition (y).

As demonstrated in Figure 4, the computational model of 
neural network establishes a relationship between input 
features and outputs that are available at two different 
ends of the network. The first hidden layer is connected 
to  the  first  output  layer  and  second  hidden  layer. 
However,  the  second  output  layer  then  follows  the 
second hidden layer. The first hidden layer is a shared 
layer that finds joint features advantageous to each of 

the two outputs. In contrast, the second hidden layer 
improves  prediction  accuracy  by  learning  specific 
features for predicting the second output. The proposed 
architecture  is  quite  suitable  for  multi-dimensional 
regression  problems,  where  multiple  output  with 
different physical meanings depends on the same input 
dataset. 

Figure 5.  Comparison plot for AI trained predicted Pressure (P) and experimental pressure.
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Our  binary  VLE  data  include  molar  fractions  of 
components,  temperature,  pressure,  and  critical 
properties  of  components.  The  data  were  divided 
randomly into training (60%), validation (20%), and test 
(20%) datasets.  The validation and test  datasets  are 
utilized  for  assessing  the  overall  efficiency  of  the 
network. Feature scaling was also applied to preprocess 
the raw dataset. It confirms about the contribution of 
each feature is proportionately equal for the predictions 
and the model is trained accurately and efficiently. Our 
scaled features (xi) are obtained by using standardization 
of input values (x) as given below by Equation 12: 

xi=
x−mean( x )

standard deviation( x )
(12)

A  neural  network  can  approximate  any  function  by 
minimizing  a  cost  function  using  backpropagation  or 
gradient  descent  (Hanin,  2019;  Hornik,  1991;  Irie  & 

Miyake,  1988;  Nasrifar  &  Tafazzol,  2010).  The 
performance  of  neural  network  is  measured  at  each 
learning step by observing the cost function. We used 
Mean Square Error (MSE) for training our model that is 
the  most  common  cost  function  for  the  regression 
problems. It is defined as given by Equation 13: 

MSE= 1
N
∑
i=1

N

( y i− ŷ i)
2

(13)

Here, N represents the # of observations in the given 
input dataset. The actual and evaluated output values 
are represented by yi and ŷ i respectively. 
Hyperparameters  were  optimized  after  very  keen 
observations at different stages of model design. One of 
the objectives was to produce a model that avoids over-
adaption of training data and generalizes well on new 
data.  This  issue  of  memorization  of  training  data  by 
complex models is known as overfitting that always limits 
the generalization of any model. Early stopping is one of 
the techniques to overcome this issue. We applied early 
stopping by choosing a patience value of 20, that means 
training  is  stopped  if  there  is  no  improvement  over 
validation  set  for  20  consecutive  epochs.  To  achieve 
better  performance  of  optimization,  we  used  Nadam 
(Nesterov-accelerated Adaptive Moment Estimation) that 
is an extension of the famous Adam optimizer  (Tato & 

Nkambou,  2018).  The  optimizer  algorithms  help  to 
achieve reduction in cost function that keep changing the 
weights and learning rate of the neural network. The 
default value of learning rate was used to initialize the 
training.  Figures 5 & 6 compares the predicted values of 
P and y with their values measured experimentally. All 
points are close to the regressed diagonal line showing 
satisfactory results achieved by the model. In addition, 
the absolute average deviation in pressure and vapor 
phase (AADP/AADy %) mole fraction calculated utilizing 
the DNN for H2S and CO2 containing binary systems as 
represented in Figure 7 & 8 respectively. The calculated 
AADP/AADy using the trained model were tested for 20% 
of the total datasets. The model on the basis of individual 
critical  parameters,  liquid  phase  mole  fraction,  and 
temperature  accurately  output  the  vapor  phase  mole 
fraction and pressure.

Figure 6.  Comparison plot for AI trained predicted vapor phase mole fraction and experimental vapor phase mole 
fraction.
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Figure 7. Absolute average deviation in pressure and vapor phase mole fraction (AADP/AADy %) Using AI trained 
network for various CO2 containing binary systems.

Figure 8. Absolute average deviation in pressure and vapor phase mole fraction (AADP/AADy %) Using AI trained 
network for various H2S containing binary systems.

