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Abstract. In this article, we introduced some new subfamilies of analytic mappings of complex order defined
by using the Ruscheweyh derivative and a family of non-homogenous Cauchy-Euler differential equations. We
estimated the nth coefficient bounds and Fekete-Szegö-type functional for functions in these subfamilies. The
obtained results were then used in estimation of upper bounds on coefficients of logarithmic, bi-univalent, and
second Hankel determinant for such functions. Various useful deductions relevant to recent results in the literature
were made with some refinements of known results.
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1. Introduction and Preliminaries

Function theory of one complex variable is a very rich area of study and an elegant subject of classical mathematics.
Analytic functions, univalent and multivalent, offer a very fascinating role in the interplay of analytic structure and
geometric behavior. Early results that emerged at the beginning of the 20th century laid down the foundation of analytic
(geometric) function theory. For example, the Koebe investigation (1907), Gronwall’s proof of the area theorem (1914),
and the famous Bieberbach’s estimates of the second coefficients in 1916. Applications and extensions of univalent and
multivalent functions theory have been used in fields like ordinary and partial differential equations, fractional calculus,
operator theory, mathematical physics, and differential subordination [13].

Geometric function theory has also a close connection with geometry and analysis, thus attracted the attention
of many function theorists from the beginning of the 20th century to recent times. Mostly the available results are
reported over the open unit disc of the complex plane C. The reason is that they are characterized by the fact that such a
function provides one-to-one mapping onto its image domain. In the following, we briefly introduce some preliminary
definitions and results.

Let A denote the family of all analytic functions of the form

f (z) = z +
∞∑

n=2

anzn, (z ∈ E) (1.1)
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defined in the open unit disk E = {z ∈ C : |z| < 1} and satisfying the normalization

f (0) = f ′(0) − 1 = 0.

Further, let S ⊂ A be the subclass of analytic functions that never takes the same value twice, that is

S = { f ∈ A : f (z1) = f (z2)⇒ z1 = z2, (z1, z2 ∈ E)}.

Such functions are commonly known as univalent functions. Also for be a complex number γ , 0, we denote by
S ∗(γ) and C(γ) the familiar subfamilies of all univalent starlike and convex functions of complex order, characterized
respectively as (see [14, 20, 24, 26, 35]):

f ∈ S ∗(γ) ⇐⇒ ℜ

(
1 +

1
γ

[
z f ′(z)
f (z)

− 1
])
> 0, ∀z ∈ E

and

f ∈ C(γ) ⇐⇒ ℜ

(
1 +

1
γ

[
z f ′′(z)
f ′(z)

])
> 0, ∀z ∈ E.

It is easy to note that

S ∗(1 − β) ≡ S ∗β, C(1 − β) ≡ Cβ, (0 ≤ β < 1),

where S ∗β and Cβ are the classes of univalent starlike and convex functions of real order β. Furthermore, we have

S ∗(1) ≡ S ∗0 ≡ S ∗, C(1) ≡ C0 ≡ C

with the inclusion relation

C ⊂ S ∗ ⊂ S ,

where C and S ∗ are the well-known classes of univalent starlike and convex functions, respectively. Coefficient bounds
and related results for various subclasses of starlike and convex functions, as well as closely related families, have
been extensively studied in the literature. Notable examples include starlike and convex functions of complex order [6,
7, 32, 36], q-starlike functions of Janowski type [9], and close-to-convex functions of complex order [12]. Further
contributions encompass starlike and convex functions associated with Pascal distribution series [19], Janowski spiral-
like functions of complex order [22], and strongly starlike functions of order α [25]. Additionally, research has explored
Ruscheweyh-type starlike functions of complex order [27] and other specialized subclasses of starlike functions [31,
37].

The Hadamard product or convolution of two functions f , g ∈ A, denoted by f ∗ g, is defined as

( f ∗ g) (z) = z +
∞∑

n=2

anbnzn = (g ∗ f )(z), (z ∈ E) ,

where f (z) is given by (1.1) and g(z) = z +
∑∞

n=2 bnzn.
By using the concept of convolution, Ruscheweyh introduced the differential operator Dα : A→ A as [30]:

Dα f (z) =
z

(1 − z)α+1 ∗ f (z)

= z +
∞∑

n=2

ϕn (α) anzn, (α ∈ R, α > −1) ,

where

ϕn (α) =
(α + 1)n−1

(n − 1)!
(1.2)

and (v)n is the Pochhamer symbol given as

(v)n =

{
1, n = 0;
v(v + 1)(v + 2) . . . (v + n − 1), n ∈ N.
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Now, let Dδ f (z) = (1 − δ) f (z) + δz f ′(z), (δ ≥ 0), and consider the differential operator Dα
δ : A→ A defined as:

Dα
δ f (z) =

z
(1 − z)α+1 ∗ Dδ f (z)

=
(1 − δ)z

(1 − z)α+1 ∗ f (z) +
δz

(1 − z)α+1 ∗ z f ′(z)

= z +
∞∑

n=2

[1 + (n − 1)δ] ϕn (α) anzn, (α ∈ R, α > −1; δ ≥ 0) .

It can be seen that for δ = 0, Dα
0 = Dα is the familiar Ruscheweyh differential operator [30]. Al-Shaqsi and Darus

(see [4]) called Dα
δ f as the generalized Ruscheweyh differential operator. For further generalization of operators Dα f

and Dα
δ f and their applications, the reader can consult e.g. [3, 5, 15, 18, 28].

Also, observe that, if m ∈ N0 = N ∪ {0}, then

Dm
δ f (z) =

z
(
zm−1Dδ f (z)

)(m)

m!
, (z ∈ E) .

In recent years, there has been growing interest in studying coefficient estimates for various subclasses of analytic
functions of complex order; see, for example, [7,12,22,23,32]. These estimates are crucial for understanding geometric
properties of analytic functions, such as their growth, distortion, and behavior near the boundary of the unit disk. Sharp
bounds on coefficients also help determine whether functions belong to important geometric classes like univalent,
starlike, or convex functions. Further interesting applications can be found in [17, 21].

