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Abstract 

The Laplace transform can be applied to integrable and exponential-type functions 

on the half-line [0, ∞) by the formula 𝐿{𝑓} = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

0
. This transform 

reduces differential equations to algebraic equations and solves many non-

homogeneous differential equations. However, the Laplace transform cannot be 

applied to some functions such as 𝑥− 
9

4, because the given integral is divergent. So, 

the Laplace transform can not solve some differential equations with some terms such 

as 𝑥− 
9

4. This transform requires revision to accommodate such functions and solve a 

wider class of differential equations. In this study, we defined the Ω-Laplace 

transform, which eliminates such insufficiency of the Laplace transform and is a 

generalization of it. We applied this new operator to previously unsolved differential 

equations and obtained solutions. Ω-Laplace transform given with the help of series: 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

⇒ Ω{𝑓} = ∑
𝑐𝑛Γ(𝑟𝑛 + 1)

𝑠𝑟𝑛+1

∞

𝑛=0

 

Moreover, we compare the similarities and differences of this transform with the 

Laplace transform. 
 

 

1. Introduction 

 

The Laplace operator is a method for solving 

differential equations. It is an integral operator that 

transforms a function of a single variable. Laplace 

wrote extensive books on the use of functions in 

1814, and the integral form of the Laplace 

transform was developed as a result [1]. Beginning 

in 1744, Leonhard Euler studied the integral 

transform of the form known as [2]: 

 

𝑧 = ∫ 𝑋(𝑥)𝑒𝑎𝑥 𝑑𝑥 ,   𝑧 = ∫ 𝑋(𝑥)𝑥𝐴 𝑑𝑥. 

 

Lagrange was an admirer of Euler and in 

his work on the integration of probability density 

functions he investigated expressions of the form 

[3]: 

∫ 𝑋(𝑥)𝑒−𝑎𝑥𝑎𝑥 𝑑𝑥. 
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Integrals of this type attracted the attention 

of Laplace, and in 1782 he began to use integral 

operations to solve equations, following Euler. In 

1785, instead of simply looking for a solution in 

integral form, he used an integral of the form [4]: 

 

∫ 𝑥𝑠𝜑(𝑥)𝑑𝑥, 

 

where the last expression is called Mellin 

transform. Laplace developed this transform and 

finally gave the transform as [5] 

 

𝐿{𝑓} = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥

∞

0

. (1) 

 

In sources M. Çağlayan et al. [6], A. Mısır 

[7], R. N. Bracewell [8], W. Feller [9], G. A. Korn 

[10], D. V. Widder [11] and J. William [12] 

Laplace's transformation is given in great detail. 
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The form (1) is still in use today. In sources 

of differential equations or operator theory, there is 

usually a table of Laplace transform and inverse 

Laplace transform. This table is used when solving 

differential equations. In this table, 
 

𝐿{𝑓} =
Γ(𝑟 + 1)

𝑠𝑟+1
 

 

is the Laplace transform for 𝑟 > −1of the function 
 

𝑓(𝑥) = 𝑥𝑟 . 
 

When 𝑟 < −1, this function does not have 

a Laplace transform, since the integral (1) for is 

divergent for the function 𝑓(𝑥) = 𝑥𝑟. In this work, 

we generalize the Laplace transform to eliminate 

such problems. We will call this new operator 

Omega-Laplace transform and denote it by Ω-

Laplace. The Ω-Laplace transform can only be 

applied for the functions of the form 
 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=1

, 

as 

Ω{𝑓} = ∑
𝑐𝑛Γ(𝑟𝑛 + 1)

𝑠𝑟𝑛+1

∞

𝑛=1

 (2) 

 

We assume that these two series converge 

on at least one subinterval of ℝ. 

In this study, we will show that the Ω 

transform given by the equality (2) is a 

generalization of the Laplace transform, we will 

give the similar and different properties of this 

operator with the Laplace transform, and we will 

solve some differential equations that have not 

been solved before. 

Note that There are other operators that 

have been constructed to solve differential 

equations that the Laplace transform cannot solve, 

such as Mellin transform [5]: 
 

ℳ{𝑓}(𝑠) = ∫ 𝑥𝑠−1𝑓(𝑥)𝑑𝑥

∞

0

, 

fractional Laplace transform [13]: 

𝐿𝛼{𝑓}(𝑠) = ∫ 𝑓(𝑥)𝐸𝛼(−𝑠𝑥)𝑑𝑥

∞

0

, 

 

where 𝐸𝛼 is the Mittag-Leffler function, and 

Heaviside calculus [14]. The Mellin transform is 

used to solve some differential equations. 

However, it turns some terms like 𝑥𝑘𝑦 into 

ℳ{𝑓}(𝑠 + 𝑘). This makes it difficult to solve the 

kind of differential equations we solve. Fractional 

Laplace transform is useful for fractional 

differential equation. It is also not useful for the 

kind of differential equations we solve. Heaviside 

calculus is a method to turn differential expression 

into algebraic expression like the Laplace 

transform. However, it is insufficient to solve the 

differential equations we solved in our examples. 

There are recent studies on series representations. 

In [15-17], series representations of mathematical 

expressions, such as constants, functions, 

operators, etc., are obtained and their applications 

to differential equations or different fields are 

given. However, in these studies, the definition of 

the Laplace transform with the help of series and 

its application to unsolved differential equations 

are not available. 

Schrödinger equation is very important for 

mathematics, physics and engineering. 

Particularly, it gives the mathematical formulation 

of quantum mechanics [18]: 
 

𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑥, 𝑡) = (−

ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥, 𝑡)) Ψ(𝑥, 𝑡) 

 

in nuclear physics. The function 𝑉(𝑥, 𝑡) is called 

potential and it determinates the behavior of 

particles. In some cases, the potential takes a value 

such as 𝑥𝑞 (𝑞 < −1). Then, the Laplace transform 

or other transform cannot give a solution for the 

Schrödinger equation. For such equations the 

Omega-Laplace transform can be used. 