3.3. Vapor-Liquid Equilibria using Cubic Equation of 
States
The flash algorithm was coupled with cubic and non-cubic 
EoS  to  calculate  VLE  for  numerous  H2S  and  CO2-
containing binary systems. Prior to the prediction of VLE 

utilizing  EoS,  binary  interaction  parameters  were 
optimized to  account  for  the  interaction  between the 
species. Figure 9 (a) shows predicted VLE utilizing the PR 
EoS for CO2+ n-C7 binary mixtures over a range of T & P. 
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Figure 9. Model predictions for (a) CO2+ n-C7 over a T range of 310.65 to 394.26 K (b) H2S + cyclohexane over a T 
range of 323.15 to 422.60 K (c) H2S + n-C6 vapor-liquid equilibria over a T range of 322.9 to 422.6 K and (d) H2S + 

n-C7 over a temperature range of 310.92 to 477.594 K VLE using the PR EoS. Experimental measurements were 
taken from (Kalra et al., 1978; Laugier & Richon, 1995; Ng et al., 1980; Théveneau et al., 2006). 

Figure 9 (b) represents the VLE predictions compared 
with  experimental  measurements  for H2S  + 
cyclohexane binary mixtures over a T range of 323.15 to 
422.60 K. The model estimations agree well  with the 
experimental  measurements.  Nevertheless,  the 
pressure-composition envelop predictions start deviating 
from experimental data within proximity of the critical 
point. The inaccuracy in predicting vapor-liquid equilibria 
near critical regions may be associated with the version 
of the α function. Hence, to accurately predict the phase 
envelop near-critical region, it is suggested here to test 
the  PR-EOS  with  various  correlations  available  for  α 
calculation  as  discussed  in  detail  by  the following 
researchers  (Dahl & Michelsen, 1990; Lopez-Echeverry 
et  al.,  2017; Mathias & Copeman, 1983; Twu et  al., 
2002a). The  α function shows linearly dependency on 
temperature in  the supercritical  region and thus it  is 
recommended (Twu et al., 2002b) to utilize the second 
function  when  temperature  exceeds  the critical  point. 

However,  the  former  modification  may  result  in 
a discontinuity  in  enthalpy  calculation,  and  the 
implications are discussed in detail in the following study 
(Lopez-Echeverry et al., 2017).  It is quite apparent from 
Figure 9 (c-d) that the PR EoS predictions of VLE for 
binary mixtures of H2S + n-C7/n-C6/cyclohexane over a 
range of temperatures and pressures show reasonably 
fair agreement in the dew and bubble point calculations. 
The calculations illustrate  that  the model  successfully 
predicts  binary  systems  VLE,  and  a  temperature-
dependent binary interaction parameter (BIP) is essential 
to  precisely  estimate  the  liquid  part  of  the  phase 
envelope. Conclusively, the PR EoS precisely predicts the 
phase  envelope  for  selected  self-associating  systems. 
The predicted phase envelopes utilizing Peng Robinson 
EoS for all other binary systems also show reasonable 
accuracy with experimental measurements (see Section 
3.5 for comparison and Table S6 for a summary of results 
without BIP).
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Figure 10. Model predictions for (a) CO2+ n-C7 over a T range of 310.65 to 394.26 K (b) H2S + n-hexane over a T 
range of 322.9 K to 422.6 K (c) H2S + n-C7 vapor-liquid equilibria over a T range of 310.92 K to 477.594 K vapor-
liquid equilibria utilizing the SRK EoS. Experimental measurements were taken from (Kalra et al., 1978; Laugier & 

Richon, 1995; Ng et al., 1980; Théveneau et al., 2006). 

Similarly,  to  evaluate  the  effectiveness  of  SRK  EoS, 
an algorithm was developed, and T- dependent BIP was 
optimized  for  CO2 and  H2S binary  mixtures.  The SRK 
EoS predictions for binary systems such as CO2+n-C7 and 
H2S + n-C6/n-C7 are also in reasonable agreement with 
the experimental measurements, as shown in Figure 10 
(a-c). However, as evident from Figure 10 (c), the SRK 
predictions  are  accurate  at  low  to  moderate 
temperatures but show deviation at higher temperatures 
for the liquid part illustrating the importance of the SAFT-
based equation of state.

