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Abstract: Cloud computing offers scalable computing and storage capabilities to handle 

massive healthcare data. When processing large-scale data, keeping the resource cost 

reasonable is crucial. Nonetheless, resource utilisation is frequently inefficient because of the 

inherent complexity and heterogeneity of distributed computing frameworks. In addition, it is 

challenging to model resource utilisation from real fault-occurring cloud systems. This study 

proposes an automated online resource utilisation prediction model that combines machine 

learning (ML) methods with automated log data preprocessing to predict future resource 

consumption. It allows smart and adaptable allocation of resources in large cloud-based data 

infrastructures suffering from typical failures like CPU, memory, network, and data locality 

problems. Using the Hadoop framework on a cloud cluster of 30 worker nodes, our model 

predicts resource utilisation with up to 97.3% accuracy - outperforming the other baseline 

models evaluated. In addition, our system accurately recognises resource bottlenecks. It reduces 

execution time by up to 30%, even in fault-injected environments, implying that it is robust 

enough for real-time big data analytics. 

 

 

HealthCraft: Dinamik Büyük Veri Sağlık Hizmetleri Ortamlarında Akıllı Kaynak 

Optimizasyonu için Hassas Bir Model 
 

 

Anahtar  

Kelimeler 

Büyük veri, 

Bulut bilişim,  

Makine öğrenimi,  

Kaynak kullanımı,  

Tahmin 

 

Öz: Bulut bilişim, büyük ölçekli sağlık verilerini işlemek için ölçeklenebilir hesaplama ve 

depolama yetenekleri sunar. Büyük ölçekli verilerin işlenmesi sırasında, kaynak maliyetini 

makul seviyede tutmak kritik öneme sahiptir. Bununla birlikte, dağıtık bilişim çerçevelerinin 

doğasında bulunan karmaşıklık ve heterojenlik nedeniyle kaynak kullanımı sıklıkla verimsiz 

olmaktadır. Ayrıca, gerçek hata oluşan bulut sistemlerinden kaynak kullanımını modellemek 

zorlu bir süreçtir. Bu çalışma, otomatik bir çevrimiçi kaynak kullanım tahmin modeli önererek, 

makine öğrenimi (ML) yöntemlerini otomatik günlük veri ön işleme ile birleştirerek gelecekteki 

kaynak tüketimini tahmin etmektedir. Önerilen model, CPU, bellek, ağ ve veri yerelliği sorunları 

gibi tipik arızalardan etkilenen büyük ölçekli bulut tabanlı veri altyapılarında akıllı ve 

uyarlanabilir kaynak tahsisini mümkün kılmaktadır. Hadoop çerçevesini kullanarak 30 çalışan 

düğümden oluşan bir bulut kümesinde, modelimiz kaynak kullanımını %97,3'e varan doğruluk 

oranıyla tahmin etmektedir ve karşılaştırılan diğer temel modellerden daha üstün performans 

göstermektedir. Ayrıca, sistemimiz kaynak darboğazlarını doğru bir şekilde tespit etmekte ve 

hata enjekte edilmiş ortamlar dahil olmak üzere çalışma süresini %30’a kadar azaltmaktadır, bu 

da onu gerçek zamanlı büyük veri analitiği için yeterince sağlam bir çözüm haline getirmektedir. 

 

1. INTRODUCTION 

 

With the increasing data and high internet speed, 

industries are using cloud computing more widely to meet 

their data analysis demands. The development of omics 

sciences like genomics, proteomics, and metabolomics 

has led to the collection of enormous volumes of data [1]. 

Data expansion is facilitated by the transition from paper 

medical records to electronic health records (EHR) [2]. 

Using such detailed and extensive data, doctors, 
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epidemiologists, and health policy experts seek to 

enhance population health and patient care. To properly 

exploit the created big data within a reasonable time, it is 

necessary to utilise the system resources efficiently. 

However, the dependent structure of cloud-based big data 

frameworks and the complex infrastructure of cloud 

computing consisting of servers, storage devices, 

networks, cloud management software and virtualisation 

result in inefficient use of system resources and loss of 

time and energy.  

 

Resource utilisation prediction in big data systems 

estimates the resource requirement required for the 

successful completion of the application under current 

conditions, which improves resource utilisation, reduces 

costs and enhances performance. Statistical techniques 

and ML methods are the most common to estimate 

resource utilisation. In statistical methods (e.g. Automatic 

Regression Modelling), the relationship between 

variables is determined, and probability distributions are 

used for assumptions. However, these methods are very 

general because they make predictions for certain 

intervals and cannot be estimated accurately [3]. ML 

models, such as Support Vector Machine (SVM) [4], 

Genetic Algorithm (GA) [5], and Neural Network (NN) 

[6], are more widely adopted by researchers to perform a 

more accurate prediction. Researchers perform resource 

utilisation predictions of big data systems in simulators 

and online systems. The simulation models [7-9] create a 

virtual model by modelling the computer system 

mathematically and revealing the system controls. Online 

performance analysis systems [10-12] enable the 

collection of performance metrics through system logs, 

providing much more accurate and precise information. 