In recent years, the generalized Mellin 

transform, the generalized Fourier transform and 

the fractional Laplace transform have been 

investigated in [19-24]. However, the 

generalizations here are given in the integral form, 

as in the classical definitions. The series approach 

is present in our work. 
 

2. Results and Discussion 
 

Classical Laplace transform is defined by 

 

𝐿{𝑓}(𝑠) = ∫ 𝑓(𝑥)𝑒−𝑠𝑥 𝑑𝑥

∞

0

 

 

and is frequently used in differential equations, 

physics and engineering problems. Although it is 

very effective in solving problems, we noticed 

some shortcomings in the definition given by 

Laplace above. For this reason, we have defined a 

new Laplace transform using infinite series. So as 
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not to be confused with the L operator, we will use 

this new transform in the work of Ω. As we will 

show in the examples that it can solve some 

differential equations that the classical Laplace 

transform cannot solve with the Ω transform. Let's 

now examine this new definition, its properties and 

examples. 

 

Definition 1. Let 𝑥 ∈ ℝ, 𝑟𝑛 ∈ ℝ ∖ ℤ−, {𝑐𝑛}, {𝑟𝑛} be 

sequences of real numbers and the series 

 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

 (3) 

 

converges on at least one subinterval of ℝ. We 

define the transform of 𝑓 as follows: 

 

𝛺{𝑓} = ∑
𝑐𝑛Γ(𝑟𝑛 + 1)

𝑠𝑟𝑛+1

∞

𝑛=0

. (4) 

 

In this study, we will work on functions of 

type (3) that are expanded into series. When we try 

to solve differential equations, we try to find 

solutions in the form of (3). The transform of (3) is 

given in (4). The transform in (4) forms the basis 

of the present study and is an alternative to the 

classical Laplace transform. There is no image of 

functions like 𝑥−
3

2  under the classical Laplace 

transform. However, this function has an Ω 

transform. The Ω transform of this function is 

2√𝜋𝑠. Now, let's give some theorems of this new 

transform and use them in our differential 

equations. 

 

Theorem 1. We split the series (3) into positive and 

negative exponents as follows. 

 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

+ ∑ 𝑑𝑛𝑥−𝑞𝑛

∞

𝑛=0

,       𝑟𝑛, 𝑞𝑛 > 0, 

 

Assume that the limits 

 

𝑅 = lim
𝑛→∞

|𝑐𝑛|
1

𝑟𝑛 , 𝑄 = lim
𝑛→∞

|𝑑𝑛|
1

𝑞𝑛 

 

exist and 𝑄 < 𝑅. Then, the series (3) converges on 

the interval (𝑄, 𝑅). Also, the series converges on 

the set (−𝑅, −𝑄) ∪ (𝑄, 𝑅) in the case that all the 

exponents of series 𝑓 are integers. 

 

 

 

Proof. Consider the series 

∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

 (5) 

and 

∑ 𝑑𝑛𝑥−𝑞𝑛

∞

𝑛=0

. (6) 

 

We investigate the convergence of the 

series (5) and (6) separately. We apply the Cauchy 

root test for the convergence of the series (5): 
 

lim
𝑛→∞

√|𝑐𝑛𝑥𝑟𝑛|
𝑛

= lim
𝑛→∞

√|𝑐𝑛|. 𝑙𝑖𝑚
𝑛→∞

|𝑥|𝑟𝑛
𝑛⁄  

= lim
𝑛→∞

√|𝑐𝑛|
𝑛

. |𝑥|
lim

𝑛→∞

𝑟𝑛
𝑛 < 1 

⇔ |𝑥|
lim

𝑛→∞

𝑟𝑛
𝑛 <

1

lim
𝑛→∞

√|𝑐𝑛|𝑛
 

⇔ |𝑥| <
1

( lim
𝑛→∞

𝑛
√|𝐶𝑛|)

1∕ lim
𝑛→∞

𝑟𝑛
𝑛

 

⇔ |𝑥| <
1

lim
𝑛→∞

(|𝑐𝑛|
1
𝑛)

𝑛
𝑟𝑛

 

⇔ |𝑥| <
1

lim
𝑛→∞

|𝑐𝑛|
1

𝑟𝑛

 

⇔ |𝑥| < 𝑅 = lim
𝑛→∞

|𝑐𝑛|
−

1
𝑟𝑛 

−𝑅 < 𝑥 < 𝑅, 𝑥 ∈ (−𝑅, 𝑅), 
 

We assume that 𝑅 is positive. Otherwise, 

the series (2) cannot converge anywhere. If at least 

one of the exponents is not an integer, the interval 

takes the form (0, 𝑅). Now, we investigate the 

series (6): 
 

lim
𝑛→∞

√|𝑑𝑛 ⋅ 𝑥−𝑞𝑛| = lim
𝑛→∞

√|𝑑𝑛|𝑛
⋅ lim

𝑛→∞
|𝑥|−

𝑞𝑛
𝑛  

= lim
𝑛→∞

√|𝑑𝑛|𝑛
⋅ |𝑥|

− 𝑙𝑖𝑚
𝑛→∞

𝑞𝑛
𝑛 < 1 

⇔ |𝑥|
− lim

𝑛→∞

𝑞𝑛
𝑛 <

1

lim
𝑛→∞

√|𝑑𝑛|𝑛
 

⇔ |𝑥| >
1

( lim
𝑛→∞

√|𝑑𝑛|𝑛
)

−
1

lim
𝑛→∞

𝑞𝑛
𝑛

 

⇔ |𝑥| > lim
𝑛→∞

(|𝑑𝑛|
1
𝑛)

𝑛
𝑞𝑛

 

⇔ |𝑥| > lim
𝑛→∞

|𝑑𝑛|
1

𝑞𝑛 = 𝑄 

𝑥𝜖(−∞, 𝑄) ∪ (𝑄, +∞). 

