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Abstract
Employing a modified version of the cardinal Sincπ (πxn) function as the assumed profile, the work
presents approximate solutions of a non-linear (degenerate) diffusion equation with a power-law-
type concentration-dependent diffusivity in a semi-infinite domain by the integral-balance method
(double integration technique). The behavior and basic features of a modified function Sincπ (xn) are
addressed, highlighting how it is used in the generated approximate solutions. It has been successful in
implementing the concept of the modified sinc(x) function’s variable (argument-dependent) exponent.
To demonstrate the suitability of the suggested technique, comparative examinations concerning
well-known approximate analytical and numerical problem solutions have been developed.
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1 Introduction

Approximate integral-balance solutions to parabolic diffusion models are based on the concept
of Goodman [1] about the final penetration depth of the diffusant, resulting in a sharp front of
the solution propagation [2–5]. It was extensively investigated for years and applied to solutions
of practically important problems [6–14]. The essence of this method is the selection of an
appropriate assumed profile and re-definition of the boundary conditions at the solution front
(the so-called Goodman’s boundary conditions; see Eq. (9) in Section 2). We do not intend to
encompass all works where this powerful solution method is applied, and for this, we refer to the
above-mentioned references (and the references therein) for more details (also in some additional
literature sources quoted in the sequel of this article).
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This communication, relevant to the field of engineering mathematics, addresses an approximate
solution of a temperature (concentration)-dependent thermal (mass) diffusion model

∂θ

∂t
=

∂

∂x

(
a (θ)

∂θ

∂x

)⇒ ∂θ

∂t
=

∂

∂x

(
a0θm ∂θ

∂x

)
. (1)

In the model (1) the temperature (concentration)-dependent diffusivity is a power-law func-

tion of a scaled temperature (concentration) a = k (θ)/ρCp = a0

(
θ/θre f

)m
, m > 0 (or as

D = D0

(
θ/θre f

)m
, m > 0 in the case of heat of mass diffusion, where D0 is the temperature

(concentration)-independent diffusivity) (see more details and comments about the model and its
properties in [15] and references therein).
The model (1) is uniformly parabolic but degenerates for θ = 0 [16, 17] and followed by solutions
with finite speeds and sharp fronts pertinent to creeping flows [18, 19], non-linear heat conductivity
(mass diffusion, too) [20], porous media filtration [21]. Many problems defined with various
positive integer values m are analyzed in [15–17, 19] and the references therein.
We have now completed the initial remarks regarding the use of the integral-balance method to
solve diffusion problems with non-linear (degenerate) parabolic equation modeling and started
working on the problem we intend to develop. In general, the work under consideration involves
the development of an approximate integral-balance solution to (1) with an assumed profile.
More specifically, its modification Sincπ(xn) (Section 3) is employed, with details systematically
presented in the sequel.

Motivation

The main motivation for this study is driven by some specific properties of the cardinal sinc(x)
function, precisely its normalized version sincπ(x) (see Section 2) that to a greater extent suggest
its use as an assumed profile in the integral-balance solution developed. Saying in advance, the
main idea and what the attractive features of sincπ(x) are that sincπ(0) = 1 and sincπ(1) = 0 (as
explained in Section 2) and it is a completely monotonic decaying function in the range 0 ≤ x ≤ 1
that matches, in general, the behavior of the approximate solutions when expressed function
through the parabolic profile with unspecified exponent and other approximate solutions (see
Section 2).

Aim

The key aim of this study is the use of a modified sinc(x) function, mentioned further as Sincπ(xn),
as an assumed profile in the integral-balance solution; precisely, some new features of this function
( presented in Section 3) suggest its use in a solution to the non-linear diffusion model (1) as an
example of the effective performance of the idea.

The focus of this study and the main concept developed

Before continuing, we would like to stress the principal points pertinent to approximate solutions
of degenerate parabolic models (sometimes called concentration-dependent models), developed
by the integral-balance method, among them:

• Techniques of the integral method applied to develop the approximate solution (see Section 2).
• Assumed profiles and characteristics of the approximate solution related to variations in the

degrees of model degeneracy (the value of the exponent m) (see Section 2).
• Why the sinc(x) function and its modification, conceived here, are chosen to develop an
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approximate solution by the integral-balance method (see Section 2).
• The main concept of the study addresses the application of a modified Sincπ(xn) function as an

assumed profile in the integral-balance solution (see Section 4).
• As a step beyond the main concept a version of a modified Sincπ(xn) function with a variable

exponent (dependent on the argument) is developed towards the approximate integral-balance
solutions (see Section 6).

• Comparisons of the developed solution with others available in the literature (see Section 6 and
Section 7).

Further text organization

For the sake of clarity, the techniques used in approximate solutions developed are briefly pre-
sented in Section 2 and Section 2 together with a necessary initial transform of the model (1)
allowing them to be applied (Section 2).

The first and primary step in developing the new approximate solution is the explanation of the
choice of a modified version of the sinc(x) function to be used as the assumed profile, comparing
it with the commonly applicable parabolic profile (Section 2). The assumed profile and its basic
properties are presented in Section 3. New solutions are developed in Section 4. Numerical
experiments with the new solutions and qualitative assessments are developed in Section 5 with
outcomes envisaging further steps in the solution refinement. Section 6 focuses on solution
refinements in two directions: i) Minimization of the approximation errors through optimization
of the exponent of the modified Sincπ(xn) function through minimization of norms of residual
functions (see Section 6), and ii) Solution optimization through approximation error minimization
applying the concept of an argument-dependent exponent of the modified Sincπ(xn) function
(see Section 6). Comparisons of the new solution with others (on the same problem) available in
literature are presented in Section 7. For a more concise organization of the text, all cumbersome
expressions and auxiliary developments are summarized in the Appendix 9.

2 The necessary background of the new solution

Approximate solution by the integral-balance method

Now, we present briefly the integration techniques of the integral balance method, and for the
sake of clarity, at this point, we will use the linear diffusion model with m = 0, that is, constant
diffusivity, namely

∂θ

∂t
= a

∂2θ

∂x2 , θ (x, t) = 0, t > 0. (2)

Now, we will briefly outline two basic integration techniques of the integral-balance method.

Single-integration method

The single integration technique, known as the heat-balance integral method (HBIM) [1, 5] uses
an integration of Eq. (2) from x to δ, namely

d
dt

δ∫
0

θ (x, t) dx − θ (δ, t)
dδ

dt
=

δ∫
0

a
∂2θ

∂x2 dx ⇒ d
dt

δ∫
0

θ (x, t) dx = −a
∂θ

∂x
(0, t) . (3)
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In a semi-infinite medium, the condition θ (x → ∞, t) = 0 is replaced by sharp front concept
conditions [1]

θ (δ) =
∂θ

∂x
(δ) = 0. (4)

Then, θ should be replaced in (3) by the assumed profile θa = θa (x/δ ) as a function of the
dimensionless ratio (distance) x/δ . This yields a differential equation concerning δ (t). The
drawback of HBIM is that the gradient of the right-side of (3) should be defined through the assumed
profile (we will refer to this when the main in the solution approximation developed in this article is
discussed). The Double Integration Method (DIM) [15] (especially when the Dirichlet problem is at
issue) avoids this problem, and the integration technique is briefly presented next.

Double-integration method

With this approach, a double integration concerning the spatial coordinate and application of the
Leibniz rules yield [15]

δ∫
0

δ∫
x

∂θ (x, t)
∂t

dxdx =

δ∫
0

δ∫
x

a
∂2θ (x, t)

∂x2 dxdx ⇒ d
dt

δ∫
0

δ∫
x

θ (x, t)dxdx = aθ (0, t) . (5)

Hence, the right-hand side of the integral relation is independent of the gradient x = 0 and
depends on the boundary condition only. The case with m ̸= 0 needs a preliminary recasting of
the diffusion terms as explained next.