However, these technologies cannot offer predictive 

support for resource usage in environments with different 

failures. Moreover, most of these studies employ ML 

techniques to forecast future resource consumption using 

the historical traces of a data centre as their input. Despite 

the impressive outcomes of ML-based models, there are 

still certain limitations. Most models lack a precise 

method for handling workload non-stationarity. The 

interactions between characteristics of various sizes 

should be taken into account. For example, Feedforward 

Neural Networks (FNN), a part of a multi-layer 

perceptron, can be used as an efficient approach for 

dealing with complicated nonlinear systems since they 

inherit the learning capabilities of neural network models 

and the inference capabilities of fuzzy systems [13]. As a 

result, several researchers have built sophisticated 

controllers and represented complex plants using FNN 

techniques [14-15].  

 

Considering the above analysis, we propose a novel, 

robust resource utilisation prediction model for cloud-

based big data systems that simultaneously handles 

multiple resource sources under different fault conditions. 

Unlike existing models focusing primarily on CPU or 

memory usage, our approach integrates a multi-resource 

machine learning framework that simultaneously 

considers CPU, memory, network, and data locality 

constraints, enabling more accurate and adaptable 

resource provisioning. Our approach combines an 

automated log data preprocessing module, a feature 

extraction pipeline, and multi-resource machine learning 

models to predict future resource consumption accurately. 

We introduce a fault injection-based training mechanism 

to enhance its adaptability to real-world conditions, 

allowing the model to learn and generalise from system 

anomalies.  

 

As a first step, an automated data-driven pipeline is 

proposed to move the raw data of multiple runs into a 

form suitable for predicting the resource utilisation of the 

big data cluster. Finally, the fine-tuned ML Models are 

used to predict upcoming resource utilisation based on 

historical system logs and injected fault conditions. We 

evaluate our model under realistic conditions by injecting 

four representative faults (CPU, memory, network and 

data locality) that frequently happen in big data systems. 

That way, we can test its performance when the 

environment changes dynamically. 

 

The contributions of this paper can be summarised as 

follows: 

 

• We introduce a fully automated pipeline to preprocess 

log data that improves data quality and minimises 

manual feature engineering. 

• We design a multi-resource prediction model, jointly 

considering CPU, memory, network and data locality 

factors for more adaptive provisioning of cloud 

resources. 

• We also introduce a fault injection mechanism, which 

allows the model to be trained and evaluated during 

real-world faults, greatly improving robustness and 

accuracy. 

• We achieve a 97.3% prediction accuracy, 

considerably outperforming traditional ML-based 

resource utilisation models. 

 

2. BACKGROUND 

 

2.1. Navigating EHR Datasets 

 

Significant developments have fuelled the ongoing 

evolution of data in the dynamic landscape of omics 

domains, such as proteomics, metabolomics, and 

genomics [16]. The transition from traditional paper 

medical records to Electronic Health Records (EHR) 

highlights this change even more [17]. Due to the ensuing 

explosion of large-scale healthcare data, healthcare 

professionals—from doctors and epidemiologists to 

specialists in health policy—have a critical chance to 

make well-informed decisions that will eventually 

improve population health and enhance patient care [18]. 

Therefore, building strong tools, infrastructure, and 

methodologies is imperative to fully utilise big data’s 

promise. To this end, the National Early Warning Score 

(NEWS) was developed in the United Kingdom to 

identify and treat patients with acute diseases when their 

clinical condition worsens [19] [20].  
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2.1.1. Overview of the NEWS dataset  

 

Patients with acute illnesses have seven physiological 

parameters measured during clinical evaluation: 

respiration rate, oxygen saturation, temperature, systolic 

blood pressure, heart rate, consciousness, and oxygen. 

The NEWS, ranging from 1 to 8 and representing the 

severity of the illness, is calculated through the following 

steps: Step 1: Acquiring the patient’s score on each of the 

seven physiological parameters. Step 2: Adding together 

all of the physiological parameter scores to calculate the 

NEWS. Step 3: Checking if a single parameter has 

reached the trigger threshold. We use the NEWS 

data*generated based on the structure and values taken 

from South Tees Hospitals NHS Foundation Trust† . This 

allows us to confirm the effectiveness and dependability 

of the proposed system. In addition to the seven distinct 

physiological indicators, the dataset includes 52 other 

factors about the health state of the patients, such as 

weight, dates of admission, duration of hospital stay, pain 

score, nausea, vomiting, and pulse. An urgent clinical 

review should be triggered by an aggregate NEWS of 5 or 

6, and a NEWS of 7 or above should trigger a high-level 

clinical alert or emergency clinical review. An “Urgent or 

emergency reaction” response is appropriate for NEWS 

values more than 7, indicating “High clinical risk”.  