If 𝑅 ≤ 𝑄, the set of convergence of the series (3) is 

null. See the following 
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So, we assume that 𝑄 < 𝑅. When we take 

the intersection of the convergence sets, we obtain 
(−𝑅, −𝑄) ∪ (𝑄, 𝑅). If at least one of the exponents 

is not an integer, the set of convergence is (𝑄, 𝑅). 

 

Theorem 2. For a function 𝑓 that has the series 

expansion (3), this expansion is unique. 

 

Proof. We sketch the proof in the case where all 

the exponents 𝑟𝑛 are ordered in the form 𝑟0 < 𝑟1 <
𝑟2 < ⋯. The function 𝑓 has 2 series expansion as 

 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

= ∑ 𝑑𝑛𝑥𝑞𝑛

∞

𝑛=0

, 𝑟𝑛, 𝑞𝑛 ∈ ℝ ∖ ℤ−. 

 

Assume that 𝑟0 = 𝑞0, 𝑟1 = 𝑞1, 𝑟2 = 𝑞2, …. 

Even if the exponents are not equal, we can assume 

the equality as true by writing 0 to the coefficient 

of different exponents. The last equality can be 

written by 

 

𝑐0𝑥𝑟0 + 𝑐1𝑥𝑟1 + 𝑐2𝑥𝑟2 + ⋯
= 𝑑0𝑥𝑟0 + 𝑑1𝑥𝑟1 + 𝑑2𝑥𝑟2 + ⋯. 

 

We product both sides of the equality by 𝑥−𝑟0: 

 

𝑐0 + 𝑐1𝑥𝑟1−𝑟0 + 𝑐2𝑥𝑟2−𝑟0 + ⋯
= 𝑑0 + 𝑑1𝑥𝑟1−𝑟0 + 𝑑2𝑥𝑟2−𝑟0 + ⋯ 

 

The equality takes the form 𝑐0 = 𝑑0 for 𝑥 = 0. 

Similarly, we have 

𝑐1 = 𝑑1 

𝑐2 = 𝑑2 

⋮ 
𝑐𝑛 = 𝑑𝑛 

⋮ 
Theorem 3. (Linearity Property). Let 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

, 𝑔(𝑥) = ∑ 𝑑𝑛𝑥𝑞𝑛

∞

𝑛=0

 

and 𝑎, 𝑏 ∈ ℝ. Then, the equality 

 

𝛺{𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)} = 𝑎𝛺{𝑓(𝑥)} + 𝑏𝛺{𝑔(𝑥)} 

holds. 

 

Proof. Consider two functions 𝑓 and 𝑔 in the form 

 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

, 𝑔(𝑥) = ∑ 𝑑𝑛𝑥𝑞𝑛

∞

𝑛=0

 

 

and apply the operator Ω: 

 

𝛺{𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)}

= 𝛺 {𝑎 ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

+ 𝑏 ∑ 𝑑𝑛𝑥𝑞𝑛

∞

𝑛=0

} 

= 𝛺 {∑ 𝑎𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

+ ∑ 𝑏𝑑𝑛𝑥𝑞𝑛

∞

𝑛=0

} 

= ∑
𝑎𝑐𝑛𝛤(𝑟𝑛 + 1)

𝑠𝑟𝑛+1

∞

𝑛=0

+ ∑
𝑏𝑑𝑛𝛤(𝑞𝑛 + 1)

𝑠𝑞𝑛+1

∞

𝑛=0

 

= 𝑎 ∑
𝑐𝑛𝛤(𝑟𝑛 + 1)

𝑠𝑟𝑛+1

∞

𝑛=0

+ 𝑏 ∑
𝑑𝑛𝛤(𝑞𝑛 + 1)

𝑠𝑞𝑛+1

∞

𝑛=0

 

= 𝑎𝛺{𝑓(𝑥)} + 𝑏𝛺{𝑔(𝑥)}. 
 

This completes the proof. 

 

Theorem 4. Let 𝑓 be a function of the series (3). 

Then the image of the function 𝑓𝑒𝑎𝑥 under the 

transform of Ω is equal to the value of the image of 

𝑓 under the transform Ω at the point 𝑠 − 𝑎. That is, 

𝛺{𝑓(𝑥)𝑒𝑎𝑥}(𝑠) = 𝛺{𝑓}(𝑠 − 𝑎). 
 

Proof: We apply the transform 𝛺 to the 

multiplication 
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𝑓(𝑥)𝑒𝑎𝑥 = (∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

) (∑
𝑎𝑛𝑥𝑛

𝑛!

∞

𝑛=0

) 

= (𝑐0𝑥𝑟0 + 𝑐1𝑥𝑟1 + ⋯ + 𝑐𝑛𝑥𝑟𝑛 + ⋯ ) (1 + 𝑎𝑥 +
𝑎2𝑥2

2!
+

𝑎3𝑥3

3!
+ ⋯

+𝑎𝑛𝑥𝑛

𝑛!
+ ⋯ ) 

= 𝑐0𝑥𝑟0 + 𝑐1𝑥𝑟1 + ⋯ + 𝑐𝑛𝑥𝑟𝑛 + ⋯ + 𝑎(𝑐0𝑥𝑟0+1 + 𝑐1𝑥𝑟1+1 + ⋯ + 𝑐𝑛𝑥𝑟𝑛+1 + ⋯ ) 

+
𝑎2

2!
(𝑐0𝑥𝑟0+2 + 𝑐1𝑥𝑟1+2 + ⋯ + 𝑐𝑛𝑥𝑟𝑛+2 + ⋯ ) + ⋯ 

we have 

𝑐0𝛤(𝑟0 + 1)

𝑠𝑟0+1
+

𝑐1𝛤(𝑟1 + 1)

𝑠𝑟1+1
+ ⋯ + a (

𝑐0𝛤(𝑟0 + 2)

𝑠𝑟0+2
+

𝑐1𝛤(𝑟1 + 2)

𝑠𝑟1+1
+ ⋯ )

+
𝑎2

2!
(

𝑐0𝛤(𝑟0 + 3)

𝑠𝑟0+3
+

𝑐1𝛤(𝑟1 + 3)

𝑠𝑟1+3
+ ⋯ ) + ⋯. 