To explore these properties, researchers have developed different subclasses of analytic functions using tools such as
differential operators and functional transformations. One such contribution is by Xu et al. [36], who studied coefficient
bounds for the class S ψ(λ, γ) of functions of complex order γ , 0, defined as:

S ψ (λ, γ) =
{

f ∈ A : 1 +
1
γ

(
z ((1 − λ) f (z) + λz f ′(z))′

(1 − λ) f (z) + λz f ′ (z)
− 1

)
∈ ψ (E)

}
,

where 0 ≤ λ ≤ 1, γ ∈ C∗ = C\{0}, and ψ : E → C is a convex function satisfying ψ (0) = 1 andℜ{ψ(z)} > 0 for z ∈ E.
This function class, for ψ(z) = (1 + z)/(1 − z), z ∈ E, gives

S ψ (1, γ) ≡ S ∗ (γ) , S ψ (0, γ) ≡ C (γ) ,

which correspond to the classes of starlike and convex functions of complex order, respectively.
Although much progress has been made in finding coefficient bounds for analytic functions [22, 23], most results

focus on subclasses defined by linear or homogeneous operators. In this paper, we introduce two new subclasses of
analytic functions of complex order γ , 0: QSψα(δ, λ, γ) and GSψα(m, λ, γ; µ). These are based on non-homogeneous
Cauchy-Euler differential equations combined with the Ruscheweyh derivative, allowing for more flexible function
structures. The main goal of this paper is to unify and extend earlier results and to provide sharper bounds for important
quantities like logarithmic coefficients and second Hankel determinants, both of which play key roles in geometric
function theory. Our findings also lead to improvements over some recent results in the literature, offering new insights
into the structure and applications of such function classes. We now proceed to define these new subclasses.

Definition 1.1. Let ψ : E −→ C be a convex function with ψ(0) = 1 andℜ{ψ(z)} > 0. Then, by QSαψ(δ, λ, γ) we mean
the subfamily of analytic functions of complex order given as:

QS
α
ψ(δ, λ, γ) =

 f ∈ A : 1 +
1
γ

 z
(
(1 − λ)Dα

δ f (z) + λDα+1
δ f (z)

)′
(1 − λ)Dα

δ f (z) + λDα+1
δ f (z)

− 1

 ∈ ψ(E)

 ,
where 0 ≤ λ ≤ 1, γ ∈ C∗ = C\{0}, α > −1 and δ ≥ 0.

Definition 1.2. Let f ∈ A, then f ∈ GSαψ(m, δ, λ, γ; µ) if it satisfies the following mth order non-homogenous Cauchy-
Euler type differential equation

zm dmw
dzm +

(
m
1

)
(µ + m − 1)zm−1 dm−1w

dzm−1 + · · · +

(
m
m

) m−1∏
k=0

(µ + k)w =
m−1∏
k=0

(µ + k + 1)h(z), (1.3)

where w = f (z), h ∈ QSαψ(δ, λ, γ), µ > −1, and m ∈ N2 = {2, 3, 4, · · · }.
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Remark 1.3. As an immediate consequence of Definitions 1.1 and 1.2, we have the following special cases

QS
0
ψ(0, λ, γ) ≡ S ψ(λ, γ), GS

0
ψ(m, 0, λ, γ; µ) ≡ Kψ(m, λ, γ; µ),

which have been studied in [36].

Remark 1.4. For suitable choices of the involved parameters and function ψ, many earlier introduced subfamilies of
analytic functions can be deduced easily. The following special cases are worthy to mention.
(i). For ψ (z) = 1+(1−2β)z

1−z (0 ≤ β < 1), it is a simple exercise to verify the hypothesis of Definition 1.1. Consequently
from Definitions 1.1 and 1.2, one gets

QS
0
ψ(0, λ, γ) ≡ SC(λ, γ, β), GS

0
ψ(2, 0, λ, γ; µ) ≡ B(λ, γ, β; µ),

which were studied in [7].
(ii) The function ψ (z) = 1+Lz

1+Mz (−1 ≤ M < L ≤ 1, M , 0) also satisfies the hypothesis of Definition 1.1. Accordingly
Definitions 1.1 and 1.2 gives the following

QS
0
ψ(0, λ, γ) ≡ S(λ, γ, L, M), GS

0
ψ(m, 0, λ, γ; µ) ≡ K(λ, γ, L, M,m; µ),

which were studied in [32].

In what follows the following key results will be required in deriving the main results.

Definition 1.5 ( [20]). Let f , g ∈ A. Then, f is subordinate to g, denoted by f ≺ g, if for some analytic function q(z),
there holds

f (z) = g (q(z)) , (z ∈ E),

where q(z) is a Schwarz function satisfying q(0) = 0 and |q (z)| < 1 for z ∈ E.

In particular, if g is univalent in E, then f ≺ g can be written as

f (0) = g (0) and f (E) ⊂ g (E) , (z ∈ E) .

The following result can be seen as an application of subordination that we will require in our later investigation.

Lemma 1.6 ( [29]). Let g(z) =
∑∞

k=1 bkzk be a convex analytic function in E and let f (z) =
∑∞

k=1 akzk be analytic in E.
If f ≺ g (z ∈ E), then

|ak | ≤ |b1|, ∀k ∈ N.

Remark 1.7. The class QSαψ (δ, λ, γ) is non-empty. Indeed, for analytic function p(z) such that p(0) = ψ(0) and
p(E) ⊂ ψ(E). Then p(z) ≺ ψ(z), for z ∈ E. Further, we define the analytic function F(z) in terms of the operator Dα

δ f
as

F(z) = (1 − λ)Dα
δ f (z) + λDα+1

δ f (z) , (z ∈ E). (1.4)

Then, we can write

1 +
1
γ

(
zF′(z)
F(z)

− 1
)
= p(z),

⇔
F′(z)
F(z)

=

(
1 + γ[p(z) − 1]

z

)
,

⇔ log F(z) =
∫ z

0

(
1 + γ[p(ζ) − 1]

ζ

)
dζ,

⇔ F(z) = z exp
(
γ

∫ z

0

p(ζ) − 1
ζ

dζ
)
= z + · · · .