 

2.2. MapReduce Paradigm for Big Healthcare Data 

 

Big data in the healthcare industry refers to 

heterogeneous, multi-spectral, incomplete, and uncertain 

observations from primary sources that are presented in 

structured, semi-structured, and unstructured formats and 

include observations related to diagnosis, illness, injury, 

treatment, physical and mental disorders, demography, 

and disease prevention [21]. Unstructured data comprises 

medical imaging, notes, environmental, clinical, lifestyle, 

medication, and health economics data. Structured data 

contains ICD codes, phenotype, genotype, and genomic 

information [22]. In addition, the Internet of Things (IoT) 

has spurred the development of data-driven applications 

in industries, including transportation, networking, smart 

cities, and healthcare. Various sensors and devices to 

track a patient’s health have been widely used in the 

health sector. MapReduce, a distributed programming 

model, is implemented in Apache Hadoop‡  and Apache 

Spark§  frameworks to analyse petabyte-scale datasets in 

a parallel manner on computer clusters [23]. The data is 

divided into smaller chunks using MapReduce, which 

then turns each piece into a set of tuples known as key-

value pairs before eventually reducing these tuples. 

MapReduce consists of two main phases, namely Map 

and Reduce, which are carried out by the workers and 

generate key-value pairs. During the shuffle phase, these 

pairs are grouped by key and sent to the appropriate 

Reducer. Subsequently, Reducer groups the key-value 

pairs and constructs a smaller collection of data tuples 

from these tuples. The final outputs are ultimately 

produced and stored in the Hadoop Distributed File 

System (HDFS).  Fig. 1 depicts the working principle of 

the MapReduce paradigm.  

 

 
 
Figure 1. Overview of the MapReduce paradigm: Data processing workflow 

 

2.3. Resource Utilisation Prediction  

 

A resource utilisation prediction model estimates how 

much resource the system will require in the future to 

evaluate the system’s performance and assess whether the 

system has adequate resources for users’ demands. 

 
* https://github.com/umitdemirbaga/NEWS 
† https://www.southtees.nhs.uk/  

Resource utilisation prediction is adopted in diverse 

applications [24-26]. Demand and resource consumption 

estimates for large-scale data analysis are used to 

customise workload predictive resource management 

systems. The workloads, especially streaming data, are 

dynamic and constantly changing for big data systems 

[27]. Consequently, a robust and scalable resource 

‡ https://hadoop.apache.org/  
§ https://spark.apache.org/  
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utilisation prediction model is required to provide 

reasonable prediction accuracy. Conversely, resource 

utilisation prediction enables access to free resources and 

analyses the effects of allocating them to specific 

workloads [28]. Resource utilisation for predicting the 

system performance was first used in [29]. A few research 

studies then created a framework for measuring system 

performance based on usage patterns and evolution trends 

in large-scale datasets. Mean Field Theory (MFT), which 

studies the behaviour of high-dimensional complex 

systems, has been used to successfully predict and 

evaluate the performance of highly complex structures 

such as Hadoop applications [30].  

3. PROPOSED SYSTEM 

 

This section introduces our novel resource utilisation 

prediction model for big data systems. Fig. 2 presents the 

high-level architecture of the proposed approach for big 

healthcare data processing, which fundamentally consists 

of three main components: a big data monitoring system, 

a fault injection module, and a resource utilisation 

prediction system.   

 

 
Figure 2. The overview of the proposed system’s architecture 
 

3.1. Monitoring Big Data Cluster for Log Collection 

 

In this work, the Apache Hadoop framework is deployed 

on AWS (Amazon Web Services) EC2 instances, and 

MapReduce is used as a programming model for 

processing big healthcare data. We deployed SmartMonit 

[31], a real-time big data monitoring system, to collect 

tasks and infrastructure information from the Hadoop 

cluster in real-time. As shown in Fig. 3, SmartMonit has 

two sub-agents, TaskAgent and SystemAgent, managed 

 
** https://hadoop.apache.org/docs/r3.2.4/hadoop-yarn 
†† https://github.com/hyperic/sigar  

by SmartAgent. TaskAgent employs the 

ResourceManager REST API**  to collect the execution 

status of each task, and SystemAgent employs the Sigar 

API ††   to gather computing resource metrics, such as 

CPU/memory utilisation, network throughput, and disk 

I/O speeds. SmartAgent is responsible for receiving raw 

data from these two agents and storing it in a time-series 

database, InfluxDB‡‡ , via RabbitMQ§§ , a message broker 

system, for further processing.  

 

‡‡ https://www.influxdata.com  
§§ https://www.rabbitmq.com/  
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Figure 3. Model of monitoring agents (a); SmartMonit deployment in the proposed system (b) 

 

3.2. Automated Data Pre-Processing  

 

This data analysis pipeline module retrieves time-stamped 

raw logs stored in a time series database and prepares 

them for the next phase, implementing ML algorithms. 

The automated data pre-processing module conceptually 

consists of three main sections: data wrangling, feature 

extraction, and feature selection.  

 

3.2.1. Data wrangling 

 

This module includes a comprehensive set of data 

processing procedures to convert raw data collected from 

the cloud-based big data cluster into more readily used 

formats, including cleaning, organising, structuring, and 

enriching. 