For 𝑡 > −1 and 𝛼 ∈ ℝ, we obtain 

 (1 + 𝑡)𝛼 = ∑ (
𝛼
𝑛

) 𝑡𝑛

∞

𝑛=0

 

The last gives us the relation 

1

(𝑠 − 𝑎)𝛼
= (𝑠 − 𝑎)−𝛼 = 𝑠−𝛼 (1 + (

−𝑎

𝑠
))

−𝛼

 

= 𝑠−𝛼 ∑ (
−𝛼
𝑛

) (−1)𝑛 (
𝑎𝑛

𝑠𝑛 )

∞

𝑛=0

, 

where 

(
−𝛼
𝑛

) =
−𝛼(−𝛼 − 1) … (−𝛼 − 𝑛 + 1)

𝑛!
 

(see, [25]). Then, we have 

1

(𝑠 − 𝑎)𝛼
= 𝑠−𝛼 ∑

−𝛼(−𝛼 − 1) … (−𝛼 − 𝑛 + 1)

𝑛!

∞

𝑛=0

(−1)𝑛
𝑎𝑛

𝑠𝑛
 

= ∑
𝛼(𝛼 + 1) … (𝛼 + 𝑛 − 1)

𝑛!

∞

𝑛=0

.
𝑎𝑛

𝑠𝑛+𝛼
. 

and, 

1

(𝑠 − 𝛼)𝑟𝑘+1
= ∑

(𝑟𝑘 + 1) … (𝑟𝑘 + 𝑛)

𝑛!

∞

𝑛=0

.
𝑎𝑛

𝑠𝑛+𝑟𝑘+1
. 

The image of the function 𝑓 under the transform Ω at 𝑠 − 𝑎 is 

Ω{𝑓}(𝑠 − 𝑎) = ∑
𝑐𝑛Γ(𝑟𝑛 + 1)

(𝑠 − 𝑎)𝑟𝑛+1

∞

𝑛=0

=
𝑐0Γ(𝑟0 + 1)

(𝑠 − 𝑎)𝑟0+1
+

𝑐1Γ(𝑟1 + 1)

(𝑠 − 𝑎)𝑟1+1
+ ⋯ 

𝑐0𝛤(𝑟0 + 1) (
1

𝑠𝑟0 + 1
+ 𝑎 ⋅

𝑟0 + 1

𝑠𝑟0+2
+

𝑎2

2!

(𝑟0 + 1)(𝑟0 + 2)

𝑠𝑟0+3
+ ⋯ ) 

+𝑐1𝛤(𝑟1 + 1) + (
1

𝑠𝑟1 + 1
+ 𝑎 ⋅

𝑟1 + 1

𝑠𝑟1+2
+

𝑎2

2!

(𝑟1 + 1)(𝑟1 + 2)

𝑠𝑟1+3
+ ⋯ ). 

+ ⋯ 

This completes the proof. 

For 𝑓(𝑥) = 1, we have 

𝛺{𝑒𝑎𝑥} =
1

𝑠 − 𝑎
. 
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Theorem 5. Let the function 

 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

, 𝑟𝑘0
= 0, 𝑟𝑛 ∉ ℤ− 

 

be a differentiable function and the series are 

uniform convergence on an interval of the reals. 

Then, 

𝛺{𝑓′(𝑥)} = 𝑠𝛺{𝑓(𝑥)} − 𝑐𝑘0
, 

 

where, 𝑐𝑘0
 is the coefficient of the term 𝑥0 in the 

series. If, the function 𝑓 is a differentiable function 

of order 𝑛, we have 

𝛺{𝑓(𝑛)} = 𝑠𝑛𝛺{𝑓} − 𝑠𝑛−1𝑐𝑘0
− ⋯ − 𝑠𝑐𝑘𝑛−2

− 𝑐𝑘𝑛−1
 

 

where, 𝑐𝑘𝑚
 (𝑚 = 0, 𝑛 − 1) is the coefficient of the 

term in the series 𝑥𝑚. 

 

Proof: Consider a function 𝑓 in the form 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

, 𝑟𝑘0
= 0, 𝑟𝑛 ∉ ℤ−, 

then we have 

𝑓′(𝑥) = ∑ 𝑐𝑛𝑟𝑛𝑥𝑟𝑛−1

∞

𝑛=0

. 

Now, we apply the operator Ω: 

 

𝛺{𝑓′} = ∑
𝑐𝑛𝑟𝑛𝛤(𝑟𝑛)

𝑠𝑟𝑛

∞

𝑛=0

= 𝑠 (∑
𝑐𝑛𝛤(𝑟𝑛 + 1)

𝑠𝑟𝑛+1

∞

𝑛=0

+
𝑐𝑘0

𝑠
−

𝑐𝑘0

𝑠
) = 𝑠 (𝛺{𝑓} −

𝑐𝑘0

𝑠
) 

=  𝑠𝛺{𝑓} − 𝑐𝑘0
. 

 

This completes the proof for first order 

derivative. If we apply the formula obtained for the 

first order derivative repeatedly for higher order 

derivatives, we have 

 

𝛺{𝑓(𝑛)} = 𝑠𝑛𝛺{𝑓} − 𝑠𝑛−1𝑐𝑘0
− ⋯ − 𝑠𝑐𝑘𝑛−2

− 𝑐𝑘𝑛−1
. 

 

Theorem 6. If the series (3) and (4) are convergent, 

then 

 
𝑑

𝑑𝑠
𝛺{𝑓(𝑥)}(𝑠) = 𝛺{−𝑥𝑓(𝑥)}(𝑠). 