This shows that functions in the subclass QSαψ (δ, λ, γ) has the above integral representation.

From now on, we assume the restrictions on the parameters, 0 ≤ λ ≤ 1, γ ∈ C∗ = C\{0}, µ > −1, m, n ∈ N2 =

{2, 3, 4, ...}, α > −1, and δ ≥ 0, and f ∈ A with series form (1.1), unless stated otherwise.
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2. Coefficient Estimation for the Subfamily QSαψ (δ, λ, γ)

Before going towards the proof of the main result in this section, we introduce the following to simplify the matters.
By reconsidering (1.4) with the series representation of Dα

δ f , we can write

F(z) = (1 − λ)

z + ∞∑
n=2

[1 + (n − 1) δ] ϕn (α) anzn

 + λ z + ∞∑
n=2

[1 + (n − 1) δ] ϕn (α + 1) anzn


= z +

∞∑
n=2

[
(1 − λ) ϕn (α) + λ

(
α + n
α + 1

)
ϕn (α)

]
[1 + (n − 1) δ] anzn.

(2.1)

Now, we can write (2.1) as

F (z) = z +
∞∑

n=2

Anzn, (2.2)

where
An = C(n, α, δ, λ)ϕn (α) an, (2.3)

in which ϕn (α) is given by (1.2), and

C (n, α, δ, λ) =
[α + 1 + λ(n − 1)] [1 + (n − 1)δ]

α + 1
. (2.4)

Now, we are ready to state and prove the following result.

Theorem 2.1. Let f ∈ A with the series form (1.1). If f ∈ QSαψ(δ, λ, γ), then

|an| ≤

∏n−2
k=0 (k + |γ| |ψ′ (0)|)

(n − 1)!C (n, α, δ, λ) ϕn (α)
,

where ϕn (α) is given by (1.2) and C (n, α, δ, λ) is given by (2.4).

Proof. As it is clear from (2.2), the function F (z) is analytic in E with F(0) = F′(0) − 1 = 0. Now, in view of Remark
1.7, we can write

1 +
1
γ

[
zF′(z)
F(z)

− 1
]
= p(z) ∈ ψ(E), (z ∈ E), (2.5)

where the function p satisfies the hypothesis in Remark 1.7. Consequently (2.5) can be expressed as

zF′(z) = (1 + γ(p(z) − 1)) F(z).

Substituting (2.2) with p(z) = 1 +
∑∞

n=1 pnzn in above expression while considering A1 = 1 gives us

z +
∞∑

n=2

nAnzn =

1 + γ ∞∑
n=1

pnzn

 z + ∞∑
n=2

Anzn

 ,
= z +

∞∑
n=2

Anzn + γ

∞∑
n=2

n−1∑
k=1

pkAn−k

 zn.

Thus, comparison of coefficients of zn on both sides with little calculus gives

(n − 1) |An| ≤ |γ|

n−1∑
k=1

|pk | |An−k | . (2.6)

Now, from Lemma 1.6 it follows that ∣∣∣p j

∣∣∣ = ∣∣∣∣∣∣ p( j)(0)
j!

∣∣∣∣∣∣ ≤ ∣∣∣ψ′(0)
∣∣∣ , ( j ∈ N2). (2.7)

Using (2.7) into (2.6), one can observe

|An| ≤
|γ||ψ′(0)|

n − 1

n−1∑
k=1

|An−k |, ∀n ≥ 2,
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where A1 = 1. Next, we need to show that

|γ||ψ′(0)|
n − 1

n−1∑
k=1

|An−k | ≤

∏n−2
k=0 (k + |γ||ψ′(0)|)

(n − 1)!
, ∀n ≥ 2.

It holds true for n = 2, since
|γ||ψ′(0)||A1| = |γ||ψ

′(0)|, =⇒ |A2| ≤ |γ||ψ
′(0)|.

Let it be true for n = m. That is,

|Am| ≤
|γ||ψ′(0)|

m − 1

m−1∑
k=1

|Am−k | ≤

∏m−2
k=0 (k + |γ||ψ′(0)|)

(m − 1)!
, ∀m ≥ 2.

To show that it is also true for n = m + 1, we multiply both sides of the above inequality by (m − 1 + |γ||ψ′(0)|)/m so
that ∏m−1

k=0 (k + |γ||ψ′(0)|)
m!

≥
m − 1 + |γ||ψ′(0)|

m
|γ||ψ′(0)|

m − 1

m−1∑
k=1

|Am−k |.

Then, a simple manipulation on the right hand side gives∏m−1
k=0 (k + |γ||ψ′(0)|)

(m − 1)!
≥
|γ||ψ′(0)|

m

m−1∑
k=1

|Am−k | +
|γ||ψ′(0)|

m − 1

m−1∑
k=1

|Am−k |

 .
By assumption, we know that

|γ||ψ′(0)|
n − 1

m−1∑
k=1

|Am−k | ≥ |Am|, ∀m ≥ 2,

which subsequently gives ∏m−1
k=0 (k + |γ||ψ′(0)|)

(m − 1)!
≥
|γ||ψ′(0)|

m

m−1∑
k=1

|Am−k | + |Am|


≥
|γ||ψ′(0)|

m

m∑
k=1

|Am+1−k |.

This verifies the statement

|An| ≤

∏n−2
k=0(k + |γ| |ψ′(0)|)

(n − 1)!
, (n ∈ N2).

Finally, by using the relation (2.3), one gets

|an| ≤

∏n−2
k=0 (k + |γ| |ψ′ (0)|)

(n − 1)!C (n, α, δ, λ) ϕn (α)
, (n ∈ N2).

This proves the statement of the theorem. □

Some special cases of Theorem 2.1 are noted as follow.