 

• Regression imputation method for automatic 

missing value imputation: The log collector 

forwards the collected data simultaneously from 

different APIs to the database or the next step for 

processing. Due to network congestion, a temporary 

outage of the Application Programming Interface 

(API), or an issue with the API itself, API response 

timeouts occur, in which the log collection process is 

interrupted. In addition, missing values occur in data 

sets for other reasons, such as storage limitations, 

security filters, data loss during data collection or the 

impossibility of measuring. Missing values in the 

dataset affect the analysis results, making it difficult to 

draw meaningful conclusions.  To handle this, we 

propose an automatic missing value imputation to 

estimate and complete the missing values using the 

regression imputation method due to collecting large 

amounts of logs and the strong relationships between 

the variables. We implemented the regression 

imputation method by deploying the scikit-learn 

library in Python.  

 

• Automatic data encoding: In this module, we 

combine one-hot encoding and label encoding 

techniques to convert categorical or serial data into 

numerical data that ML algorithms can easily process. 

Extensive logs are collected from the cloud-based 

Hadoop cluster deployed on AWS, including numeric 

and label data (e.g. configuration parameters). 

Therefore, using the label encoding technique, these 

parameters are converted into digital forms and made 

understandable by the machine.  

 

3.2.2. Feature selection  

 

Most of the relevant features are selected in this module 

to help improve the performance of our ML models. To 

this end, we implement the correlation analysis method, 

which measures the linear relationship between each pair 

of features. The implementation details are discussed in 

§4.4. Evaluation of Resource Utilisation Prediction.  

 

3.2.3. Feature extraction  

 

This module generates new features based on input data 

to identify the most significant linear combinations of 

features. The main objective is to reduce the 

dimensionality of feature vectors and categorise raw data 

into distinct groups by facilitating the interpretability and 

management of the data by ML models. To achieve this, 

we employ Principal Component Analysis (PCA)  in 

Python, which helps create a new feature to specify the 

resource utilisation levels, ranging from 0 to 2. These 

steps are performed by following the steps below: 

 

• PCA implementation: PCA is a dimensionality 

reduction technique that transforms the original set of 

features into a new set of orthogonal components, 

known as principal components. In our 

implementation, PCA efficiently captures the variance 

within the log data, which enables us to pinpoint the 

essential features that contribute significantly to the 

overall resource utilisation patterns. By retaining the 

principal components that capture the maximum 

variance, we effectively reduce the dimensionality of 

the data while preserving the crucial information 

necessary for accurate resource utilisation prediction.  

 

• Creation of new feature: Based on the outcomes of 

PCA, a new feature is constructed to encapsulate the 

resource utilisation levels. The determination of these 

levels is as follows:  

 

▪ 0: Low Resource Utilisation 

▪ 1: Average Resource Utilisation 

▪ 2: Highest Resource Utilisation  

 

These explicit explanations aim to comprehensively 

understand the methodology employed in setting and 

labelling the resource utilisation levels for subsequent 

predictions.  
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3.3. Fault Injection Modules  

 

We have developed four fault injection models to 

experience real design problems in big data systems, 

which helps to test and improve the reliability and 

resilience of our proposed system in highly possible fault 

conditions, such as insufficient CPU and memory 

resources, network congestion or low bandwidth, and data 

locality issue in distributed systems, as indicated in our 

previous work [12].  

 

The fault injection process involves generating realistic 

workloads and injecting faults into the VMs within a 

cluster. The algorithm takes into account various 

parameters, including VM ID (Vm), cluster (C), fault type 

(F), list of faults (Fl), injection duration (Tm), time interval 

(Ti), and workload (Wl). 

 

3.3.1. CPU fault injection module  

 

This module dynamically generates workload for the 

CPU. A set of computations is executed in parallel to 

increase the number of MIPS (million instructions per 

second) in the selected VMs. This model creates a high-

dimensional Pascal’s triangle, where each number is the 

sum of the two numbers just above it.  

 

3.3.2. Memory fault injection module  

 

It is designed to intentionally induce memory occupancy 

in the nodes of a computer cluster by creating vector 

objects in the memory, which enables monitoring the 

execution times of applications and making accurate and 

robust resource usage predictions when out-of-memory 

conditions occur.  

 

3.3.3. Network fault injection module  

 

Intermediate key-value pairs generated during the Map 

phase are distributed to the relevant nodes to be combined 

in the Reduce phase. At this stage, the network is 

overloaded, and delays occur. To improve data flow in 

MapReduce, Hadoop employs several strategies, 

including data compression, speculative execution, and 

pipelining. However, none of these can prevent the 

transfer of large data sets over the network. Since 

speculative applications cause data blocks to be 

transferred entirely to other nodes, delays are 

experienced. To experience this, the network fault 

injection module reduces bandwidth by transferring data 

between nodes, which creates delays similar to those seen 

in the Hadoop system.  