The CPA EoS incorporates the association term in its 
formulation  to  account  for  the  hydrogen  bonding  in 
associative  molecules.  Hence,  it  provides  a significant 
improvement over SRK EoS for VLE prediction.  Figure 11 
(a-c)  indicates  that  the  CPA  EoS  predictions  of  VLE 
for H2S + n-C6/n-C7/cyclohexane binary mixture over a T 
range of 310.92 to 422.6 K. It is apparent from Figure 11 
(a) that the  CPA EoS model is successful in capturing 
liquid  and  vapor  side  phase  boundary  for  H2S  (self-
association)  +  non-associative  systems;  hence 
illustrating the reliability of this CPA EoS.
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Figure 11. CPA EoS predictions for (a) H2S + n-C6 over a T range of 322.90 to 422.6 K (b) H2S + n-C7 

over a T range of 310.92 K to 422.6 K (c) H2S + cyclohexane over a T range of 323.15 K to 422.6 K. 
Experimental data was taken from (Laugier & Richon, 1995; Ng et al., 1980; Théveneau et al., 2006). 

Figures 11 (b-c) shows the evaluation of CPA-EOS model 
predictions  for  the  H2S  +  n-C7/cyclohexane  binary 
systems VLE over a T range of 310.92 to 422.6 K. VLE 
predictions for  H2S + n-C7/cyclohexane systems agree 
with the experimental measurements, except immediate 
to  the  critical  point  at  moderately  higher  T.  The 
significant errors in calculating dew and bubble point P at 

higher T are credited to the range of Tr over which the 
CPA-EOS  parameters  were  optimized  (CPA  EoS 
parameters were optimized up to a Tr range of 0.90).
3.4. PC-SAFT Predictions for VLE of H2S/CO2

In addition,  to evaluating the effectiveness of 
the non-cubic EoS, VLE predictions were also carried out 
using SAFT-EOS and its modification (PC-SAFT). 
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Figure 12. Model prediction for (a) H2S + cyclohexane (b) H2S + nC6 and (c) H2S + n-C7 VLE using SAFT (statistical 
associating fluid) EoS. Experimental measurements were taken from (Laugier & Richon, 1995; Ng et al., 1980; 

Théveneau et al., 2006).

Prior  to  VLE  calculation  using  SAFT  EoS,  binary 
interaction parameters were optimized utilizing carefully 
selected experimental data. Pure component parameters 
(three parameters for non-associative species (such as 
hydrocarbons) and 2 parameters for associating species) 
for  SAFT were adopted from the literature (see Table 
S5). Figures 12 (a-c) demonstrate the dew and bubble 
point  calculations  for H2S  +  n-Cyclohexane/n-C6/n-
C7 binary  mixtures.  The  VLE  calculations  are  in 
reasonable accord with the experimental data, but the 
liquid  part  of  the  VLE  envelope  was  slightly  over-
predicted by the SAFT-EoS. The model predictions for the 
selected binaries show excellent accord for the vapor part 
of the phase envelope, yet the VLE envelope's liquid part 
is slightly overpredicted. Also, it is not unusual to have 
wrong predictions of thermophysical properties and VLE 
envelopes utilizing inappropriate pure components and 
BIP.  The  uncertainties  in  prediction  near  far  critical 

regions  and  the liquid  part  of  the  envelop  might  be 
associated with the poorly optimized equation of state 
parameters.

The  higher-order  SAFT  EoS  (Chapman  et  al.,  1990; 

Wertheim,  1984) was  modified  to  develop  PC-SAFT 

(Gross & Sadowski, 2001; Huang & Radosz, 1990, 1991). 
PC-SAFT-EoS originated  from  SAFT,  as  in  SAFT, the 
reference fluid is considered a hard sphere whereas PC-
SAFT uses a hard chain. The PC-SAFT EoS contemplates 
molecules  as  chains  consisting  of  hard  spherical 
segments, and the effect of chain length is considered for 
both repulsive and dispersive contributions as discussed 
in Section 2. In this work, the PC-SAFT EoS algorithm 
was adapted from (Martín et al., 2011)  and parameters 
used are listed in Table S4.

Figure 13. Model predictions for (a) H2S + n-C6 & (b) H2S + n-C7 VLE utilizing the PC SAFT EoS.
Experimental measurements were taken from(Laugier & Richon, 1995; Ng et al., 1980; Théveneau et al., 2006).