Corollary 2.2. If f ∈ QS0
ψ(δ, λ, γ), then

|an| ≤

∏n−2
k=0 (k + |γ| |ψ′ (0)|)

(1 + (n − 1) δ) [1 + λ (n − 1)] (n − 1)!
, (n ∈ N2).

Corollary 2.3. If f ∈ QSαψ(δ, λ, γ) with ψ (z) = 1+Lz
1+Mz (−1 ≤ M < L ≤ 1), then

|an| ≤

∏n−2
k=0 (k + |γ| |L − M|)

(n − 1)!C (n, α, δ, λ) ϕn (α)
, (n ∈ N2),

where ϕn (α) is given by (1.2) and C (n, α, δ, λ) is given by (2.4).
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Corollary 2.4. If f ∈ QSαψ(δ, λ, γ) with ψ (z) = 1+(1−2β)z
1−z (0 ≤ β < 1), then

|an| ≤

∏n−2
k=0 (k + 2 |γ| (1 − β))

(n − 1)!C (n, α, δ, λ) ϕn (α)
, (n ∈ N2),

where ϕn (α) is given by (1.2) and C (n, α, δ, λ) is given by (2.4).

Remark 2.5. We would like to mention that for δ = 0, and for α = δ = 0, Corollaries 2.2 and 2.4 give the coefficient
estimates of Xu et al. [36], and Altintaş et al. [7], respectively.

Remark 2.6. From Corollary 2.3, it can be seen that for −1 ≤ M < L ≤ 1

k + |γ|(L − M) ≤ k +
2|γ|(L − M)

1 − M
, ∀k ≥ 0.

Therefore, the present results (e.g. Corollary 2.3) for α = δ = 0 refine the corresponding coefficient estimate of
Srivastava et al. [32, Theorem 1].

The following results provide coefficient estimates of generalized subclasses of starlike functions which appear to
be new one.

Corollary 2.7. If f ∈ QSαψ(δ, 1, γ), then

|an| ≤

∏n−2
k=0 (k + |γ| |ψ′ (0)|)

(n − 1)!C (n, α, δ, 1) ϕn (α)
, (n ∈ N2),

where ϕn (α) is given by (1.2) and C (n, α, δ, λ) is given by (2.4).

Corollary 2.8. If f ∈ QSαψ(δ, λ, 1), then

|an| ≤

∏n−2
k=0 (k + |ψ′ (0)|)

(n − 1)!C (n, α, δ, λ) ϕn (α)
, (n ∈ N2),

where ϕn (α) is given by (1.2) and C (n, α, δ, λ) is given by (2.4).

3. Coefficient Estimation for the Subfamily GSαψ(m, δ, λ, γ; µ)

Our next result is stated in the following theorem which is an immediate consequence of Theorem 2.1.

Theorem 3.1. If f ∈ GSαψ(m, δ, λ, γ; µ), then for m, n ∈ N2 and µ > −1

|an| ≤

m−1∏
j=0

(
µ + j + 1
µ + j + n

)  ∏n−2
k=0 (k + |γ| |ψ′ (0)|)

(n − 1)!C (n, α, δ, λ) ϕn (α)

 ,
where ϕn (α) and C (n, α, δ, λ) are given by (1.2) and (2.4), respectively.

Proof. Let h(z) = z +
∑∞

n=2 cnzn ∈ QS
α
ψ(δ, λ, γ). Then, from (1.3) we have (see the Appendix for detail)

an =

m−1∏
j=0

(
µ + j + 1
µ + j + n

)
cn.

The desired result now follows from Theorem 2.1 by using the coefficient estimate of cn. □

The following are some special cases of Theorem 3.1.

Corollary 3.2. If f ∈ GSαψ(m, 0, λ, γ; µ), then for m, n ∈ N2 and µ > −1

|an| ≤

m−1∏
j=0

(
µ + j + 1
µ + j + n

)  ∏n−2
k=0 (k + |γ| |ψ′ (0)|)

(n − 1)!C (n, α, 0, λ) ϕn (α)

 ,
where ϕn (α) and C (n, α, δ, λ) are given by (1.2) and (2.4), respectively.
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Corollary 3.3. If f ∈ GSαψ(m, δ, λ, γ; µ) and ψ(z) = 1+Lz
1+Mz (−1 ≤ M < L ≤ 1), then for m, n ∈ N2 and µ > −1

|an| ≤

m−1∏
j=0

(
µ + j + 1
µ + j + n

)  ∏n−2
k=0 (k + |γ| |L − M|)

(n − 1)!C (n, α, δ, λ) ϕn (α)

 ,
where ϕn (α) and C (n, α, δ, λ) are given by (1.2) and (2.4) respectively.

Corollary 3.4. If f ∈ GSαψ(m, δ, λ, γ; µ) and ψ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), then for m, n ∈ N2 and µ > −1

|an| ≤

m−1∏
j=0

(
µ + j + 1
µ + j + n

)  ∏n−2
k=0 (k + 2 |γ| (1 − β))

(n − 1)!C (n, α, δ, λ) ϕn (α)

 ,
where ϕn (α) and C (n, α, δ, λ) are given by (1.2) and (2.4), respectively.

Remark 3.5. It is interesting to note that by setting α = 0 in Corollary 3.2 one gets the coefficient estimate of Xu et
al. [36], whereas by setting δ = α = 0 and m = 2 in Corollary 3.3, one can have the coefficient estimate of Altintaş et
al. [7].

Remark 3.6. In light of Remark 2.6, Corollary 3.4 can be seen as a refined version of the coefficient estimate of
Srivastava et al. [32, Theorem 2] for the case δ = α = 0.

4. Fekete-Szegö Type Inequalities for the Subfamilies QSαψ(δ, λ, γ) and GSαψ(m, δ, λ, γ; µ)

In this section, Fekete-Szegö type inequalities are obtained for the subfamilies

QS
α
ψ(δ, λ, γ), and GS

α
ψ(m, δ, λ, γ; µ),

when ψ(z) = 1+Lz
1+Mz (−1 ≤ M < L ≤ 1,M , 0). Accordingly, we have the following classes

QS
α(δ, λ, γ, L, M), and GS

α(m, δ, λ, γ, L,M; µ).