Double-integration method in the case when m ̸= 0
In the case when m ̸= 0 we may transform the diffusion term as [15]) as

a0θm ∂θ

∂x
=

a0

m + 1
∂θm+1

∂x
, (6)

and this allows us to present the model (1) as

∂θ (x, t)
∂t

=
a0

m + 1
∂θm+1

∂x2 . (7)

Then, the application of (5) results in

d
dt

δ∫
0

δ∫
x

θ (x, t)dxdx =
a

m + 1
θm+1 (0, t) . (8)

Classic polynomial and parabolic approximate profile
The common approach at the very beginning of the integral method application is the use of
polynomial profiles of 2nd or 3rd order that, in general, led to predetermined error approximation
[1]. An alternative approach that matches, to some extent, the polynomial ones is the use of a
parabolic profile (9), namely

θa = θs

(
1 −

x
δ

)np
= θs (1 − X)np , 0 ≤ x ≤ δ, 0 ≤ X = x/δ ≤ 1, (9)
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with either np = 2 or np = 3 [5] (the subscript p denotes parabolic).

This profile satisfies the Goodman boundary conditions (4). Represented by the dimensionless
space coordinate X = x/δ all profiles, despite the value of the exponent n goes to zero at X = 1.
This feature is especially important when comparing solutions developed by different methods to
the integral-balance solutions as it was done in [15].

A special feature of the parabolic profile (9) is the fact that if np > 1 (see Figure 1-left panel)
it generates concave distributions, while for np < 1 (See Figure 1-right panel) the generated
distributions are convex [15]. The convex profiles are typical solutions of transient diffusion with
power-law diffusivity [6, 15].

Figure 1. Parabolic profile (function) behavior controlled by values of the exponent n. a) Concave profiles
generated for np ≥ 1; b) Convex profiles generated for np ≤ 1. Note: In b) the values of profile exponents are
especially presented in the format 1/n for easy comparison with plots in panel a)

sinc(x) function

The non-normalized sin c (x) = sin (x)/x function is defined as [22, 24, 25]

sinc(x) =

sin(x)
x

, x ̸= 0

1, x = 0

 , (10)

while the normalized version is

sincπ(x) =


sin(πx)

πx
, x ̸= 0

1, x = 0

0, x = 1

 , (11)

sinc (x = 0) ∼ limx→0
sin(kx)

kx = 1 for all real k ̸= 0. Also, their integrals from −∞ to ∞ are

∞∫
−∞

sin(x)
x

dx = π ⇒ ∞∫
0

sin(x)
x

dx =
π

2
,

∞∫
−∞

sin(πx)
πx

dx = 1 =
1
π

∞∫
−∞

sin(x)
x

dx. (12)
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The non-normalized sinc function sinc (x) = sin (x)/x is defined for x ̸= 1, while the normalized
sinc function is sin cπ (x) = sin (πx)/πx. The normalized sinc function has a limit sin x (0) = 1
for x → 0. Moreover, sinc (x) and sincπ (x) are analytical and entire functions [23]. The graphical
representation is shown in Figure 2.

Figure 2. sinc(x) (blue in the online version) and sincπ(πx) (red in the online version) behavior. We are interested
in the non-oscillating branch of sincπ(πx) in the first quadrant (solid red line in the online version) for 0 ≤ x ≤ 1

These versions are widely used in signal processing [26], mechanics of materials [27], Fourier
transforms [28] and analysis [32], wavelet transforms [33] non-local operator formulations [33–38],
numerical methods [29, 30], dielectric electromagnetic behavior through fractional (with singular
kernel) modeling [31], etc. There is a vast work on the properties of both versions of the sin c (x)
function, but now we refer to only what is needed to develop the approximate solution of the
non-linear diffusion model (1).

An additional feature of the sinc function (that will be used further in this article) is the Taylor
series expansion as [39]

sinc (x) =
sin (x)

x
=

∞∑
k=0

(−1)k(x2)k

(2k + 1)!
= 1 −

x2

3!
+

x4

5!
−

x6

7!
+ . . . + |0|11, (13)

converging for all x.

Consequently, for the normalized version we have

sinc (x) =
sin (πx)

πx
=

∞∑
k=0

(−1)k(πx)2k

(2k + 1)!
= 1 −

(πx)2

3!
+

(πx)4

5!
−

(πx)6

7!
+ . . . + |0|11. (14)

Also, the sinc function can be represented through the Gamma function using Euler’s reflection
formula (15)

sincπ (x) =
sin (πx)

πx
=

1
Γ (1 + x) Γ (1 − x)

. (15)
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The derivative of sin c (x) is

sin c ′ (x) =


x cos x − sin x

x2 =
cos x − sin cx

x
, x ̸= 0

0, x = 0
x ̸= 0, sin c ′ (x = 0) → 0. (16)

Hence, we have an undesirable singularity at x = 0 since following the single integration method
its relation (3) needs ∂ua (x = 0)/∂x to be defined through the assumed profile. Thus, the simple
integration technique (HBIM) is inapplicable with the suggested modification Sincπ(πxn) as
assumed profile (see Section 3 and Section 4 ), and consequently, this invokes directly the Double
Integration Method (DIM) since at x = 0 we have to know only the boundary condition. Moreover,
since sin c ′ (x = 0) → 0 we cannot apply this assumed profile to the Neumann problem; this is a
natural restriction coming from the assumed profile that does not stop the development of the
problem considered here.

3 Modified Sincπ(xn) function: definition and properties

The attractive feature of the sinc function, especially for the solutions developed in this work, is that
it crosses the abscissa at x = 1, a feature already demonstrated by the parabolic profile (9) when
expressed in terms of X = x/δ (t). Reasonably, as it follows from the required approximation
solution of the diffusion model we are interested only in the branch (non-oscillating section) of
Sincπ(xn) for 0 ≤ x ≤ 1. For the approximate solution developed next, we introduce a modified
version Sincπ (xn), defined as

Sincπ (xn) =
sin (πxn)

πxn , n > 0, 0 ≤ x ≤ 1. (17)

Similar to the expansion (14) we have (denoting for the sake of clarity y = xn)

sin cπ (xn) =
sin (πy)

πy
=

∞∑
k=0

(−1)k(πy)2k

(2k + 1)!
= 1 −

(πy)2

3!
+

(πy)4

5!
−

(πy)6

7!
+ . . . + |0|11. (18)

The attractive feature of the newly defined normalized sinc function denoted here as Sinc (xn)
is that we have again the limits Sincπ (xn)(x=1) = 0 and Sincπ (xn)(x=0) = 1. Simple numerical
experiments reveal that the exponent n can change the shape of the profile from concave to convex
(see Figure 3-left panel and Figure 3-right panel). The normalized sinc function defined by (17)
is the same as that from the basic definition since by a simple change of variable y = xn we
get sincπ (y) = sin (πy)/πy . However, the exponent n allows controlling how fast or slow the
argument xn will change when 0 ≤ x ≤ 1.
To a greater extent, the behavior of these profiles resembles those generated by the parabolic
one with an unspecified exponent (Section 2). Therefore, these features, mainly the possibility to
generate simply convex profiles (as in Figure 3-left panel) raise your spirits to see what would be
the integral-balance solutions when the assumed profile is defined by (17). Moreover, the elements
of this function, because it operates within the range 0 < x < 1 exhibit some features, pertinent
to the above-mentioned behavior and they are explained next. The behavior of the Sincπ (xn)
function, too attractive for the development of the present study, could be simply explained in a
mechanistic manner as:

• Since 0 < x < 1 , then for n > 1 , we have x < xn . In general, if there is a set of p exponents
n1 < n2 < n3 < . . . < np , then xnp < . . . < x3 < x2 < x. Hence, with the increase in n , the
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Figure 3. Profiles of Sincπ(xn) function for two distinct sets of the exponent n within the range 0 ≤ x ≤ 1. a)
Convex profiles for n > 1 (we are interested in the behavior exhibited in the 1st quadrant only; b) Concave
profiles for n < 1. See similar behaviors exhibited by the parabolic profiles in Figure 1

power xn approaches a small value x0 ̸= 0 but very close to zero, i.e. represented as a limit this
is limn→∞xn → 0. In this context, we may see from (18) that for n > 1 and 0 < x < 1 the series
will converge more rapidly than in the case n = 1.