The  VLE  predictions  of CO2 + n-C10 / 
methylcyclohexane binary  mixtures  reveal  that  model 

predictions  utilizing PC-SAFT with  optimized  binary 
interaction  parameters  are  in  excellent  accord  with 
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experimental measurements (Figure S5 a-b). The VLE 
calculations  were  also  conducted  for the CO2 +  n-
C7 binary mixture as given in Figure S1. The PC-SAFT 
predictions are observed to be more precise for the vapor 
part of the VLE envelope in comparison with the liquid 
part; the latter was slightly under-predicted by PC-SAFT 
EoS in all the former binary mixtures (see Table S7 for 
a summary). The higher error in the liquid part of the 
phase envelope utilizing SRK-EOS is attributed to the 
inherent  limitation  of  accurately  predicting  liquid 
densities.  In contrast,  Peng & Robinson's  Equation of 
state shows reasonably better prediction because of the 
term b(v−b), which significantly improves the depiction 
of  the  attractive  part  of  the  equation  of  state,  and 
consequently,  improves  the  ability  of  the  PR-EOS  to 
predict liquid densities. Also, Figures 13 (a-b) show VLE 
predictions and experimental measurements for H2S+n-
C6/n-C7 binary systems over a range of T and P. It is 
quite  evident  from  Figure  13  (a-b)  that  PC-
SAFT predictions are in close accord with experimental 
measurements.  Figure  S6  compares  the  errors  in 
predicting the bubble pressure for binary systems of H2S 
&  CO2 using the  SAFT and PC-SAFT EoS. PC-SAFT 
EoS was  observed  to  provide  equivalent  precision 
to SAFT in  predicting  the  vapor  phase.  However, PC-

SAFT EoS gives overall improved prediction in estimating 
the bubble pressure (see Figure S6(a-b). A summary of 
DNN  and  five  EoS  in  predicting  VLE  of CO2 and 
H2S containing  binary  mixtures  is  also  discussed  in 
Section 3.4.

3.5. Comparisons of DNN and EoS Models for VLE 
Prediction
To examine the effectiveness of DNN over cubic and non-
cubic EoS in the prediction of VLE of binary systems, 
errors in predicted P and vapor phase composition ( y) 
are compared. Before comparing the performance of the 
various equations of state models, all the experimental 
data  points  were  utilized  in  optimizing  the  binary 
interaction  parameter  as  per  the below  objective 
functions. 

AADP= 1
N∑

i=1

N Pexp−Pcalc

Pexp
∗100% (14)

As expected, the cubic equation and non-cubic EoS show 
drastic improvements in prediction accuracy when binary 
interaction parameters are carefully optimized (see also 
summary in Table S6 & Table S7 for comparison). 

Figure 14. Comparison of AADP %for H2S containing binary mixtures. 

Figure 14-15 compares the absolute average deviation in 
vapor  phase  compositions  and pressures  (AADy % & 
AADP %) prediction for DNN with cubic and SAFT-based 
EOS with optimized BIP. Based on the optimized binary 
interaction  parameters  for  various  multicomponent 
systems  the  calculated  AADx / AADy and  AADp 
enlisted in Figures 14 &15 for all equation of state (cubic 
and  non-cubic)  models.  Additionally,  to  celebrate  the 
impact  of  BIP  optimization,  the  un-optimized  VLE 
predictions using cubic and SAFT-based models are given 
in  Tables  S6  &  S7.  The  hydrogen  sulfide-containing 
systems including binary mixtures of H2S+C4, H2S+i-C4, 
H2S+C5,  H2S+C6,  H2S+C7,  H2S+cyclohexhane, and 

H2S+Ethylcyclohexane,  shows  that  the  PC-SAFT  EOS 
output least error (0.975% for AAdy and 1.420 % for 