 

3.3.4. Data locality fault injection module  

 

The ability of a MapReduce job to process data on the 

same node where the data is stored is known as data 

locality. Moving data over the network imposes some 

overheads that lead to delays if a task is assigned to the 

node where the task’s input data is not stored. To create a 

data locality issue, this module deletes the data blocks of 

the selected nodes, which causes data transfer from the 

other nodes that have a copy of the deleted blocks.  

Algorithm 1: Fault injection into big data clusters 

Input:    - Vₘ: VM id, 

  - C: cluster, 

  - 𝒢: fault type, 

  - Fₗ: list of faults, 
  - Tₘ: injection duration, 

  - Tᵢ: time interval, 

  - Wₗ: workload. 
1 // Initiate the process of fault injection 

2  for selected Vₘ in C do 

3 

4 

 // Generate Wₗ 
GenerateWorkload(Wₗ)    

5 

6 

 // Execute injection method 

inj ← Assign(𝒢, Tₘ)   

7 

8 

 // Inject into the C 
C ← Inject(inj)   

9 

10 

 // Interrupt the fault injection 

sleep(Tᵢ)   
11 end for 

 

Algorithm 1 demonstrates the pseudocode of the fault 

injection modules for big data clusters deployed on cloud 

environments. First, the user identifies Vm and F; then, 

based on the fault type, the workload is generated (see 

Algorithm 1, Line 4). Afterwards, the fault is injected for 

a predetermined time (Tm) (see Algorithm 1, Line 6). The 

generated workload is finally loaded into the selected VM 

(see Algorithm 1, Line 8). This process is suspended once 

the resource utilisation reaches 90%.  

 

3.4. Resource Utilisation Prediction for Big Data 

Systems 

 

To forecast the resource utilisation of big data systems, 

we implement six well-known ML algorithms, namely 

Support Vector Classifier (SVC), Gaussian Naïve Bayes, 

Logistic Regression, K-Nearest Neighbors (KNN), 

Decision Tree, and Random Forest. All these algorithms 

are evaluated and compared, considering accuracy rates, 

both online and offline analysis.  

 

We propose an ML-based model with a pipeline that 

includes automated log data preprocessing, feature 

extraction, and multi-resource predictive modelling. This 

model is trained on labelled resource utilisation logs with 

supervised learning methods such as Decision Trees, k-

nearest Neighbors (k-NN), and Random Forest classifiers. 

This is done so that the fault injection module can help 

the model learn from real-world failure scenarios and try 

to make the model robust to rare, unpredictable system 

anomalies. In contrast to traditional models that consider 

resource consumption in isolation, we model inter-

relations between CPU, memory, network, and data 

locality constraints to allow for more adaptive and 

accurate resource provisioning.  

 

3.5. Fault Injection and Testing  

 

The four fault scenarios (CPU, memory, network, and 

data locality) were chosen because they are commonly 

encountered in real-world cloud computing and big data 

systems [12]. CPU overload failures are common in 

distributed computing workloads, where tasks surpass 

processing capacity due to high demand and end up 

degrading system performance or forcing tasks to fail. 

Memory leaks or too much memory usage can be a 
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common problem across long-running big data 

applications, leading to system slowdowns or crashes. 

Network congestion or packet loss impacts data-

intensive applications, and the momentum is even higher 

in distributed computing frameworks like Apache Spark 

and Hadoop. Data locality in cloud computing refers to 

when a task is scheduled on a compute node that is remote 

from the data it needs to consume, which can greatly 

increase the cost of I/O and result in a waste of compute 

resources. These types of failures are well-known in 

other real-world failures of cloud and big data systems, 

which are incorporated into our model to ensure our 

approach is not formulated against a trivial model but 

rather in facing real-world challenges in large-scale 

computing environments.  

 

4. RESULTS AND DISCUSSION  

 

This section presents a comprehensive evaluation of the 

proposed system, including experimental setup and 

evaluation of resource utilisation prediction.  

 

4.1. Experimental Setup 

 

4.1.1. Environments 

 

To evaluate our system, we set up a Hadoop cluster on 

AWS, consisting of 1 master and 30 worker nodes, each 

with 4 cores, 16 GB of memory, and 1TB of SSD storage. 

We chose Ubuntu Server*** 20.04 LTS and SSD Volume 

Type as an operating system, and deployed Apache 

Hadoop 3.2.4††† and Apache Hive‡‡‡ 3.1.3 versions.  

 

4.1.2. Benchmarks and workload  

 

We use the NEWS data detailed in §2.1. Navigating EHR 

datasets to evaluate the proposed system, taken from 

South Tees Hospitals NHS Foundation Trust§§§ . The data 

includes 1M patients’ healthcare data, including 552 

different features, such as pulse, age, sex, nausea, given 

drugs, weight, length of stay, discharged deceased, etc. 

The data size for bencmarking the proposed system is 35 

GB of healthcare data.  