• At the same time, the behavior of sin (xn) follows similarly, i.e. limn→∞ sin (xn) → 0. Therefore,
we have that limn→∞ Sincπ (xn) = limn→∞ [sin (πxn)/πxn ] → 1, because in this limit n → ∞
is equivalent to (πxn) → 0. Since this is a theoretical limit that never will be reached, the
practical behavior is limn→np Sincπ (xn) → Snp < 1 (Snp-a realistic limit of the function, at high
values of n, but values of order of unity). Graphically, this means almost flat plots, with low
negative trends located below the limit line 1 (see Figure 3-left panel).

• However, with the same domain 0 < x < 1, the nominator sin(πxn) exhibits a strong negative
skew of the plots (i.e. a strong asymmetry with increase in the exponent n) with a trend toward
a steep "‘front shape"’ for x → 1, and finally, when x is close to the upper limit of the interval,
this results in the steep front section of Sincπ (xn). This behavior is presented in Figure 4. Note:
in terms of distributions (in statistics) we got a left-skewed distribution appearing as a right-leaning
curve.

Figure 4. Sincπ(πxn) behavior for various values of the exponent n demonstrating its effect on the negative
skew development
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4 A new approximate solution

Definition of the assumed profile

Based on the commented behavior of (17) we suggest an approximate profile defined through the
normalized sincπ function, denoted as Sincπ(xn), in the following form:

ua = us Sincπ

[
π

(
x

δ (t)

)n]
= us

sin (πXn)

πXn , 0 ≤ X = x/δ ≤ 1, (19)

where us = ua (x = 0) because for x = 0 ⇒ x/δ(t) = X = 0, and sincπXn = 1.
This profile satisfies the Goodman conditions (4) because for x = δ(t) ⇒ X = x/δ(t) = 1 and
Sincπ(πXn) = d(Sincπ(πXn)/dX = 0.

DIM solution:Dirichlet problem

The double-integration step

Consider a semi-infinite medium with a Dirichlet boundary condition to Eq. (1). With the assumed
profile and the boundary condition at x = 0 we get us = 1. Then the integral balance relation
of DIM (8) expressed through the dimensionless coordinate X = x/δ ( as well as changing the
variables and the terminals of the integrals) is

dδ2

dt

 1∫
0

 1∫
X

sin (πXn)

πXn dX

 dX

 =
a0

m + 1
⇒ S2

dδ2

dt
=

a0

m + 1
, (20)

where

S2 (π, X) =

1∫
0

 1∫
X

sin (πXn)

πXn dX

 dX, 0 ≤ X =
x
δ
≤ 1. (21)

The double integral in (21), denoted for brevity S2 (π, X) is time-independent, and this step allows
simply to solve (20) (taking into account the initial condition δ (t = 0) = 0) as

δ =
√

a0t
√

s2

m + 1
, s2 = 1/S2. (22)

Now, the primary problem is to evaluate S2 (π, X). Since the direct integration of S2 (π, X) is
impossible we will use the expansion (14) expressed as a truncated series since it converges rapidly
(for the sake of clarity see also the presentation (18))

S2 =

1∫
0

 1∫
X

sin (πXn)

πXn dX

 dX =

1∫
0

 1∫
X

K∑
k=0

(−1)k(πXn)2k

(2k + 1)!
dX

 dX, 0 ≤ X =
x
δ
≤ 1. (23)

The number of terms in the truncated series approximation

The series expansions of sin (πy)/πy converge rapidly as we can see directly next. For n = 1 in
(23) we have as illustrative examples some cases with different numbers of terms of the truncated
answers, namely:
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For K = 3,

S2 (K = 3) =
1
2
−

1
24

π2 +
1

720
π4 −

1
40320

π6 ≈ 0.20020 ⇒ s2 (K = 3) ≈ 4.9950. (24)

Similarly, for K = 5

S2 (K = 5) =
1
2
−

1
24

π2 +
1

720
π4 −

1
40320

π6 +
1

3628800
π8 −

1
479001600

π10 ≈ 0.20262

⇒ s2 (K = 5) ≈ 4.9353.
(25)

That is s2 (K = 5) ≈ 4.9353.
For K = 10 we have S2 (K = 10) ≈ 0.20263 and consequently s2 (K = 10) ≈ 4.9351. Hence, from
a practical point of view, it is reasonable to use a truncated series for K = 10, and this is consistent
with the series expansions (13) and (14).
However, when n ̸= 1 we get, as a first step of the approximation, a truncated series S1 (K, n, X)
defined through the first integration in (23), namely

S1 (K = 3, n) =

1∫
X

(
1 −

1
6

π2X2n +
1

120
π4X4n −

1
5040

π6X6n
)

dX

=

[
X −

1
6

π2X2n+1

(2n + 1)
+

1
120

π4X4n+1

(4n + 1)
−

1
5040

π6X6n+1

(6n + 1)

]∣∣∣∣1
X

.

(26)

Then,the second integration in (23) leads to S2 =
1∫
0

S1dX as

S2 (K = 3, n) =
(

1 −
1
6

π2

2n + 1
+

1
120

π4

4n + 1
−

1
5040

π6

6n + 1

)
−

(
1
2
−

1
6

π2

(2n + 1) (2n + 2)
+

1
120

π4

(4n + 1) (4n + 2)
−

1
5040

π6

(6n + 1) (6n + 2)

)
.

(27)
With the general series expression (14) we get

S2 =

1∫
0

 1∫
X

sin (πXn)

πXn dX

 dX =

1∫
0

 1∫
X

K∑
k=0

(−1)k(πXn)2k

(2k + 1)!
dX

 dX. (28)

Then the integration yields

S2 =

1∫
0

( K∑
k=0

(−1)kπ2k

(2kn + 1) (2k + 1)!

(
1 − X2kn+1

))
dX =

K∑
k=0

(−1)kπ2k

(2kn + 1) (2k + 1)!

1∫
0

(
1 −

X2kn+1

(2kn + 1)

)
dX

=
K∑

k=0

(−1)kπ2k

(2kn + 1) (2k + 1)!

[
1 −

1
(2kn + 1) (2kn + 2)

]
.

(29)
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Penetration depth and similarity variable

From (22) we see that both n and m control the penetration depth. It can be presented in a
dimensionless form as

δ (t)√
a0t

=

√
s2

m + 1
⇒ δ2 = (a0t)

s2

m + 1
= (a0t)

1
S2(m + 1)

. (30)

That is, with a stipulated value of n the increases in the non-linearity through m results in shorter
penetration depths (this was already demonstrated in [15]), but we like to see other aspects of the
relationship (30).
From the definition of X = x/δ (t) we have

X =
x

√
a0t
√

S2 (m + 1)
=

η√
S2 (m + 1)

, η =
x√
a0t

, (31)

where η = x/
√

a0t is the Boltzmann similarity variable that from (31) can be related to the
generalized dimensionless variable X as η = X

√
S2 (m + 1) .

Setting X = 1, whereby, the general definition, the assumed profile crosses the abscissa, we get the
penetration depth, measured by η, where the profile will cross the abscissa, i.e. η =

√
S2 (m + 1).