 

Proof: If we take the derivative of Ω of 𝑓 in the 

form (4) with respect to 𝑠, we have 

 

𝑑

𝑑𝑠
𝛺{𝑓(𝑥)}(𝑠) = ∑ −𝑐𝑛(𝑟𝑛 + 1)

∞

𝑛=0

⋅ 𝛤(𝑟𝑛 + 1)𝑠−(𝑟𝑛+2) 

 

= ∑ −
𝑐𝑛𝛤(𝑟𝑛 + 2)

𝑠𝑟𝑛+2

∞

𝑛=0

 

= Ω {∑ −𝑐𝑛𝑥𝑟𝑛+1

∞

𝑛=0

} 

= Ω {(−𝑥) ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

} 

= 𝛺{−𝑥𝑓(𝑥)}. 

Similarly, we have the following for all the 

positive integers 𝑛 
𝑑𝑛𝑠

𝑑𝑠𝑛
𝛺{𝑓(𝑥)} = 𝛺{(−1)𝑛𝑥𝑛𝑓(𝑥)}. 

 

Theorem 7. If the series (3) are uniformly 

convergent and the integral 

∫ 𝑓(𝑢) 𝑑𝑢

𝑥

0

 

is convergent on an interval (0, 𝑅), 𝑅 > 0, we have 

𝛺 {∫ 𝑓(𝑢) 𝑑𝑢

𝑥

0

} =
1

𝑠
𝛺{𝑓(𝑥)}(𝑠). 

 

Proof. We write the series (3) as 
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𝑓(𝑢) = ∑ 𝑐𝑛𝑢𝑟𝑛

∞

𝑛=0

. 

∫ (∑ 𝑐𝑛𝑢𝑟𝑛

∞

𝑛=0

) 𝑑𝑢

𝑥

0

= ∑  

∞

𝑛=0

(𝑐𝑛 ∫ 𝑢𝑟𝑛 𝑑𝑢

𝑥

0

) = ∑  

∞

𝑛=0

𝑐𝑛 (
𝑢𝑟𝑛+1

𝑟𝑛 + 1
|

0

𝑥

) = ∑  

∞

𝑛=0

𝑐𝑛

𝑥𝑟𝑛+1

𝑟𝑛 + 1
. 

We apply the Ω transform: 

𝛺 {∫ 𝑓(𝑢) 𝑑𝑢

𝑥

0

} = ∑
𝑐𝑛𝛤(𝑟𝑛 + 2)

(𝑟𝑛 + 1)𝑠𝑟𝑛+2

∞

𝑛=0

= ∑
𝑐𝑛(𝑟𝑛 + 1)𝛤(𝑟𝑛 + 1)

(𝑟𝑛 + 1)𝑠𝑟𝑛+1𝑠

∞

𝑛=0

 

=
1

𝑠
∑

𝑐𝑛𝛤(𝑟𝑛 + 1)

𝑠𝑟𝑛+1

∞

𝑛=0

=
1

𝑠
𝛺{𝑓(𝑥)}(𝑠). 

This completes the proof. 

 

Theorem 8. If the series (3) and (4) are uniformly 

convergent on intervals 𝐼 and 𝐽 respectively and the 

exponents 𝑟𝑛 in (3) are not 0, then we have 

 

𝛺 {
𝑓(𝑥)

𝑥
} (𝑠) = ∫ Ω{𝑓}(𝑢) 𝑑𝑢

∞

𝑠

. 

 

Proof: Since the following equality holds 

𝑓(𝑥)

𝑥
= ∑ 𝑐𝑛𝑥𝑟𝑛−1

∞

𝑛=0

 

Then we can write 

𝛺 {
𝑓(𝑥)

𝑥
} = ∑

𝑐𝑛𝛤(𝑟𝑛)

𝑠𝑟𝑛

∞

𝑛=0

. 

 

If we both multiply and divide the series by 𝑟𝑛, we 

have 

 

𝛺 {
𝑓(𝑥)

𝑥
} = ∑

𝑐𝑛𝛤(𝑟𝑛)𝑟𝑛

𝑠𝑟𝑛𝑟𝑛

∞

𝑛=0

= ∑
𝑐𝑛𝛤(𝑟𝑛 + 1)

𝑠𝑟𝑛𝑟𝑛

∞

𝑛=0

= ∑ 𝑐𝑛Γ(𝑟𝑛 + 1) ∫
𝑑𝑢

𝑢𝑟𝑛+1

∞

𝑠

∞

𝑛=0

= ∫ ∑
𝑐𝑛Γ(𝑟𝑛 + 1)

𝑢𝑟𝑛+1

∞

𝑛=0

𝑑𝑢

∞

𝑠

= ∫ Ω{𝑓}(𝑢)𝑑𝑢

∞

𝑠

. 

 

Theorem 9 (Convolution). If 𝑓 and 𝑔 are 

functions given in the form of series (3), and those 

series both uniforms converge on an interval 
(0, 𝑅), 𝑅 > 0, then the equality holds 

 

𝛺{(𝑓 ∗ 𝑔)(𝑥)} = 𝛺{𝑓(𝑥)} ⋅ 𝛺{𝑔(𝑥)} 

 

where 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑟𝑛

∞

𝑛=0

, 𝑔(𝑥) = ∑ 𝑑𝑚𝑥𝑞𝑚

∞

𝑚=0

 

and 

(𝑓 ∗ 𝑔)(𝑥) = ∫ 𝑓(𝑡) ⋅ 𝑔(𝑥 − 𝑡) 𝑑𝑡

𝑥

0

. 

 

The last integral is known as the 

convolution of the functions 𝑓 and 𝑔. 

 

Proof: First, we find the series expansion of the 

function 𝑓(𝑡) ⋅ 𝑔(𝑥 − 𝑡): 

 

𝑓(𝑡) ⋅ 𝑔(𝑥 − 𝑡) = (∑ 𝑐𝑛𝑡𝑟𝑛

∞

𝑛=0

)

⋅ ( ∑ 𝑑𝑚(𝑥 − 𝑡)𝑞𝑚

∞

𝑚=0

) 

= ∑  

∞

𝑛=0

∑ 𝑐𝑛𝑑𝑚𝑡𝑟𝑛(𝑥 − 𝑡)𝑞𝑚

∞

𝑚=0

. 