In order to derive the main results, we recall the following.

Lemma 4.1 ( [1]). Let q(z) = q1z + q2z2 + q3z3 + · · · , (z ∈ E) be the Schwarz function, then for any real b,

∣∣∣q2 − bq2
1

∣∣∣ ≤

−b, b < −1,
1, −1 ≤ b ≤ 1,
b, b > 1.

These sharp estimates are attained for b > 1 or b < −1, iff q(z) = z or one of its rotation. If −1 < b < 1, then equality
occurs iff q(z) = z2 or one of its rotation. Equality also occurs for b = −1, iff q(z) = z(z+λ)

1+λz (0 ≤ λ ≤ 1) or one of its
rotation, while for b = 1 iff q(z) = − z(z+λ)

1+λz (0 ≤ λ ≤ 1) or one of its rotation.

Lemma 4.2 ( [1]). Let q(z) = q1z + q2z2 + q3z3 + · · · , (z ∈ E) be a Schwarz function, then for any complex number b∣∣∣q2 − bq2
1

∣∣∣ ≤ max {1, |b|} .

This estimate is sharp and attains for q(z) = z or q(z) = z2.

Theorem 4.3. Let f ∈ QSα(δ, λ, γ, L, M) and −1 ≤ M < L ≤ 1, M , 0. If b is any complex number, then∣∣∣a3 − ba2
2

∣∣∣ ≤ |γ||L − M|
2C(3, α, δ, λ)ϕ3(α)

max{1, |σ|}, (4.1)

where σ is given as

σ = M + γ(L − M)

 2bC(3, α, δ, λ)ϕ3(α)(
C(2, α, δ, λ)ϕ2(α)

)2 − 1

 . (4.2)

The parameters values ϕn (α) and C (n, α, δ, λ) are given by (1.2) and (2.4), respectively.
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Proof. Let f ∈ QSα(δ, λ, γ, L, M). Then, by using the subordination, we can write

1 +
1
γ

[ zF′(z)
F(z)

− 1
]
≺

1 + Lz
1 + Mz

,

or equivalently
zF′(z)
F(z)

− 1 =
γ(L − M)q(z)

1 + Mq(z)
,

where q is the Schwarz function satisfying q(0) = 0 and |q(z)| < 1 for z ∈ E. By substituting the series expansions of
F(z), F′(z) and q(z) in above equation, we get

A2z + (2A3 − A2
2)z2 + · · · = γ(L − M)q1z + γ(L − M)(q2 − Mq2

1)z2 + · · · . (4.3)

By equating coefficients of like powers of z and using (2.3), one can write

a2 =
[ γ(L − M)
C(2, α, δ, λ)ϕ2(α)

]
q1,

a3 =
γ(L − M)

2C(3, α, δ, λ)ϕ3(α)

[
q2 −

(
M − γ(L − M)

)
q2

1

]
,

where ϕn (α) and C (n, α, δ, λ) are given by (1.2) and (2.4), respectively.
Now, it is a simple exercise to see that∣∣∣a3 − ba2

2

∣∣∣ = (
|γ||L − M|

2C(3, α, δ, λ)ϕ3(α)

) ∣∣∣q2 − σq2
1

∣∣∣ , (4.4)

where σ is given by (4.2). Hence, by applying Lemma 4.2 to inequality (4.4), for the complex number b, gives the
desired inequality (4.1). This completes the proof. □

Remark 4.4. A direct application of Lemma 4.1 to (4.3) gives immediately

|A2| ≤ |γ||L − M| and
∣∣∣∣A3 −

1
2

A2
2

∣∣∣∣ ≤ 1
2
|γ||L − M|,

where we have used the fact that |q1| ≤ 1 and −1 ≤ M < L ≤ 1, M , 0.

Theorem 4.5. Let f ∈ GSα(m, δ, λ, γ, L,M; µ) and −1 ≤ M < L ≤ 1,M , 0. If b is any complex number, then∣∣∣a3 − ba2
2

∣∣∣ ≤ m−1∏
j=0

(
µ + j + 1
µ + j + 3

) (
|γ||L − M|

2C(3, α, δ, λ)ϕ3(α)

)
max{1, |τ|}, (4.5)

where τ is defined as

τ = M + γ(L − M)

m−1∏
j=0

(
(µ + j + 1)(µ + j + 3)

(µ + j + 2)2

)
2bC(3, α, δ, λ)ϕ3(α)
(C(2, α, δ, λ)ϕ2(α))2 − 1

 . (4.6)

The parameters values ϕn(α) and C(n, α, δ, λ) are given by (1.2) and (2.4), respectively.

Proof. Let f ∈ GSα(m, δ, λ, γ, L,M; µ). Then, from (1.3) we have (see the Appendix for detail)

an =

m−1∏
j=0

(
µ + j + 1
µ + j + n

)
cn, (n = 2, 3).

By using Theorem 4.3, a simple computation shows that

a2 =

m−1∏
j=0

(
µ + j + 1
µ + j + 2

) [
γ(L − M)

C(2, α, δ, λ)ϕ2(α)

]
q1,

and

a3 =

m−1∏
j=0

(
µ + j + 1
µ + j + 3

) (
γ(L − M)

2C(3, α, δ, λ)ϕ3(α)

) [
q2 − (M − γ(L − M)) q2

1

]
.
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A simple exercise then lead us to deduce that∣∣∣a3 − ba2
2

∣∣∣ = m−1∏
j=0

(
µ + j + 1
µ + j + 3

) (
|γ||L − M|

2C(3, α, δ, λ)ϕ3(α)

) ∣∣∣q2 − τq2
1

∣∣∣ , (4.7)

where τ is given by (4.6). Finally, for complex number b, by applying Lemma 4.2 to (4.7) gives the inequality (4.5).
This completes the proof. □