Then, we may plot the solution in terms of the similarity variable η varying the non-linear
parameter m and the exponent n as shown in Figure 5 (see the next Section 5). Due to the nature
of the sinc(x) plots, there are small oscillations after the point where the profiles cross the abscissa.
However, as mentioned at the beginning, this section is outside the area of the approximate
solutions. In terms of the the similarity variable η the approximate profile (19) can be expressed as

ua =
sin
(

π
(

η√
S2(m+1)

)n)
π
(

η√
S2(m+1)

)n . (32)

5 Numerical experiments

Qualitative numerical simulations of the approximate profiles

Approximate profiles in terms of the similarity variable η

It is evident from the plots in Figure 5 (top row) that the penetration depth shortens as m increases.
When n is specified but m is variable, the same result is seen. This suggests that n and m have
comparable impacts on the profiles, raising the obvious question of whether or not these exponents
are related. The model determines the value of m, thus the only thing remaining to be done is
to define n. Whether or not n is related to m, the solution to this question will be found in the
sequel’s parts. Note: Due to the nature of the sinc(x) plots, there are small oscillations after the
points where the profiles cross the abscissa, but as mentioned at the beginning, these sections are
outside the areas of the approximate solutions.

Approximate profiles in terms of the dimensionless variable X

Alternatively, when the approximate solution is expressed in terms of the dimensionless variable
X, then the effect of n and m is not so obvious, but in general, with the increase in n the profiles
become more rectangular and vice versa, as shown in Figure 6.
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Figure 5. Qualitative plots of approximate solutions as functions of the similarity variable η for various values of
the non-linear parameter m and with effects of exponent n on both the profile shape and the penetration depth.
Upper row: a) and b) For a stipulated m and various n; Bottom row: c) and d) For a stipulated n and various m.
Note: The vertical dashed lines (red in the online version) mark the penetration depths, measured in terms of the
similarity variable η

Figure 6. Qualitative plots of approximate solutions as functions of the dimensionless variable X for various
values of the exponent n (see the effect on the profile shape). A comparison with the Heaslet and Alksne solution
[40] (the red line in the online version)

Some briefs on the qualitative experiments
The presented qualitative numerical experiments reveal some basic features and related problems
of the developed approximate solution, among them:
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• In general, the approximate solution generates convex profiles with an increase in the value n
that is in agreement with the general idea of this study when considering that between n and m,
a functional relationship should be established.

• Second, since the non-linear diffusion model solved here has no exact solution, the solution of
Heaslet and Alksne [40] and that developed by parabolic profiles [15], considered as correct
solutions, are used for comparison. We see that the new solutions, without correct defined
values of n, do not match, generally, the correct solutions as we would like. Explanations about
these reference solutions are provided in the next Section 5).

• The behavior of the profile, with fixed (stipulated) values of n intuitively leads to the idea that it
should depend to a greater extent on the variable X such as: for high values of X when X → 1
the exponent n should increase thus allowing to creation of the steep front of the profile. For
X → 0 we need no so flat profiles that would be obtained if n will increase with the increase in
X (this idea is developed in Section 6).

On the reference solutions used

Now, it is mandatory to define the reference solutions used further in this work for benchmarking
the new results. In this context, two commonly used approximate solutions to (1) are briefly
explained next.
The current solution, as previously done in Section 5, was qualitatively compared to Heaslet
and Alksne’s series solution [40] (see Figure 6). The rationale for this was because the Eq. (1)
belongs to a family of non-linear models, to which all approximate solutions available have been
compared (benchmarked) utilizing the result of [40] (see some comments in this direction in
Section 7). This solution also makes use of the idea of a finite depth, which is identified in the
original study, in the context of the following analysis of this research, as ηF (the analog of δ used
here). The series then addresses the normalized variable X = η/ηF (η = x/

√
a0t is the similarity

Boltzmann variable); in the case of integral-balance solutions ηF corresponds to
√

S2 (m + 1) in
(32) because for η =

√
S2 (m + 1) we have X = 1. Section 7 also has some briefs on this solution.

It is worth noting, that Heaslet and Alksne’s solution explores cases with an upper limit of the
exponent m = 4; the present work also matches this range but goes beyond up to m ≈ 10. Thus,
benchmarking Heaslet and Alksne’s solutions, for m > 4, used further in this work, are generated
by implementing their algorithm in Maple.
The second reference solution is based on the parabolic profile (9) explained in Section 2 and DIM
solution (5), and developed in detail in [15]. As was proved in [15] it can succeed in approaching
the Heaslet and Alksne’s solution with an absolute error of less than 0.02.
Thus, we have two available approximate solutions (since (1) has no exact solution) allowing us
to see what the concept is to use the modified Sincπ (πXn) function as an assumed profile in the
integral-balance solution.

6 Solution refinements

The solution refinement has only one task: to minimize the approximation error through the
definition (determination ) of the optimal value of the exponent n. In what follows we will explore
two approaches:

• Minimization of the residual function over the range 0 ≤ X ≤ 1 with the assumption n = const.,
as the basic solution was done (Section 6).

• Looking for a suitable functional relationship n = f (X), an approach mainly driven by intuition
and preceding experience in optimization of integral-balance solutions [41] (Section 6).
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Residual function minimization with constant exponent n

When the solution of the model (1) differs from the exact one, if any, then the residual function
defined as (33) (all cumbersome expressions used in the remainder of this section are summarized
in the Appendices) should attain its minimum over the domain 0 ≤ X ≤ 1

R =
∂

∂t
Y (Xn)−

a0

m + 1
∂2

∂x2 [Y (Xn)]m+1 → min . (33)

In terms of the developed approximate solution, it can be presented as (see the development in
Section 9 of the Appendix).

R =
1
t

{
1
2

dY (Xn)

dX
nXn − S2 (m + 1)

∂2

∂X2 [Y (Xn)]m+1
}
=

1
t

r (n, m, X) , (34)

where Y (X) = Sincπ (πXn) =
N∑

k=0

(−1)kπ2k

(2k+1)! X2kn. Detailed expressions of the derivatives used in

(34) are available in the Appendix (Section 9).
The residual function decays in time and therefore the optimization procedure should address
the time-independent term r (n, m, X). We need r (n, m, X) → min over the interval 0 ≤ X ≤ 1
because for X = 0 and X = 1 we have R = 0, taking into account that Y (1) = 0 and Y (0) = 1 →
dY (0)/dX = 0. Similar minimization techniques with parabolic assumed profiles may be found
in [15].

Approximation errors through minimization of norms

We address two options to minimize the approximation error by applying two norms of the
residual function, integrating them over the interval 0 ≤ X ≤ 1, namely

ERL1 =

∫ 1

0
RL1dX =

1∫
0

|R|dX =
1
t

1∫
0

|r|dX ⇒ eL1 =

1∫
0

|r|dX → min, (35)

and

ERL2 =

∫ 1

0
RL2dX =

1∫
0

R2dX =
1
t2

1∫
0

r2dX ⇒ eL2 =

1∫
0

r2dX → min . (36)

The optimization procedures were performed through Maple (such a subroutine exists in this
computer algebra software) and additional numerical simulations adjusting the optimal values of
the exponent n. The results are presented next.

Optimal n through minimization of L1

This approach yields plots presented in Figure 7 and approximations compared to reference
solutions in Figure 8. In general, the discrepancies between the approximate solutions and the
reference ones of Heaslet and Alksne [40] and the parabolic profile-based [15] indicate the integral-
balance solutions of the model (1) with optimal exponents defined through minimization of L1 are
unacceptable.
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Figure 7. Error measures r1(n, m) in cases when minimization of eL1 is carried out

Optimal n through minimization of L2

The plots with the optimal exponents presented in Figure 9 as well as the results presented in
Figure 10 reveal the same problem as in the case when the optimization is carried out through
minimization rL1. Therefore, mainly due to the specific function used as an assumed profile the
concept of optimal exponent over the entire range 0 ≤ X ≤ 1 does not lead to satisfactory results.