 

 

Second, we integrate this function on the 

interval [0, 𝑥]. By the uniform convergence, we 

have 
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(𝑓 ∗ 𝑔)(𝑥) = ∫ (∑  

∞

𝑛=0

∑ 𝑐𝑛𝑑𝑚𝑡𝑟𝑛(𝑥

∞

𝑚=0

𝑥

0

− 𝑡)𝑞𝑚) 𝑑𝑡 

= ∑  

∞

𝑛=0

∑  

∞

𝑚=0

𝑐𝑛𝑑𝑚 ∫ 𝑡𝑟𝑛(𝑥 − 𝑡)𝑞𝑚 𝑑𝑡

𝑥

0

. 

 

Third, by change of variable (𝑡 = 𝑥𝑢), we have  

 

(𝑓 ∗ 𝑔)(𝑥) = ∑  

∞

𝑛=0

∑  

∞

𝑚=0

𝑐𝑛𝑑𝑚 ∫ 𝑥𝑟𝑛𝑢𝑟𝑛(𝑥

1

0

− 𝑥𝑢)𝑞𝑚 𝑑𝑢 

= ∑  

∞

𝑛=0

∑ 𝑐𝑛𝑑𝑚𝑥𝑟𝑛+𝑞𝑚+1

∞

𝑚=0

∫ 𝑢𝑟𝑛(1 − 𝑢)𝑞𝑚 𝑑𝑢

1

0

 

= ∑  

∞

𝑛=0

∑ 𝑐𝑛𝑑𝑚𝑥𝑟𝑛+𝑞𝑚+1

∞

𝑚=0

𝛽(𝑟𝑛 + 1, 𝑞𝑚 + 1) 

= ∑  

∞

𝑛=0

∑  

∞

𝑚=0

𝑐𝑛𝑑𝑚𝑥𝑟𝑛+𝑞𝑚+1
𝛤(𝑟𝑛 + 1)𝛤(𝑞𝑚 + 1)

𝛤(𝑟𝑛 + 𝑞𝑚 + 2)
. 

 

 

Finally, we apply the operator Ω: 

 

Ω{(𝑓 ∗ 𝑔)} = 

∑  

∞

𝑛=0

∑  

∞

𝑚=0

𝑐𝑛𝑑𝑚

𝛤(𝑟𝑛 + 1)𝛤(𝑞𝑚 + 1)𝛤(𝑟𝑛 + 𝑞𝑚 + 2)

𝛤(𝑟𝑛 + 𝑞𝑚 + 2)𝑠𝑟𝑛+𝑞𝑚+2
 

= ∑  

∞

𝑛=0

∑  

∞

𝑚=0

𝑐𝑛𝛤(𝑟𝑛 + 1)

𝑠𝑟𝑛+1

𝑑𝑚𝛤(𝑞𝑚 + 1)

𝑠𝑞𝑚+1
 

= ∑  

∞

𝑛=0

𝑐𝑛𝛤(𝑟𝑛 + 1)

𝑠𝑟𝑛+1
∑  

∞

𝑚=0

𝑑𝑚𝛤(𝑞𝑚 + 1)

𝑠𝑞𝑚+1
 

𝛺{𝑓(𝑥)} ⋅ 𝛺{𝑔(𝑥)}, 
 

where 𝛽 is the beta function, see [8/10]. 

 

3. Application 

 

Example 1. Let's calculate the 𝛺 transform of the 

trigonometric function sin 𝑏𝑥 and cos 𝑏𝑥 , 𝑏 > 0 

by using the Taylor expansion: 

 

sin 𝑏𝑥 = ∑
(−1)𝑛𝑥2𝑛+1𝑏2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

. 

 

Apply the operator Ω to above series: 

 

 

𝛺{sin 𝑏𝑥} = ∑
(−1)𝑛𝑏2𝑛+1(2𝑛 + 1)!

(2𝑛 + 1)! 𝑠2𝑛+2

∞

𝑛=0

= ∑
(−1)𝑛𝑏2𝑛+1

𝑠2𝑛+2

∞

𝑛=0

=
𝑏

𝑠2 ∑(−1)𝑛 (
𝑏2

𝑠2)

𝑛
∞

𝑛=0

 

=
𝑏

𝑠2

1

1 +
𝑏2

𝑠2

=
𝑏

𝑠2 + 𝑏2
. 

 

Similarly, consider the following series and apply the same process: 

 

cos 𝑏𝑥 = ∑
(−1)𝑛𝑏2𝑛𝑥2𝑛

(2𝑛)!

∞

𝑛=0

 

𝛺{cos 𝑏𝑥} = ∑
(−1)𝑛𝑏2𝑛(2𝑛)!

(2𝑛)! 𝑠2𝑛+1

∞

𝑛=0

=
1

𝑠
∑

(−1)𝑛𝑏2𝑛

𝑠2𝑛

∞

𝑛=0

=
1

𝑠
∑(−1)𝑛 (

𝑏2

𝑠2)

𝑛
∞

𝑛=0

 

=
1

𝑠

1

1 +
𝑏2

𝑠2

=
𝑠

𝑠2 + 𝑏2
. 

 

We see that the images of cos and sin functions under Laplace transform and Ω transform are the same. 
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Example 2. Solve the first order equation 2𝑥𝑦′ =
−3𝑦 with the ; Ω transform. 

 

Solution: Apply the Ω transform of both sides of 

the equation: 

 

2𝛺{(−𝑥)𝑦′} = 3𝛺{𝑦}. 
 

By Theorem 6, we have 

 

2
𝑑

𝑑𝑠
[𝛺{𝑦′}] = 3𝛺{𝑦}. 