 

4.1.3. Methodology  

 

Our experiments aim to evaluate the performance and 

accuracy of the proposed system. To this end, we inject 

four common faults separately, enabling data analysis 

under possible scenarios. We perform Hive queries in 

parallel over the dataset with five repetitions, comprising 

25 experiments, including data processing without any 

faults.  

 

4.2. Hyperparameter Tuning  

 

We train the ML models using default or initial 

hyperparameters to establish a baseline performance. 

Following this, we employ a systematic Grid Search 

approach to optimise hyperparameters for each model, 

such as maximum depth (max_depth) and minimum 

samples split (min_samples_split) in Decision Trees, and 

the regularisation parameter (C) and kernel in SVC while 

the number of trees (n_trees), maximum depth 

(max_depth), and minimum samples split 

(min_samples_split) parameters are tuned for Random 

Forest model. Once the optimal hyperparameters are 

identified, the models are re-trained to enhance their 

capabilities in predicting resource utilisation within 

cloud-based big data systems.  

 

After conducting hyperparameter tuning, the optimal 

values for each model were selected based on validation 

performance. The final hyperparameter values used in our 

experiments are summarised in Table 1.  

 

Following this, we used Grid Search tuning**** related to 

hyperparameters using the various data partitions from 

the cloud-based big data system logs to assess the tuned 

hyperparameters' generalisability. Subsets of varying 

workload patterns were used to train and validate the 

models to determine their adaptability. We found that 

optimal hyperparameter values were more or less stable 

across datasets. Still, some small variations were found in 

tuning parameters because models like Random Forest 

and KNN are sensitive to dataset distribution. The 

models remained highly predictive despite the changes, 

confirming our hyperparameter selection's stability and 

performance.  

 

Although the Grid Search optimisation process makes 

improving our model performance in our study possible, 

it also applies to many other cloud computing scenarios. 

Hyperparameter tuning can be performed in real-time big 

data analytics using online learning approaches that 

continuously update model parameters as new data is 

received. Hyperparameter search strategies such as 

Bayesian Optimisation or Reinforcement Learning-based 

tuning could be adopted in edge-computing environments 

to reduce the overhead of exhaustive search methods, as 

edge devices do not possess unlimited computational 

resources. On the other hand, in heterogeneous workload 

scenarios, transfer learning methods can help provision 

previously optimised hyperparameters across workloads 

without starting the model training process from scratch. 

Such emphasises the wider relevance of hyperparameter 

optimisation beyond the narrative of this paper and leaves 

space for further research on adaptive tuning techniques. 

 

 

 
*** https://ubuntu.com/ 
††† https://hadoop.apache.org/release/3.2.4.html 
‡‡‡ https://hive.apache.org/ 

§§§ https://www.southtees.nhs.uk/  
**** https://scikit-learn.org/stable/modules/grid_search.html 
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Table 1. Final hyperparameter values after tuning 

Model Hyperparameter Value 

Support Vector Classifier (SVC) 
Kernel RBF 

Regularization (C) 1.0 

Gaussian Naïve Bayes Smoothing factor 1e-9 

Logistic Regression 
Regularization (C) 0.01 

Solver Lbfgs 

KNN  
Number of neighbors (K)  5 

Distance metric  Euclidean 

Decision Tree  

Max depth  10 

Minimum samples split  2 

Criterion Gini 

Random Forest  

Number of trees  100 

Max depth  15 

Minimum samples split  4 

Criterion Entropy 

 

4.3. Cross-Validation  

 

We conduct a 10-fold cross-validation process to ensure 

robust and unbiased performance assessment for the 

developed models. This process divides the dataset into 

ten equal-sized folds, where nine are used for training and 

one for validation in each iteration. The process is 

repeated for all ten folds, and the final reported results 

represent the average performance metrics (accuracy, 

precision, recall, F1-score) across all folds to ensure 

robustness and mitigate bias. In this way, we guarantee to 

provide more reliable and generalised ML models in 

predicting resource utilisation within cloud-based big data 

systems. 

4.4. Evaluation of Resource Utilisation Prediction  

 

This section provides a detailed explanation of the 

experimental evaluation conducted to assess the 

performance and reliability of the proposed system within 

real-world cloud computing environments. To this end, 

we processed the big healthcare dataset over a Hadoop 

cluster in AWS. We gather different log datasets with and 

without injection faults. With the help of the automated 

preprocessing system, logs are labelled, ranging from 0 to 

2, based on resource utilisation levels. Fig. 4 demonstrates 

the data distribution of each stage for resource utilisation.  