Outcomes of the solution refinement with constant exponent n

It is clear that the refinement procedures looking for an optimal exponent nopt strongly indicate
that the results are unacceptable. This can be visually detected, without error presentations, since
the approximate solutions are too distant from the reference ones, and therefore a new approach
should be found to resolve the situation. As a solution to the emerging problem the next Section 6
develops a concept of a variable exponent dependent on the variable X. This means we need a
functional relation N = f (X) where there is an additional parameter allowing easily to adjust the
profiles with minimal errors of approximations.

Solution refinement by applying a variable exponent n = n(X)

As previously mentioned in the sections preceding this one, our goal is to design functional
relationships n = f (x) that are suitable for reaching the goal we have set. We will restrict
ourselves to one definition, even though there may be alternatives; this will be sufficient to show
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Figure 8. Comparative plots of the approximate solutions (lines 3) with determined optimal values of the
exponent n (the values are available in the figure legends), determined through minimization of the ERL1
measure, and the solutions developed in [40] (lines 1) and [15] (lines 2). Note. For the parabolic profile solutions
[15] the optimal values of the profile exponents are: n(m = 1) = 0.815, n(m = 2) = 0.537, n(m = 3) = 0.305,
n(m = 4) = 0.253

that the approach envisaged works.

Ad-hoc functional relationship n = f (X) and initial experiments
From the ideas in the above-mentioned suggestions we generate the following n = f (X) functional
relationships (conjectures)

n1 =
1

1 − X
, (37)

n2 =
1

1 − Xp , (38)

Please check the following equation: n3 =
1

1 − pX
=, p = f

(
1
m

)
. (39)

All of them are from one family of reciprocal functions: for q = 0, n2 reduces to n1, while for
p = 1, n3 reduces to n1. Functional relationships n3 = f (x) are shown in Figure 11 for parameter
p = 1/m as illustrative examples. We have to mention that 1/m defines the optimal exponent of
the parabolic profiles as proved in [15]. As an empirical step towards refining the plots and looking



22 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 5, 6–44

Figure 9. Error measures in cases when minimization of eL2 is carried out

for a suitable relationship p = f
(

1
m

)
we can slightly modify the prefactor p in (39) as p = km/m ,

where km, for now, is an adjustable coefficient. Figure 12 provides a fascinating example of how
the shape of the approximation profile defined by (40) may change when the parameter p varies.
Now, the plots in Figure 13 show what of this functional relationship would be the promising

one leading to the solution improvement. For example, the experiments with n3, particularly
with m = 4, revealed an almost good approach to the developed solution to those of Heaslet
and Alksne [40] by the moment method, and the parabolic profile approximation [15]. This was
attained by the adjustable coefficient km = 3.55 which means p = 0.885. However, the errors of
approximation are still not acceptable, even though the shapes of the profiles, precisely when
n3 = f (X) is applied, reveal the desired tendency of how this should be done. Starting from these
initial achievements, we go to more precise refinement of the developed approximate solution, as
is done in the next section. The solution with n1 is an extreme case that consists of straight lines,
an effect that could be attributed to the fact that for X → 1, we have n → ∞. Intuitively, more
suitable for further solution refinements is n3 allowing to generate smooth profiles (it reduces to
n1 for p = 1).

Refined solutions with variable exponents n = f (X)

The refinement of the solution developed in this section is based on a semi-empirical approach
consisting of two basic elements (steps): The first element is the developed approximate solution
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Figure 10. Comparative plots of the approximate solutions (Lines 3) with determined optimal values of the
exponent n (the values are available in the figure legends), determined through minimization of the ERL2 measure,
and the solutions developed in [40] (lines 1) and [15] (lines 2). Note. For the parabolic profile solutions [15]
the optimal values of the profile exponents are: n(m = 1) = 0.815, n(m = 2) = 0.537, n(m = 3) = 0.305,
n(m = 4) = 0.253

Figure 11. Functional relationships n3 = f (X), accepting particularly p = 1/m. a) For m = 2 and b) For m = 4

with a constant n. The second step is to deform this solution with a suitable function n = f (X). It is
worth noting, if some questions and objections would come to mind of the reader, that if at the
very beginning of the solution development, the concept of a variable exponent is accepted, the
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Figure 12. An Illustrative example of how the shape of the approximation profile changes when the parameter p
controlling the exponent n through the function (40) varies

Figure 13. A test: Approximate solutions as functions of the dimensionless variable X demonstrating the effects
of the functional relationships n = f (X) on the profile shape and approximation adequacy. First row: a)-A
comparison with the Heaslet and Alksne solution [40] (line 1, the red line in the online version). b) A comparison
with the parabolic profile solution [15] (line 1, the red line in the online version). Second row: c) Absolute errors
of approximation with respect to the Heaslet and Alksne solution [40]: Line A-the solution with n3, Line B-the
solution with n1; d) Absolute errors of approximation with respect to the parabolic solution [15]: Line A-the
solution with n3, Line B-the solution with n1. Note: the dashed horizontal lines denote the levels of errors,
commonly attainable of integral-balance solutions [15]
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integral-balance method would be inapplicable.
Thus, we are directly shaping the assumed profile making a hybridization of the basic result, i.e. the
approximate solution (32), where all parameters remain unchanged, with the exponent n as a
function of the variable X. That is, we have a modified version of the approximate solution

ua =
sin(πXn(X))

πXn(X)
, n =

1
1 − pX

, 0 ≤ X ≤ 1, 0 < p < 1. (40)

The optimization procedure was carried out by minimization of the residual function, concerning
optimal values of the parameter p, based on the new assumed profile, through numerical simula-
tions. The form of the residual function is skipped here due to its cumbersome expression but for
the sake of clarity derivatives of (40) are available in Appendix 9.
The plots in Figure 14, with optimal values of the parameter p (see the figure legends), reveal
quite acceptable errors when compared to the reference solutions (we have to remember that they
are also approximate) from [40] and [15]). The plots of the approximation errors are shown in
Figure 15.

Figure 14. Approximate solutions (lines 2, in green colors) as functions of the dimensionless variable X with
optimal values of the parameter p (see the figure legends) compared to the reference solutions of Heaslet and
Alksne [40] (lines 1, in red colors) and parabolic profile solutions (DIM) from [15] (lines 2, in blue colors)

It is evident that the idea of a variable exponent n = f (X) functions well. Considering that it had
been used just once before (to the situation of m = 0) [41], in a slightly different manner, this is
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Figure 15. Errors of approximations as functions of the dimensionless variable X with optimal values of the
parameter p (see the figure legends in Figure 14) concerning the reference solutions of [40] (lines 1) and [15] (lines
2). Note: Line H-P in panels a) and d) indicates the error of the parabolic profile solution [15] concerning that in
[40]. The vertical dashed lines at X = 1 mark the asymptotes of the errors

a good outcome. Notably, the approximation errors increase significantly in proximity to point
X = 1, where the steep fronts result in extremely high solution gradients ∂ua/∂X. All approximate
solutions of (1) share this characteristic, though (see [15] and the examples therein).

A test for high value of m
As we increase the amount of m, we come to a scenario where the Sincπ(πxn(x)) profiles and
the plots of the solutions of Heaslet and Alksne [40] are almost identical (visually) close to the
form (see panels a) and c) in Figure 16), am small differences at the middle range of the interval
0 < X < 1. Further, we can see a similar result when plotting Sincπ(πxn(x)) approximation (panel
c)) in Figure 16) and the solution utilizing a parabolic assumed profile (with nopt = 1/m = 0.1,
as per [15]), with errors acceptable only for small values of X. Based on the final results, we
can conclude that the assumed profile Sincπ(πxn(x)) produces approximations comparable to
the parabolic profile-based solution. However, it is worth noting that when the two reference
solutions are plotted (Figure 17-panel a)) the lines are indistinguishable, but the magnification of
two sectors (Figure 17-panels b) and c) clarify the situation. It is worth noting that the absolute
difference between them is well distributed along the abscissa, with an increase close to the front,
but this is inherent for all approximate solutions concerning the model (1).