 

By Theorem 5, we have 

 

2
𝑑

𝑑𝑠
[𝑠𝛺{𝑦} − 𝑐𝑘0

] = 3𝛺{𝑦}. 

 

By derivative of multiplication, we have 

 

2𝛺{𝑦} + 2𝑠
𝑑𝛺{𝑦}

𝑑𝑠
= 3𝛺{𝑦} 

⇒ 2𝑠
𝑑𝛺{𝑦}

𝑑𝑠
= 𝛺{𝑦}. 

 

Now, we separate the variables: 

 
2 𝑑𝛺{𝑦}

𝛺{𝑦}
=

𝑑𝑠

𝑠
, 

then 

2 ln 𝛺{𝑦} = ln 𝑠 + 𝑐1. 
 

 

Apply the exponential function to both 

sides of equation and reorganize the constant: 

(𝛺{𝑦})2 = 𝑐2
2𝑠    (𝑐2 = 𝑒

𝑐1
2 ) 

⇒ 𝛺{𝑦} = 𝑐2√𝑠 

⇒ 𝛺{𝑦} =
𝑐2√𝑠Γ(−

1
2)

Γ(−
1
2

)
. 

By the definition of Ω, we find the solution: 

𝑦 =
𝑐

𝑥
3
2

    (𝑐 =
𝑐2

Γ(−
1
2

)
). 

The general solution of the equation is 𝑦 =
𝑐

𝑥
3
2

. Since the equation is separable, it could be 

solved even without Ω or Laplace transform. Now, 

we consider a second-order nonhomogeneous 

linear differential equation that cannot be solved by 

classical methods. Note that the analytical solution 

of the following equation cannot be obtained by 

classical methods. 

 

Example 4. Solve the equation 4𝑦′′ + 2𝑥y′ +
5𝑦 = 35𝑥−9∕2 with the transform Ω. Let's 

transform both sides of the equation by Ω. 

 

Ω{4𝑦′′ + 2𝑥y′ + 5𝑦} = Ω{35𝑥−9∕2}. 
 

By linearity and definition of Ω, we have 

 

4𝛺{𝑦′′} + 2𝛺{𝑥𝑦′} + 5𝛺{𝑦} = 35𝛤 (−
7

2
) 𝑠

7
2. 

 

By Theorem 5 and 6, we have 

 

 

4(𝑠2𝛺{𝑦} − 𝑠𝑐𝑘0
− 𝑐𝑘1

) − 2
𝑑

𝑑𝑠
𝛺{𝑦′} + 5𝛺{𝑦} =

35.16√𝜋

105
𝑠

7
2 

⇒ 4𝑠2𝛺{𝑦} − 4𝑠𝑐𝑘0
− 4𝑐𝑘1

− 2
𝑑

𝑑𝑠
(𝑠𝛺{𝑦} − 𝑐𝑘0

) + 5𝛺{𝑦} =
16√𝜋𝑠

7
2

3
 

⇒ 4𝑠2𝛺{𝑦} − 4𝑠𝑐𝑘0
− 4𝑐𝑘1

− 2𝛺{𝑦} − 2𝑠
𝑑

𝑑𝑠
𝛺{𝑦} + 5𝛺{𝑦} =

16√𝜋𝑠
7
2

3
 

⇒ −2𝑠
𝑑

𝑑𝑠
𝛺{𝑦} + (4𝑠2 + 3)𝛺{𝑦} =

16√𝜋𝑠
7
2

3
+ 4𝑠𝑐𝑘0

+ 4𝑐𝑘1
 

⇒
𝑑

𝑑𝑠
𝛺{𝑦} − (2𝑠 +

3

2𝑠
) 𝛺{𝑦} = −

8√𝜋𝑠
5
2

3
− 2𝑐𝑘0

−
2𝑐𝑘1

𝑠
. 

 

To solve this differential equation, we multiply each side by 𝑠−
3

2𝑒−𝑠2
 the integrating factor used for 

linear equations of order 1. To find a particular solution of the differential equation, we choose the coefficients 

𝑐𝑘0
= 𝑐𝑘1

= 0 of the terms 𝑥0 and 𝑥1. 
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𝑠
−3
2 𝑒−𝑠2 𝑑

𝑑𝑠
𝛺{𝑦} − 𝑠

−3
2 (2𝑠 +

3

2𝑠
) 𝑒−𝑠2

𝛺{𝑦} = −
8√𝜋𝑠𝑒−𝑠2

3
 

⇒ 𝛺{𝑦} = 𝑠
3
2𝑒𝑠2

∫ (−
8√𝜋𝑠𝑒−𝑠2

3
𝑑𝑠) = 𝑠

3
2𝑒𝑠2

(
4√𝜋

3
𝑒−𝑠2

+ 𝑐) =
4√𝜋𝑠

3
2

3
+ 𝑐𝑠

3
2𝑒𝑠2

 

 

We choose again 𝑐 = 0. Since 𝛺{𝑦} =
4√𝜋

3𝑠
−3

2⁄
, by the definition of the transform Ω, we have 

 

𝑦 = 𝑥−
5
2 

 

It is an analytical, particular, solution of the differential equation. The general solution of the equation 

can be obtained by classical methods of differential equations theory using that particular solution. 

Ω operator is an operator like Laplace. It has similar and different properties with the Laplace operator. 

Below is an Ω transform table for the operator like Laplace transform table. 