Remark 4.6. The results reported in Theorems 4.3 and 4.5 are best possible. Equality holds for functions respectively
belonging to the classes

QS
α(δ, λ, γ, L, M), GS

α(m, δ, λ, γ, L,M; µ)

given as follows:
(1) For f ∈ QSα(δ, λ, γ, L, M) equality occurs when f is defined by

z
(
(1 − λ)Dα

δ f (z) + λDα+1
δ f (z)

)′
(1 − λ)Dα

δ f (z) + λDα+1
δ f (z)

= 1 +
γ(L − M)q(z)

1 + Mq(z)
,

or as a solution of the following differential equation (see Remark 1.7):

(1 − λ)Dα
δ f (z) + λDα+1

δ f (z) =

 z
(
1 + Mz j−1

) γ(L−M)
( j−1)M , if M , 0, j ≥ 2,

z exp
(
γL
j−1 z j−1

)
, if M = 0, j ≥ 2,

(4.8)

where q(z) = z j−1 ( j ∈ N \ {1}) is a Schwarz function.
(2) For f ∈ GSα(m, δ, λ, γ, L,M; µ) equality occurs when w = f (z) is defined by

zm dmw
dzm +

(
m
1

)
(µ + m − 1)zm−1 dm−1w

dzm−1 + · · · +

(
m
m

) m−1∏
k=0

(µ + k)w =
m−1∏
k=0

(µ + k + 1)h(z), h ∈ QSα(δ, λ, γ, L, M),

where h is the solution of the differential equation (4.8).

Remark 4.7. To the author’s knowledge, the Fekete-Szegö problem is completely solved for the first time for the
classes

QS
α(δ, λ, γ, L, M) and GS

α(m, δ, λ, γ, L,M; µ).

Therefore, any deduction made from the obtained results, especially from that of class GSα(m, δ, λ, γ, L,M; µ), appears
to be completely new one.

5. Applications

In this section, some applications of the main results are demonstrated. In particular, solution of Fekete-Szegö prob-
lems lead the way to an estimates on upper bounds of logarithmic coefficients, bi-univalent coefficients, and second-
order Hankel determinant for functions in the subclasses QSα(δ, λ, γ, L, M) and GSα(m, δ, λ, γ, L,M; µ), where −1 ≤
M < L ≤ 1, M , 0.

Corollary 5.1. Let log
(

f (z)
z

)
= 2

∑∞
n=2 ξnzn such that 2ξ2 = a2 and 2ξ3 = a3 − a2

2/2. If f ∈ QSα(δ, λ, γ, L, M) and
−1 ≤ M < L ≤ 1,M , 0, then

|ξ2| ≤
|γ||L − M|

2C(2, α, δ, λ)ϕ2(α)
,

|ξ3| ≤
|γ||L − M|

4C(3, α, δ, λ)ϕ3(α)
max{1, |σ0|},

where ϕn(α) and C(n, α, δ, λ) are given by (1.2) and (2.4), respectively, and σ0 is given as

σ0 = M + γ(L − M)

 C(3, α, δ, λ)ϕ3(α)(
C(2, α, δ, λ)ϕ2(α)

)2 − 1

 .
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Proof. The first inequality follows from

|ξ2| =
1
2
|a2| ≤

|γ||L − M|
2C(2, α, δ, λ)ϕ2(α)

|q1|,

together with the fact that |q1| ≤ 1. For the second inequality, we have

|ξ3| =
1
2

∣∣∣∣∣∣a3 −
a2

2

2

∣∣∣∣∣∣ ,
which follows at once by using b = 1/2 in inequality (4.1) of Theorem 4.3. □

Corollary 5.2. Let log
(

f (z)
z

)
= 2

∑∞
n=2 ξnzn such that 2ξ2 = a2 and 2ξ3 = a3 − a2

2/2. If f ∈ GSα(m, δ, λ, γ, L,M; µ) and
−1 ≤ M < L ≤ 1,M , 0, then

|ξ2| ≤

m−1∏
j=0

(
µ + j + 1
µ + j + n

)
|γ||L − M|

2C(2, α, δ, λ)ϕ2(α)
,

|ξ3| ≤

m−1∏
j=0

(
µ + j + 1
µ + j + 3

) (
|γ||L − M|

4C(3, α, δ, λ)ϕ3(α)

)
max{1, |τ0|},

where ϕn(α) and C(n, α, δ, λ) are given by (1.2) and (2.4), respectively, and τ0 is given as

τ0 = M + γ(L − M)

m−1∏
j=0

(
(µ + j + 1)(µ + j + 3)

(µ + j + 2)2

)
C(3, α, δ, λ)ϕ3(α)

(C(2, α, δ, λ)ϕ2(α))2 − 1

 .
Proof. The first inequality simply follows from

|ξ2| =
1
2
|a2| =

1
2

m−1∏
j=0

(
µ + j + 1
µ + j + n

)
|c2|,

=
1
2

m−1∏
j=0

(
µ + j + 1
µ + j + n

)
|γ||L − M|

2C(2, α, δ, λ)ϕ2(α)
|q1|,

which gives the desired result by using |q1| ≤ 1. The second inequality follows by using b = 1/2 in inequality (4.5) of
Theorem 4.5. □

Remark 5.3. The coefficients ξn are known as logarithmic coefficients which played a central role in the proof of
Beiberbach’s conjecture by de-Branges [16]. Further, the Brannan, Milin, and Robertson conjecture as well as Lebedev-
Milin inequalities are also implied by logarithmic coefficients [2].