AADp respectively).  Moreover, the PC-SAFT equation of 
state also shows accurate predictions accuracy for CO2-
containing binary mixtures, and the binary mixture of 
CO2+N2, CO2+C6, CO2+C8, CO2+Cyclohexane, CO2+C6H6, 
CO2+C10, CO2+C7, and CO2+Toluene shows an absolute 
error  of  1.48  % and  2.97  % for  AAdy and  AADp 
respectively. A comparison of the CPA equation of state 
provides an average error in predicting y & x is to be 
2.51 % & 5.96 % respectively for H2S-containing gas 
mixtures and an error of 2.57 % and 17.26 % for CO2-
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containing gas mixtures. By contrast, the trained model 
(DNN) predicted higher accuracy for all selected binary 
systems and the average error in predicting yand P is 
5.20 % & 6.04 % respectively for binary CO2 mixtures. 
Moreover, the trained DNN model also shows reasonable 
error  in  predicting  yand  P to  be 4.46 % & 6.35 % 
respectively  for  H2S-containing  gas  mixtures. Overall, 
a relative comparison of VLE prediction shows that PC 
SAFT EOS yielded the least deviation in comparison with 
other equation of state models. However, the DNN model 

developed in this work is comparable to cubic and SAFT-
based EoS. Designed DNN shows acceptable accuracy in 
predicting phase equilibria for various H2S and CO2 binary 
systems over an extended range of T and P conditions. It 
was also observed that the execution of flash calculation 
utilizing DNN does not  need long computational  time 
even if coupled with the dynamic process simulation. In 
contrast, non-cubic equations of states (SAFT and PC-
SAFT) and CPA EoS require higher computational time 
when coupled with the dynamic process simulation. 

Figure 15. Comparison of AADP % for CO2 containing binary mixtures.

4. CONCLUSION AND FUTURE DIRECTIONS

The DNNs have remarkable abilities to capture complex, 
nonlinear correlations that are inherent in VLE systems. 
By using data-driven learning, the model  can replace 
traditional methods for prediction, especially in scenarios 
where there are intricate interactions between multiple 
variables. The functional APIs have been underexplored 
in constructing NNs for chemical processes. They have 
potential to enable the expert system to integrate deep 
learning  models  and  harness  the  power  of  neural 
networks used in  chemical  engineering processes.  By 
using a  DNN model  through functional  APIs,  multiple 
parameters along with VLE data were included in training 
data sets over range of T and P conditions. Cubic, SAFT, 
and  PC-SAFT  EoS  were  tested  to  predict  VLE 
of H2S/CO2 containing binary mixtures. Absolute errors 
were  estimated  and  compared  with  results  obtained 
using  the  developed  DNN  model  for  various  binary 
mixtures, including self-associating systems. The model 
was compared with EoS predictions utilizing optimized 
binary interaction parameters and provided comparable 
accuracy as PC-SAFT EoS (most accurate among the 5 
EoS tested in this work). However, time required for flash 
calculation using DNN was significantly lower than SAFT, 
PC-SAFT, and CPA EoS. This warrants further evaluation 
of  DNN-based  approach  as  lower  computational  time 
along with VLE prediction accuracy comparable to PC-
SAFT could be of significant interest to process simulation 

software developers. While, predicting the vapor part of 
the phase envelope, all equation of states including DNN 
give reasonable accuracy. However, the liquid part of the 
phase  envelope's  predictions  shows  significant  errors 
using  all  EoS,  mainly  because  of  the  poorly  fitted 
association EoS terms for these systems. 

I. The Soave Redlich Kwong and Peng Robinson 
equation of states should be tested with various 
forms  of  α function  to  completely  test  the 
accuracy of the cubic equation of states.

II. Over the past decades multiple formulations for 
a∧bwere  proposed  in  the cubic  equation  of 
state  to  improve  saturation  pressure,  liquid 
density, and VLE predictions. Thus, it would be 
recommended  to  thoroughly  test  those 
formulations to select optimal parameters.

III. In addition to the testing of basic parameters in 
cubic equations of states, various combinations 
of repulsive and attractive terms should also be 
tested comprehensively to estimate accurate VLE 
and thermophysical properties. 

IV. The  use  of  conventional  and  unconventional 
mixing rules in all equations of states should be 
tested extensively to locate the most suitable 
way to estimate a multi-component system.

V. Generally,  binary  interaction  parameters  were 
optimized  utilizing  experimental  VLE  data, 
however,  there  is  a  need  to  estimate  binary 
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interaction  parameters  utilizing  structural 
property relationships. 
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