Some insights concerning the optimal values of the optimal parameter p
The results developed to this point satisfy our main task, and we may raise the following reasonable
question: Is there a functional relationship between the optimal values of the parameter p and the
non-linearity exponent m? The plot in Figure 18 shows a saturation of the values of p, approaching
unity as m is increased (panel a). However, we recall that (as mentioned earlier) when the parabolic
profile is used [15] the optimal exponents of it obey the so-called 1/m law (section 5.3 and Figure
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Figure 16. Approximations at high values of the exponent m. Comparisons between the present approximations
and the solution of [40] and the parabolic assumed profile solution [15] : a) and b) Plots of Heaslet-Alksne solution
and Sincπ(πxn(x)), and errors; c) and d) Plots of the solution based on parabolic profile and Sincπ(πxn(x)), and
errors; Note: for the parabolic profile solution nopt = 1/m = 0.105; For the Sincπ(πxn(x)), popt = 0.991

15 in [15]) exhibiting an almost hyperbolic relationship np (opt) = f (m). Now, taking into account
that 0 < p < 1 and 0 < 1/m < 1 we see a similar, almost hyperbolic, relationship when the
relation p = f (1/m) is plotted (panel b). However, an attempt to correlate statistically the obtained
data about the optimal values of p yields a good fit with the Pareto function (panel c) (with the
help of SigmaPlot statistics), namely

p = 1 −

(
1

ma

)
, (41)

where a = 1.358, with P < 0.0001 and R = 0.987, and a standard error of estimate 0.11.

This is a very rough result based on a limited number of numerical experiments, but it allows
us to see the versatility of the suggested functional relationship n = f (X), precisely ns = f (X)

and we will comment on it in some detail. It is well known [15], and the plots in the preceding
sections show that, when m is increasing, the profile front becomes more and more steep, and
its shape is approaching at high m an almost rectangular form. The correlation (41) for high
values of m reveals that pm→∞ ⇒ p → 1 (or, in other words, p(1/m)→0 ⇒ p → 1 ), and therefore
nm→∞ ⇒ 1

1−pX → 1
1−X . That is, with the increase in m, the parameter p approaches values close,

but less than 1. The case p = 1 is extreme, as demonstrated by the simulations done before (see
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Figure 17. A comparison of the two reference solutions at high values of the exponent m. a) Practically
indistinguishable plots; b) A magnification of a sector for small X; c) A magnification of a sector for X approaching
1; d) The absolute error between the two reference solutions. Note: 1) for the parabolic profile solution
nopt = 1/m = 0.105. 2) It is important to know that the solution of Heaslet and Alksne does not match 1 when
X = 0; this an inherent feature of this solution when computing

Figure 12 and Figure 13, for instance).

7 Comparisons with other available solutions

Now, it is almost mandatory to see how the developed approximate solutions differ or match
existing ones published in the literature for some particular values of the parameter m.

The common approach in the solutions used in the benchmarking

On the character of the benchmarking solutions
To verify the validity of the developed approximate solutions we are obliged to compare them to
those available in the literature. No closed-form solution to the model (1) exists [42, 43] and the
first solution provided by Philip [44] is hybrid by an analytical step and numerical solutions (see
details in [42]).
In the case of the fixed temperature boundary condition (Dirichlet’s problem) most of the available
solutions allowing benchmarking [40, 42–49], as first step, utilize the Boltzmann transformation
η = x/t1/2

∗ , where t∗ = D0t, to transform (1) into a non-linear ODE, solved them analytical
or numerically. This allows us easily to compare the integral balance solution to them since it
intrinsically generates expressions in terms of η (see Eq. (32)).
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Figure 18. Relationships of the optimal values of the parameter p and the parameter m. a) popt = f (m); b)
popt = f (1/m); c) popt = f (1/m) correlated by (41). Note: In a) and b) the points are linked by straight lines, as
this is provided by Maple, while in c) the data fit that was done is what made the fitting smooth

The present solution in terms of η and calculation issues

In the context of benchmarking the new solution is represented in terms of the similarity variable
η and the variable exponent n = f (p, X) = 1/(1 − pX) as

ua = sin


π

(
η√

S2(m+1)

)n(η)

π

(
η√

S2(m+1)

)n(η)

 , n (η) =
1

1 − p
(

η√
S2(m+1)

) . (42)

Applying (42) we have to stress the attention to an implicit problem concerning calculations of S2
because the variable exponent n = 1/(1 − pX) is controlled now by the parameter p. Starting
from X = 0 we have n (X = 0) = 1 and then towards X = 1, we have rising values of n up to
n (X = 1) = 1/(1 − p) . Thus, the value of S2 should be calculated for n = 1 (see Section 4 ), thus
giving its initial value, and the determined optimal value of the parameter p should be used.

Comparison to the series solution of Brutsaert and Weisman

Brutsaert and Weisman [48], applying the Boltzmann similarity variable η = x/
√

a0t transformed
the model (1) to

d2

dη2

[
Bm+1

m + 1

]
+

η

2
dB
dη

= 0. (43)
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With this transformation, the new boundary conditions are: B = 0 for η → ∞ and B = 1 for η = 0.
Brutsaert and Weisman [46, 47] were concerned with the accuracy of both Philip’s numerical
solution [44] and the solution of Heaslet and Alksne [40]. As an outcome of this analysis, they did
an approximation for η → 0 [46], which is close to the boundaryx = 0 where B = 1, namely

B1 =

1 − η

[
(m + 1)2

2 (m + 2)

] 1
2


1
m+1

. (44)

Further, a second approximation close to the front of the penetration layer η → ηB = δ , B → 0 ,
yields (here we use the symbol δ instead ηF as in the original work, for consistency with the entire
analysis of the new solution developed)

d2

dη2

[
Bm+1

m + 1

]
+

δ

2
dB
dη

= 0, B = Bm dB
dη

= 0, η > ηB, (45)

with a boundary condition beyond the front (ηB in the original work corresponding to
√

S2 (m + 1)
in the new solution),

B = Bm dB
dη

= 0, (46)

which is equivalent to the Goodman condition ∂θ (δ)/∂x = 0.

In this case, the front is defined by δ = ηB = (2/m )1/2 resulting in the following approximation

B0 =

(
1 − η

√
m
2

) 1
m

. (47)

It is worth noting, that the approximation is the first term of the series solution of Heaslet and
Alksne [40].

The plots in Figure 19 present DIM solutions with two assumed profiles (with a parabolic profile
(9) developed in [15] and the present Sincπ (πXn), with n (η)) and the B1 approximation. The
plots reveal strong differences for high values of η, and only for m = 3 the plots are close to each
other. However, we have to remember that the B1 approximation is for η → 0, and practically
works for small η, practically for η ≤ 0.4. The discrepancies appear when η → 1 and further, that
is beyond the range where B1 was developed, for other values of m, and this could be attributed
to the solution methods applied: the initial transform with the Boltzmann similarity variable, for
instance, yields a non-linear differential equation needing some approximation to find expressions
such as B1. On the other hand, the DIM solutions, with either a parabolic profile or that based on
the modified sinc function, intrinsically generate this similarity variable.

The tests in Figure 19 seem discouraging, but a deep analysis of the structure of the compared
solutions and the techniques for their development allows us to find the right way how they
should be compared.