Corollary 5.4. Let g(z) = f −1(z) = z +
∑∞

n=2 ρnzn such that ρ2 = −a2 and ρ3 = 2a2
2 − a3. If f ∈ QSα(δ, λ, γ, L, M) and

−1 ≤ M < L ≤ 1,M , 0, then

|ρ2| ≤
|γ||L − M|

C(2, α, δ, λ)ϕ2(α)
,

|ρ3| ≤
|γ||L − M|

2C(3, α, δ, λ)ϕ3(α)
max{1, |σ1|},

where ϕn(α) and C(n, α, δ, λ) are given by (1.2) and (2.4), respectively, and σ1 is given as

σ1 = M + γ(L − M)

 4C(3, α, δ, λ)ϕ3(α)(
C(2, α, δ, λ)ϕ2(α)

)2 − 1

 .
Proof. The first inequality is straightforward whereas the second inequality is achieved by using b = 2 in inequality
(4.1) of Theorem 4.3. □
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Corollary 5.5. Let g(z) = f −1(z) = z +
∑∞

n=2 ρnzn such that ρ2 = −a2 and ρ3 = 2a2
2 − a3. If f ∈ GSα(m, δ, λ, γ, L,M; µ)

and −1 ≤ M < L ≤ 1,M , 0, then

|ρ2| ≤

m−1∏
j=0

(
µ + j + 1
µ + j + n

)
|γ||L − M|

C(2, α, δ, λ)ϕ2(α)
,

|ρ3| ≤

m−1∏
j=0

(
µ + j + 1
µ + j + 3

) (
|γ||L − M|

2C(3, α, δ, λ)ϕ3(α)

)
max{1, |τ1|},

where ϕn(α) and C(n, α, δ, λ) are given by (1.2) and (2.4), respectively, and τ1 is given as

τ1 = M + γ(L − M)

m−1∏
j=0

(
(µ + j + 1)(µ + j + 3)

(µ + j + 2)2

)
4C(3, α, δ, λ)ϕ3(α)

(C(2, α, δ, λ)ϕ2(α))2 − 1

 .
Proof. The first inequality is straightforward whereas the second inequality is achieved by using b = 2 in inequality
(4.5) of Theorem 4.5. □

Remark 5.6. The coefficients ρn are known as inverse coefficients for univalent functions. By Koebe’s one-quarter
theorem, it is well known that every univalent function f ∈ S has an inverse f −1, defined as

f −1( f (z)) = z, (∀z ∈ E); f ( f −1(ω)) = ω, |ω| < r∗( f ), r∗( f ) ≥ 1/4,

with
g(ω) = f −1(ω) = ω − a2ω

2 + (2a2
2 − a3)ω3 + · · · .

A univalent function f ∈ A whose inverse f −1 is also univalent in E is called bi-univalent function, while assuming f −1

has a univalent analytic continuation to E. Theory of bi-univalent functions revived back with the work of Srivastav et
al. [33] following Brannan and Taha [11].

Corollary 5.7. If f ∈ QSα(δ, λ, γ, L, M) and −1 ≤ M < L ≤ 1, M , 0, then

|H2(1)| =
∣∣∣a3 − a2

2

∣∣∣ ≤ |γ||L − M|
2C(3, α, δ, λ)ϕ3(α)

max{1, |σ2|},

where ϕn(α) and C(n, α, δ, λ) are given by (1.2) and (2.4), respectively, and σ2 is given as

σ2 = M + γ(L − M)

 2C(3, α, δ, λ)ϕ3(α)(
C(2, α, δ, λ)ϕ2(α)

)2 − 1

 .
Proof. By using b = 1 in inequality (4.1) of Theorem 4.3 gives at once the desired result. □

Corollary 5.8. If f ∈ GSα(m, δ, λ, γ, L,M; µ) and −1 ≤ M < L ≤ 1,M , 0, then

|H2(1)| =
∣∣∣a3 − a2

2

∣∣∣ ≤ m−1∏
j=0

(
µ + j + 1
µ + j + 3

) (
|γ||L − M|max{1, |τ|}
2C(3, α, δ, λ)ϕ3(α)

)
,

where ϕn(α) and C(n, α, δ, λ) are given by (1.2) and (2.4), respectively, and τ2 is given as

τ2 = M + γ(L − M)

m−1∏
j=0

(
(µ + j + 1)(µ + j + 3)

(µ + j + 2)2

)
2C(3, α, δ, λ)ϕ3(α)

(C(2, α, δ, λ)ϕ2(α))2 − 1

 .
Proof. By using b = 1 in inequality (4.5) of Theorem 4.5 gives at once the desired result. □

Remark 5.9. The functional a3 − ba2
2 is also known as Hankel determinant with Fekete-Szegö parameter b and read

as Hb
2(1) [10]. As shown, by using b = 1 in Theorem 4.3 and 4.5 gives us (no-sharp) bounds of Hankel determinant

H2(1) = a3 − a2
2. For further results in this direction, the reader may consult e.g., [8,22,23,34] and cited works therein.
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Remark 5.10. By specializing the involved parameters in Theorems 2.1, 3.1, 4.3, 4.5, as well as in Corollaries 5.1, 5.2,
5.4, 5.5, 5.7, 5.8, one can deduce coefficient inequalities, Fekete-Szegö, logarithmic, bi-univalent, and second Hankel
determinant inequalities for the classes discussed in Remarks 1.3 and 1.4 as well as for the classes Cγ[L, M], S ∗γ[L, M],
Cβ[L, M], S ∗β[L, M], C[L, M], S ∗[L, M], C(γ), S ∗(γ) and Cβ, S ∗β where 0 , γ ∈ C and 0 ≤ β < 1. For details
see [22, 23] and the cited works therein.

6. Conclusion

In this paper, we introduced and studied new subclasses of analytic functions of complex order, defined using the
Ruscheweyh derivative and non-homogeneous Cauchy–Euler differential equations. For these subclasses, sharp coef-
ficient bounds were obtained, and the Fekete–Szegö-type problems were fully solved. The results not only generalize
but also improve many earlier known bounds in the literature. In addition, upper bounds for logarithmic coefficients
and the second Hankel determinant were also reported, which further support the usefulness of the proposed sub-
classes. The results of this paper may be helpful in extending similar problems to related classes of functions, such as
Ruscheweyh-type subclasses of close-to-convex and quasi-convex functions—see, for example, [12].