 

 

 
Figure 4. Training data distribution over the features based on resource utilisation levels 

In the Hadoop ecosystem, tasks are distributed equally to 

all compute nodes by default, resulting in less powerful 

nodes (in terms of resources) needing more time to 

complete their tasks. To simulate the results of these 

issues in a heterogeneous big data system, we perform 

data processing under different scenarios, namely with 

and without faults. Fig. 5 shows the resource utilisation 

results for CPU, memory, and network over total 

execution time (makespan). As seen in Fig. 5(a), CPU 

utilisation is between 70% and 82%, and makespan varies 

from 60 to 66 seconds when there are no faults in the 

system. However, insufficient computation power of the 

node reaches 100%, increasing the makespan by around 

30% (see Fig. 5(b)). Moreover, the data locality issue 

suspends data processing until the data transfer is 

complete, reducing CPU usage by 20% and increasing the 

makespan by 10% as seen in Fig. 6(c). The nodes with less 

memory resources than others in a heterogeneous big data 

cluster perform similarly. On nodes with insufficient 

memory, memory usage and makespan are inversely 

proportional (Fig. 5(d) and Fig. 5(e)). Moreover, Fig. 5(f) 

data locality issue decreases memory usage but increases 

makespan. Compared to Fig. 5(g) (under healthy 

conditions), Fig. 5(h) and Fig. 5(i) show that the 

makespan increases when the network usage increases 

and the number of executions increases dramatically 

when there is a data locality problem and network fault is 

injected to simulate the nodes with low bandwidth 

connections.  

 

For a detailed analysis of our predictive system, we also 

apply accuracy, precision, recall, and F1-score as 

performance metrics (as shown in Fig. 6), which bring 

individual aspects to model assessment. Accuracy is the 

percentage of correctly classified instances concerning 

the total number of cases, giving us a descriptor of overall 

performance. In resource utilisation datasets, imbalanced 

classes are commonplace, so accuracy is not necessarily 

a good indicator. Precision is defined as the number of 

true positives divided by the sum of true positives and 

false positives, which helps to minimise false alarms. 

Recall (sensitivity), on the other hand, quantifies the 

precision of positive classification by determining the 

fraction of correctly identified adverse cases, which is 
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important for high-utilisation or failure-prone cases. That 

is where the F1-score, the harmonic mean of precision 

and recall, come into play, where a distinct balance is 

necessary between false positives and false negatives, 

which serve as a powerful metric in dynamic cloud-based 

big data environments.  

 

 
Figure 5. Makespan vs resource utilisation under different scenarios 

 
The proposed algorithms show a high performance in the 

energy prediction per resource under several online and 

offline failure situations. Now, we get the most accurate 

model, k-NN at 97.30%, followed by the random forest at 

95.10%. K-NN is relatively successful as it can detect 

complex patterns and associations in the dataset by 

evaluating the closeness of examples in the feature space. 

The degree of sample closeness in this approach is an 

effective way of presenting how the k-NN structure 

succeeds in defining nuanced relations. In contrast, it 

operates using an ensemble of decision trees, merging 

predictions of the multiple trees to form a comprehensive 

insight into feature-target connections. Although the 

accuracy is the same, both these models manage to learn 

muscle patterns relevant enough to be captured in the 

prediction, making them appropriate candidates for 

dependency to ensure the success of our predictive 

framework. Generally, accuracy is not always the 

appropriate metric to assess a model’s performance, 

especially when the classes are unbalanced. Metrics like 

accuracy, recall, or F1 score, which offer a more complex 

understanding of a model’s performance, are better suited 

to these circumstances. Hence, the reviewed dataset is 

probably properly balanced if the F1 score, recall, and 

accuracy are equal.  

Our ML-based model provides a 97.3% accuracy rate and 

does much better than baseline approaches. Incorporating 

fault injection modules renders the model more resilient, 

automatically adapting to maintain a high prediction 

performance level in dynamic workload fluctuations. Our 

results show the effectiveness of our approach in a real 

cloud-based big data environment, efficiently handling 

resource fluctuations, and maintaining high prediction 

performance across different execution scenarios.
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Figure 6 Comparison of performance evaluation metrics for ML algorithms. 

 
5. RELATED WORK  

 

In recent years, researchers have extensively studied 

resource utilisation prediction for cloud-based big data 

systems with different aspects, aims, and applications.  

 

5.1. Resource Utilisation Prediction in Cloud 

Computing  

 

Several recent works have engaged ML models to predict 

resource utilisation in cloud computing systems. 

Mehmood et al. developed a hybrid resource utilisation 

prediction model based on KNN and Decision Trees, 

resulting in better accuracy for workload prediction [32]. 

However, this model does not cater to fast-evolving 

cloud scenarios. Al-Asaly et al. developed a deep 

learning-based model for autonomic cloud computing 

environments, intentionally aiming to predict workload. 

Although their model outperformed traditional 

approaches, it is not based on real-time system monitoring 

and, therefore, was not as effective in dynamic cloud-

based big data systems [33]. RL algorithms have recently 

been proposed to better provision cloud resources. For 

instance, Nguyen et al. developed an RL-based model for 

decentralised IoMT (Internet of Medical Things) 

networks that outperforms alternative solutions regarding 

resource allocation efficiency and reduced latency [38]. 

Gao et al. introduced a dynamic simulation budget 

allocation method, and an optimal computing budget 

allocation (OCBA) strategy was proposed to maximise 

resource utilisation efficiency [35]; however, this method 

is designed for passing in cloud environments.  