B1 = {1 − XB1}
1

m+1 , XB1 =
η√

(m+1)2

2(m+2)

=
x

√
a0t
√

(m+1)2

2(m+2)

, 0 ≤ XB1 ≤ 1. (48)
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Figure 19. Comparative presentations of the newly developed solution (lines 3, green in online version), the
approximation B1 of [46] (lines 1, red in online version) and DIM solutions based on parabolic profile (lines 2,
blue in online version), as function of the similarity variable η. Note: For the solutions based on a parabolic
profile, we have values of nopt available in the preceding sections

In the light of the basic idea of this study, the approximation B1 can be presented as

Uparabolic =
(

1 − Xparabolic

)nopt
, 0 ≤ XParabolic ≤ 1, (49)

Xparabolic =
η√

(nopt+1)(nopt+2)
m+1

=
x

√
a0t

√
(nopt+1)(nopt+2)

m+1

. (50)

With this common manner in the presentation of solutions developed by different techniques, we
get the plots in Figure 20. The results are rather encouraging, and we can see, as we saw the same
behavior earlier, that with the increase in the value of m all solutions are very close to each other.
We do not show the errors between them since, for instance, this was already done by comparing
the present solution and that based on the parabolic profile.

Immediately, the following key question comes to mind: Are XB1 , XParabolic, and XSinc, as defined
above, equal? All solution techniques commented on here use the concept of a final penetration
depth (we use the common symbol δ). The solutions are then shown by all of them as functions of
the ratio x/δ. We have the same physically defined penetration depth in every case, irrespective of how
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Figure 20. A unified approach to compare the newly developed solution (lines 3, green in online version) with
the approximation B1 of [46] (lines 1, red in online version) and DIM solutions a based on parabolic profile (lines
2, blue in online version)

the penetration depth is expressed as a function of the model’s parameters and the value of m. Therefore,
XB1 = XParabolic = XSinc is the answer that closes the point.
Turning again on the problem emerging with plots in Figure 19, when we extract the similarity
variable η from the ratio x/δ = X, as a prefactor, we get different denominators strongly depending
on the solution approach. They have no physical meaning, and therefore we cannot expect them
to be equal; This is clearly seen from the points where the lines cross the abscissa in Figure 19.
However, in contrast, the diffusion layer depth δ should be the same, in all cases and solutions,
because it is a physically defined distance of diffusant penetration.
As a result, we can close this section by noting that the newly generated solution is equivalent to
the ones that already exist. The only way for us to arrive at this conclusion is to identify what they
have in common and how their structures can be expressed coherently, as we did briefly above.

Comparison to Tuck’s approximate solution

For the special case with m = 2, concerning diffusion of Zn and GaAs in silicon Tuck [49] has
developed two approximations of the diffusion profile, marked as T1 (51) and T2 (52) , accordingly

T1 : η =
x√
D0T

=

(
e2 − e2u)
√

30.99
⇒ u =

1
2

ln
(

e2 − η
√

30.99
)

, 0.4 < u < 1, (51)
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T2 : η =
x√
D0T

= 1 − u2 ⇒ u =
√

1 − u, 0 < u < 0.4. (52)

The plots in Figure 21-panel a), present T1 and T2 parallel to the DIM solutions with a parabolic
profile [15] and the new solution. The absolute errors (Figure 21-panel b)) between T1 and the DIM
solutions is less than 0.03 in the range 0.4 < u < 1 (the horizontal dashed line in Figure 21-panel
b)), corresponding to 0 < η < 0.4 (the vertical dashed line). With T2 the absolute point-wise
difference may reach about 0.05 in the range 0 < η < 0.4 (the vertical dashed line). The point-
wise differences sharply increase beyond these ranges. Unfortunately, Tuck’s approximations

Figure 21. Comparative plots in terms of similarity variable η: a) The new solution ( line 4), Thuck’s approxima-
tions T1 (line 2), T2 (line 3) and the DIM solution with a parabolic profile (line 1). b) Point-wise errors between the
approximations. line 1: T1-DIM (parabolic profile), line 2: T2-DIM (parabolic profile), line 3: T1-New solution, line
4: T2-New solution. Note: The horizontal dashed lines in panel b) mark the levels of the point-wise differences

cannot be transformed into a unified form, as it was done with Brutsaert-Weisman solutions in
the preceding section, due to a missing complete expression of the developed solution. However,
the comparative plots reveal the adequacy of the new solution within the ranges of variation of η

marked by Tuck.

Benchmarking against the results of Weisberg and Blanc (Philip’s solution)

Weisberg and Blanc [45] completed a study on zinc diffusion into GaAs and employed Philip’s
numerical method [44] to solve the model (1). The new solution in Figure 22 compares the
numerical data extracted from Table 1 in [45] (there are also numerical data in [48], produced
by the same method, but not presented here). It is worth noting to stress the attention that all
numerical solutions commented on in this section are in tabular forms using η/2 = x/

√
(4a0t) as

an independent variable (this is an effect of the work of Crank [42]) instead of η = x/
√
(a0t) used

here, and this needs careful rescaling the plots when comparing data.
The plots in Figure 22 reveal that as m increases, the solutions employing an assumed profile got
closer to the numerically obtained results. Remember that the initial idea of this study envisaged
models where large values of m yield almost rectangular concentration profiles.

Benchmarking against the results of Parlange et al. [50]

To complete this section, we must give due credit to Parlange et al. [50], who examined numerical
solutions with m up to 10 massive tabular data for scenarios where the diffusivity functional
relationships differed. In Figure 23 and Figure 24, the present solution for applying the Sincπ (πXn)
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Figure 22. Comparison of the new solution (solid lines) to the numerical results (points) of Weisberg and Blanc
[45] a) case for m = 1; b) case for m = 2; c) case for m = 3. Note: Because the points of the numerical solutions
for different values of m are too close to in certain places, we present separate plots for each case

as an assumed profile is compared with the numerical data from Table 2 of Parlange et al. [50]. As
was already mentioned, the plots show that the new solutions get closer to the numerical ones
as m increases in value (see Figure 24). That is, the new assumed profile will be applied more
successfully to the greater m. It is important to mention that in Figure 23 and Figure 24 a rescaling
of the present solution using ηsqrt(m = 1) was done because a deep analysis of the methodology
in [50] reveals that such an effective similarity variable was used as a product of the solutions (both
numerical and analytical) performed. To some extent, the results of this comparative analysis
could be disappointing, especially the ones when 1 < m < 6. However, we have to stress the
attention on the fact that the solutions developed in [50] use too many approximations and a not
well-defined numerical method, thus too many sub-problems may affect the final results. The fact
that the new solution is consistent with the two key reference solutions of Heaslet and Alksne [40]
and that which is based on the parabolic assumed profile [15], remains essential, albeit this.

8 Concluding remarks, a summary of results and some lines of future research

After this long study with an innovative implementation of a modified sin c(x) as an assumed
profile in an approximate integral-balance solution to a non-linear diffusion equation, we have to
strike the balance and outline the new moments and the main results.
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Figure 23. Comparison of the new solution (solid lines) to the numerical results (points) of Parlange et al. [50] for
low and moderate values of m up to m = 6

New moments in the solution approach

The new moments in the approximate solution developed can be outlined as:

• The integral-balance method and its double integration technique are well-known, thus the
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Figure 24. Comparison of the new solution (solid lines) to the numerical results (points) of Parlange et al. [50] for
high values of m up to m = 10

key point in the new solution is the use of the modified sin c(x), precisely denoted Sin cπ (πxn)
assumed profile.

• The feature attracting this application as an assumed profile is the possibility of easily controlling
its shape by varying the values of the exponent n.

• Especially in the case of the non-linear model solved, the possibility of creating convex profiles
for n > 1, up to almost rectangular ones for high values of n, is the main attractive point for the
solution approach developed.

• The creation of Sin cπ (πxn) function is also an innovative issue that, to our knowledge, has
never been considered before. Its features mentioned at the beginning are only a small group
describing its potential, but too many additional ones, beyond the scope of this study, are
available and will be outlined in future works.

• The conjecture that the exponent n is dependent on the argument x is also innovative in contrast
to the common approach in the integral-balance solutions to determine a fixed optimal value
(as in the case of a parabolic profile-based solution [15]).