 

Table 1. 𝛺 Transform table 

𝑓(𝑥) Ω{𝑓} 
1 1

𝑠
 

𝑥𝑟𝑒𝑎𝑥 Γ(𝑟 + 1)

(𝑠 − 𝑎)𝑟+1
 

𝑒𝑎𝑥 sin 𝑏𝑥 𝑏

(𝑠 − 𝑎)2 + 𝑏2
 

𝑒𝑎𝑥 cos 𝑏𝑥 𝑠 − 𝑎

(𝑠 − 𝑎)2 + 𝑏2
 

(−1)𝑛𝑥𝑛𝑓(𝑥) 𝑑𝑛𝑠

𝑑𝑠𝑛
Ω{𝑓(𝑥)} 

sin 𝑏𝑥 𝑏

𝑠2 + 𝑏2
 

cos 𝑏𝑥 𝑠

𝑠2 + 𝑏2
 

𝑒𝑎𝑥 1

𝑠 − 𝑎
 

𝑓(𝑥)𝑒𝑎𝑥 𝛺{𝑓}(𝑠 − 𝑎) 

∫ 𝑓(𝑢) 𝑑𝑢

𝑥

0

 

1

𝑠
𝛺{𝑓(𝑥)}(𝑠) 

𝑓(𝑛) 𝑠𝑛𝛺{𝑓} − 𝑠𝑛−1𝑐𝑘0
− ⋯ − 𝑠𝑐𝑘𝑛−2

− 𝑐𝑘𝑛−1
 

𝑓(𝑥)

𝑥
 

 
∫ Ω{𝑓}(𝑢) 𝑑𝑢

∞

𝑠

 

𝛺{(𝑓 ∗ 𝑔)(𝑥)} 𝛺{𝑓(𝑥)} ⋅ 𝛺{𝑔(𝑥)} 
 

Now, we explain the similarities and differences between Laplace and Ω-Laplace operators. First, we 

give the similarities 

1. Both operators turn a differential equation into an algebraic equation. 

2. Both operators turn the functions like 𝑥𝑟 sin 𝑏𝑥 , cos 𝑏𝑥 into 
Γ(𝑟+1)

𝑠𝑟+1 ,
𝑏

𝑠2+𝑏2 ,
𝑠

𝑠2+𝑏2 respectively. 

3. Both operators have shifting property (see Theorem 4) 

4. Both operators have derivative property (see Theorem 6). 

5. Both operators have two integration properties (see Theorem 7 and 8). 

6. Both operators have convolution property (see Theorem 9). 

Second, we give a differences table 
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Table 2. Differences between Laplace and 𝛺-Laplace Transform 

Laplace transform Ω-Laplace transform 

can be applied exponential order functions 

integrable on [0, ∞) 

can be applied functions of the form 𝑓(𝑥) =
∑ 𝑐𝑛𝑥𝑟𝑛∞

𝑛=0  

can sometimes lead to difficult integrals to take the transformation of a function, it is 

enough to know that it transforms 𝑥𝑟 into 
Γ(𝑟+1)

𝑠𝑟+1  

can not be applied to functions of the form 

𝑥𝑟, (𝑟 < −1) 

can be applied to functions of the form 𝑥𝑟, 

(𝑟 < −1) 

to be applied to the derivative of a function, 

the function must be defined at 0 

to be applied to the derivative of a function, 

the function need not be defined at 0 

the derivative formula is 𝐿{𝑓′} = 𝑠𝐿{𝑓} −
𝑓(0) 

the derivative formula is 𝐿{𝑓′} = 𝑠𝐿{𝑓} −
𝑐𝑘0

 

to be applied to the 𝑛𝑡ℎ derivative of a 

function, the function and derivatives must 

be defined at 0 

to be applied to the 𝑛𝑡ℎ derivative of a 

function, the function and derivatives need 

not be defined at 0 

the higher derivative formula is 𝐿{𝑓(𝑛)} =

𝑠𝑛𝐿{𝑓} − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓′(0) − ⋯ −

𝑓(𝑛−1)(0) 

the higher derivative formula is 𝐿{𝑓(𝑛)} =

𝑠𝑛𝐿{𝑓} − 𝑠𝑛−1𝑐𝑘0
− 𝑠𝑛−2𝑐𝑘1

− ⋯ − 𝑐𝑘𝑛−1
 

can not solve all differential equations that Ω-

Laplace transform can solve 

can solve all differential equations that 

Laplace transform can solve, and it can also 

solve differential equations other than this 
 

4. Conclusion 

 

In this study, we introduced the Ω-Laplace 

transform, a significant generalization of the 

classical Laplace transform. The classical Laplace 

transform, while powerful in reducing complex 

differential equations to algebraic forms, faces 

limitations when applied to functions with terms 

like 𝑥𝑟 where 𝑟 < −1, as the integral involved 

becomes divergent. The Ω-Laplace transform 

overcomes this limitation by incorporating a series-

based approach, extending its applicability to a 

broader class of functions. Through several 

examples, we demonstrated that this new transform 

is capable of solving differential equations that 

were previously unsolvable with traditional 

methods. In addition, the similarities and 

differences between the Ω-Laplace and classical 

Laplace transforms were thoroughly analyzed, 

leading to the development of a comprehensive 

transformation table for Ω-Laplace. 

The practical utility of the Ω-Laplace 

transform lies in its ability to handle functions that 

arise in fields like quantum mechanics, where 

potential functions can take values outside the 

scope of the classical Laplace transform. By 

providing an alternative approach to solving 

complex differential equations, the Ω-Laplace 

transform opens new avenues for mathematical 

analysis in applied contexts. 

The introduction of the Ω-Laplace 

transform suggests several promising directions for 

future research. First, the exploration of further 

generalizations of this operator may yield even 

more versatile tools for solving a wider variety of 

differential equations. Additionally, applying the 

Ω-Laplace transform to higher-dimensional 

problems, such as partial differential equations in 

physics and engineering, could significantly 

enhance its practical applications. Moreover, 

studying the connections between Ω-Laplace and 

other integral transforms, such as the Mellin or 

Fourier transforms, might provide new insights and 

powerful hybrid techniques for advanced 

mathematical and physical models. 

Furthermore, implementing the Ω-Laplace 

transform in computational software could make it 

accessible to a broader audience of researchers in 

applied sciences. This work sets the foundation for 

a deeper exploration of series-based 

transformations and their potential to revolutionize 

the solution of intricate mathematical problems.  
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