Appendix

Herein, the following equality is elaborated

an =

m−1∏
j=0

(
µ + j + 1
µ + j + n

)
cn.

On considering f (z) = z +
∑∞

n=2 anzn and h(z) = z +
∑∞

n=2 cnzn together with the Cauchy-Euler differential equation
(1.3), we can get

∞∑
n=2

m−1∏
k=0

(n − k)anzn + m(µ + m − 1)
∞∑

n=2

m−2∏
k=0

(n − k)anzn+

+
m(m − 1)

2
(µ + m − 1)(µ + m − 2)

∞∑
n=2

m−3∏
k=0

(n − k)anzn + · · ·

+
m(m − 1)

2

m−1∏
k=2

(µ + k)
∞∑

n=2

n(n − 1)anzn + m
m−1∏
k=1

(µ + k)

z + ∞∑
n=2

nanzn


+

m−1∏
k=0

(µ + k)

z + ∞∑
n=2

anzn

 = m−1∏
k=0

(µ + k + 1)

z + ∞∑
n=2

cnzn

 .
A simplification then gives

∞∑
n=2

[ m−1∏
k=0

(n − k) + m
m−1∏

k=m−1

(µ + k)
m−2∏
k=0

(n − k)

+
m(m − 1)

2

m−1∏
k=m−2

(µ + k)
m−3∏
k=0

(n − k) + · · · +
m(m − 1)

2

m−1∏
k=2

(µ + k)
1∏

k=0

(n − k)

+ m
m−1∏
k=1

(µ + k)
0∏

k=0

(n − k) +
m−1∏
k=0

(µ + k)
]
anzn

+

m m−1∏
k=1

(µ + k) +
m−1∏
k=0

(µ + k)

 z =
m−1∏
k=0

(µ + k + 1)z +
m−1∏
k=0

(µ + k + 1)
∞∑

n=2

cnzn.

Now, observe that

m
m−1∏
k=1

(µ + k) +
m−1∏
k=0

(µ + k) = (m + µ)
m−1∏
k=1

(µ + k) =
m∏

k=1

(µ + k) =
m−1∏
k=0

(µ + k + 1).
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Hence, the coefficient of zn on both sides simplify to the following:[ m−1∏
k=0

(n − k) + m
m−1∏

k=m−1

(µ + k)
m−2∏
k=0

(n − k) + · · · + m
m−1∏
k=1

(µ + k)
0∏

k=0

(n − k) +
m−1∏
k=0

(µ + k)
]
an =

m−1∏
k=0

(µ + k + 1)cn.

It remains to show the identity
m−1∏
k=0

(n − k) + m
m−1∏

k=m−1

(µ + k)
m−2∏
k=0

(n − k) + · · · + m
m−1∏
k=1

(µ + k)
0∏

k=0

(n − k) +
m−1∏
k=0

(µ + k) =
m−1∏
k=0

(µ + k + n), ∀n ≥ 2,

holds for m ≥ 2. We show this by using the mathematical induction. For m = 2:
1∏

k=0

(n − k) + 2
1∏

k=1

(µ + k)
0∏

k=0

(n − k) +
1∏

k=0

(µ + k) = n(n − 1) + 2(µ + 1)n + µ(µ + 1)

= n(n − 1) + (µ + 1)n + (µ + 1)n + µ(µ + 1)
= n(n + µ) + (µ + 1)(n + µ)
= (µ + n)(µ + 1 + n).

Thus, it holds for m = 2. Assume the identity holds for some m = j ≥ 2. Then, we need to show the identity holds for
m = j + 1, that is

j∏
k=0

(n − k) + ( j + 1)
j∏

k= j

(µ + k)
j−1∏
k=0

(n − k) + · · · + ( j + 1)
j∏

k=1

(µ + k)
0∏

k=0

(n − k) +
j∏

k=0

(µ + k) =
j∏

k=0

(µ + k + n).

Using the induction hypothesis, we can write the left-hand side of the above equation as:
j∏

k=0

(n − k) + ( j + 1)
j−1∑
i=0

j∏
k=i

(µ + k)
i−1∏
k=0

(n − k) +
j∏

k=0

(µ + k),

which by recognizing the pattern from the hypothesis gives
j∏

k=0

(n − k) + ( j + 1)
j∏

k=0

(µ + k) +
j∏

k=0

(µ + k),

where we have used the fact that
j−1∑
i=0

j∏
k=i

(µ + k)
i−1∏
k=0

(n − k) =
j∏

k=0

(µ + k).

Since for each i,
∏ j

k=i(µ + k) is just the partial product of
∏ j

k=0(µ + k), and summing this over i from 0 to j − 1 gives
the full product. Now after rearrangement we can write

j∏
k=0

(n − k) + ( j + 1)
j∏

k=0

(µ + k) +
j∏

k=0

(µ + k) = ( j + 1)
j∏

k=0

(n − k) +
j∏

k=0

(µ + k) =
j∏

k=0

(µ + k + n).

This completes the induction step, and hence the identity holds for all m ≥ 2. Now, the equality
m−1∏
k=0

(µ + k + n)an =

m−1∏
k=0

(µ + k + 1)cn

gives the relation

an =

∏m−1
k=0 (µ + k + 1)∏m−1
k=0 (µ + k + n)

cn =

m−1∏
k=0

(
µ + k + 1
µ + k + n

)
cn, ∀m, n ≥ 2.

Note that, this result first appeared in [32], which was subsequently followed in various articles [12, 23, 36].
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[8] Aouf, M.K., Orhan, H., On the Fekete-Szegö problem for a certain class of meromorphic functions using q-derivative operator, Kyungpook

Math. J., 58(2)(2018), 307–318.
[9] Arif, M., Khan, Q., Sokol, J., A new family of starlike functions in a circular domain involving a q-differential operator, J. Contemporary Math.

Anal., 54(6)(2019), 339–346.
[10] Babalola, K.O., On coefficient determinants with Fekete-Szegö parameter, Appl. Math. E-Notes, 13(2013), 92–99.
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