Some suggestions-1

In the context of envisaged future works, we may draw some points that could be resolved:

• A new assumed profile based on the modified sinc function Sin cπ (πxn)was successfully
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applied.
• It was proved that the concept of a variable exponent n (x) works and allows the modeling

concentration profiles with steep fronts corresponding to high values of the non-linearity
exponent m.

• The new solution is comparable to the Heaslet Alksne series solution [40] and the integral-
balance solution based on a parabolic profile [15].

• The comparative studies indicate that the new solution profiles are almost the same, for high
values of the non-linearity exponent m, as the numerical solutions available in the literature.

Some suggestions-2

• Implementation of Sin cπ (πxn) in cases with Neumann, Robin, and time-dependent boundary
conditions, for n > 1, and convex concentration profiles.

• Implementation of Sin cπ (πxn) to cases with other boundary conditions as concave concentra-
tion profile for n < 1.

• Implementation of Sin cπ (πxn) solutions of non-linear models with various non-linear func-
tional relationships of concentration-dependent diffusivity.

In the light of drawn solution problems, it is worth noting that diffusion problems with almost
rectangular concentration profiles are of special interest in modeling moisture penetration into
concretes [51], soils [52], building materials [53, 53–55], adsorption [56], and some cases of magnetic
diffusion [57, 58]. Hence, we can foresee the development of novel implementations of the
modified Sincπ(πXn) function in solutions of strong non-linear diffusion problems emerging in
various applied fields.

9 Appendices

Derivatives of Sincπ (πXn) with n = const.

Derivatives of Sincπ (πXn) in terms of trigonometric functions

Denoting for brevity

Y (X) = Sincπ (πXn) =
N∑

k=0

(−1)kπ2k

(2k + 1)!
X2kn. (53)

Then, with d
dt (X) = d

dt
( x

δ

)
= x

δ2
dδ
dt we have

d
dt

Y (X) =
dY (X)

dX
dX
dt

=
dY (X)

dX
x
δ2

dδ

dt
, (54)

and

d
dt

Y (Xn) =
dY (Xn)

dX
nX

1
δ

dδ

dt
, (55)

where

dY (Xn)

dX
=

[
cos (πXn)

Xn −
sin (πXn)

πX2n

]
nXn−1. (56)
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For example, with n = 1 we have

dY (X)

dX
=

cos (πX)

X
−

sin (πX)

πX2 . (57)

Further

d
dX

[Y (X)]m+1 = (m + 1) [Y (X)]m
d

dX
Y (X) , (58)

d2

dX2 [Y (Xn)]m+1 =
d

dX

[
(m + 1) [Y (Xn)]m

d
dX

Y (Xn)

]
= m(m + 1)[Y (Xn)]m−1

[
d

dX
Y (Xn)

]2
+ (m + 1) [Y (Xn)]m

d2

dX2 Y (Xn) .

(59)

For example, with m = 0 we have

d2

dX2 [Y (Xn)] =
d

dX

[
d

dX
Y (Xn)

]
=

d
dX

{[
cos (πXn)

Xn −
sin (πXn)

πX2n

]
nXn−1

}
. (60)

Derivatives of Sincπ (πXn) as series

As a series the last version of (69) can be presented as

1
2

dδ2

dt
dY (Xn)

dX
nXn =

1
2

dδ2

dt
n

N∑
k=0

(−1)kπ2k

(2k + 1)!
X2kn =

1
2

dδ2

dt
n

[ N∑
k=0

(−1)kπ2k

(2k + 1)!
2knX2kn−1

]
. (61)

Consequently

d
dX

[Y (Xn)]m+1 = (m + 1)[Y (Xn)]m
d

dX
Y (Xn) = (m + 1)[Y (Xn)]mnXn−1, (62)

and

d2

dX2 [Y (Xn)]m+1 = (m + 1) n
{
[Y (Xn)]m−1m

dY (Xn)

dX
(Xn)2 +

d2Y (Xn)

dX2 [Y (Xn)]m
}

X2n−2

+ [Y (Xn)]m
dY (Xn)

dX
X2n−2n (n − 1) .

(63)

As a series d2

dX2 [Y (Xn)] denoted for the sake of simplicity as Ydd is

Ydd (m = 0) =
N∑

k=0

(−1)kπ2k2kn (2kn − 1) X2kn−2

(2k + 1)!
, (64)
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and when m ̸= 0

Ydd (m ̸= 0) = (m + 1) n2


[

Ym−1 (Xn)m
dY (Xn)

dX
(Xn)2 +

dY (Xn)

dX2 Ym (Xn)

]
X2n−1

+ (n − 1)Y (Xn)
dY (Xn)

dX
Xn−2

 . (65)

Residual function in case of n = const.

Now, we may present the residual function of the approximate solution as

R =
∂

∂t
Y (Xn)−

a0

m + 1
∂2

∂x2 [Y (Xn)]m+1. (66)

Changing the spatial variable as x = Xδ we get for the second term:

a0

m + 1
∂2

∂x2 [Y (Xn)]m+1 =
a0

m + 1
1
δ2

∂2

∂X2 [Y (Xn)]m+1. (67)

Then,

R =
∂

∂t
Y (Xn)−

a0

m + 1
1
δ2

∂2

∂X2 [Y (Xn)]m+1

=
1
δ2

{
(m + 1) δ2 ∂

∂t
Y (Xn)− a0

∂2

∂X2 [Y (Xn)]m+1
}

.
(68)

With dY(Xn)
dX nX 1

δ
dδ
dt from (55) and (56) we have after rearrangements

δ2 d
dt

Y (Xn) =
dY (Xn)

dX
nXn−1Xδ

dδ

dt
=

1
2

dδ2

dt
dY (Xn)

dX
nXn. (69)

This allows to rearrange (68) as

R =
a0

δ2

{
1
2

dδ2

dt
dY (Xn)

dX
nXn −

∂2

∂X2 [Y (Xn)]m+1
}

. (70)

Recall, that

δ (t) =
√

a0t
√

s2

m + 1
⇒ δ2 (t) =

a0t
S2 (m + 1)

⇒ dδ2 (t)
dt

=
a0

S2 (m + 1)
. (71)

That is, the term dδ2(t)
dt is time-independent and contributes as a constant for given n and m. With

δ2(t) from (71) we get

R =
1
t

{
1
2

dY (Xn)

dX
nXn − S2 (m + 1)

∂2

∂X2 [Y (Xn)]m+1
}
=

1
t

r (n, m, X) . (72)

The residual function decays in time and therefore the optimization procedure should address
the time-independent term r (n, m, X). We need r (n, m, X) → min over the interval 0 ≤ X ≤ 1
because for X = 0 and X = 1 we have R = 0, taking into account that Y (1) = 0 and Y (0) =
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1 → dY (0)/dX = 0 . The diffusion coefficient a0 does not affect the minimization of r, now as a
function r (n, X) dependent only on the parameter n ( for a stipulated m).

Derivatives of Sincπ (πXn) with n = f (X)

Derivatives of

Y (n (X (x, t))) =
sin
(

πX
1

1−pX(x,t)

)
πX

1
1−pX(x,t)

, (73)

concerning t and x are

∂Y
∂t

=
p ∂X(x,t)

∂t ln (x)

[1 − pX(x, t)]2

cos
(

πX
1

1−pX(x,t)

)
−

sin
(

πX
1

1−pX(x,t)

)
πX

1
1−pX(x,t)

 , (74)

∂Y
∂x

=

(
p ∂X(x,t)

∂x ln (x)

[1 − pX (x, t)]2
+

1
x [1 − pX (x, t)]

)cos
(

πX
1

1−pX(x,t)

)
−

sin
(

πX
1

1−pX(x,t)

)
πX

1
1−pX(x,t)

 . (75)

High-order derivatives, especially ∂2Y
∂x2 and ∂2Ym+1

∂x2 can be easily developed from the above expres-
sions by using computer algebra (such as Maple or others) or by hand. Here we avoid cumbersome
expressions that everybody can do.
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