 

5.2. Fault-Tolerant Resource Management in Big Data 

Systems  

 

In recent years, fault-tolerant cloud computing strategies 

have gained much attention in the literature. Rahmanian 

et al. proposed an ensemble-based resource utilisation 

prediction model using Learning Automata, which uses 

the Single and Multiple Window concepts to train a 

resource utilisation prediction model. Nonetheless, this 

technique does not provide a real-time adjustment, as it is 

not accompanied by any live system observant [34]. 

Khan et al. surveyed blockchain-based edge computing 

frameworks, which can be applied in IoT applications, 

pointing out the benefits of using blockchain, including 

security protection and decentralised resource 

management [36]. Akbari Zarkesh et al. proposed 

EdgeLinker, a blockchain-based security mechanism 

designed for healthcare fog applications to ensure secure 

data transmission in distributed edge computing networks 

[39]. Byzantine Fault Tolerance (BFT) techniques have 

also been employed to maintain reliability in cloud 

environments. This also addresses the problem of having 

faulty nodes in a system using these methods, which is 

common for consensus in blockchain networks [40].  

 

5.3. How Our Model Differs from Prior Work  

 

Our enhanced model, however, is based on an automated 

structured analysis log data preprocessing pipeline that 

processes logs in real-time, automating feature extraction 

and transformation activities before ML model input, 

allowing for strong input into these models. The second 

branch is inspired by the characteristics of real-world 

errors, which are often omitted in prior studies, and we 

present four fault injection modules (CPU, memory, 

network, and data locality faults) to assess the system's 

performance under real-world errors. While most 

previous work tends to consider only CPU or memory 

prediction separately, we build a model that can predict 

multiple usages under changing workloads. Our model 

outperforms existing methods, achieving up to 97.3% 

prediction accuracy using hyperparameter-optimised 

fine-tuned ML algorithms. To clarify these comparisons, 

we summarise our model and related works in Table 2 

below: 
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Table 2. Comparison of Related Studies 

Study Resource Type 
Fault 

Tolerance 

Real-Time 

Adaptability 
Method Used Accuracy (%) 

[32] CPU & Memory No Moderate KNN & Decision Tree 91.5 

[33] CPU, Memory No No 
Deep Learning-Based 

Workload Forecasting 
95.4 

 
[34] 

 

CPU & Memory No No Learning Automata 93.0 

[36] Edge/IoT Yes Moderate 
Blockchain-Based Secure 

Resource Management 
N/A 

[39] 
Edge Computing & 

Healthcare 
Yes Yes 

Blockchain-Based Secure 

Communication 
N/A 

Our Proposed 

Model 

CPU, Memory, Network, Data 

Locality 
Yes Yes 

ML-Based Prediction & Fault 

Injection 
97.3 

 

6. CONCLUSION 

 

Effective resource utilisation is the most critical aspect of 

processing large amounts of data in an acceptable amount 

of time. Inefficient resource utilisation is a common 

problem in cloud-based big data systems due to system 

heterogeneity, complexity, and unexpected errors, making 

it challenging to predict resource utilisation for provision 

resources. This article proposes an automated log data 

preprocessing-based online resource usage forecasting 

model using ML algorithms for big data systems. The 

experiments conducted under different fault scenarios 

show that our system predicts resource utilisation with a 

high accuracy rate and can identify the bottlenecks that 

lead to ineffective resource utilisation in big data systems.  

 

The prediction of resource utilisation plays a crucial role 

in big data systems regarding time and cost management 

and provides the necessary provision of resources in case 

of need. Our system can help predict resource utilisation 

to embrace this matter for big data systems.  

 

Acknowledgement 

 

The author would like to express their sincere gratitude to 

South Tees Hospitals NHS Foundation Trust (United 

Kingdom) for their valuable support in providing access 

to anonymised healthcare data, which significantly 

contributed to the development of this study. 

 

REFERENCES 

 

[1] Koppad S, Gkoutos GV, Acharjee A. Cloud 

computing enabled big multi-omics data analytics. 

Bioinform Biol Insights. 2021;15. 

[2] Wu PY, Cheng CW, Kaddi CD, Venugopalan J, 

Hoffman R, Wang MD. –omic and electronic health 

record big data analytics for precision medicine. 

IEEE Trans Biomed Eng. 2016;64(2):263–73. 

[3] Kumar J, Singh AK. Workload prediction in cloud 

using artificial neural network and adaptive 

differential evolution. Future Gener Comput Syst. 

2018;81:41–52. 

[4] Gui B, Wei X, Shen Q, Qi J, Guo L. Financial time 

series forecasting using support vector machine. In: 

2014 Tenth International Conference on 

Computational Intelligence and Security. IEEE; 

2014. p. 39–43. 

[5] Kim KJ, Han I. Genetic algorithms approach to 

feature discretization in artificial neural networks for 

the prediction of stock price index. Expert Syst Appl. 

2000;19(2):125–32. 

[6] Ullrich M, Lässig J. Current challenges and 

approaches for resource demand estimation in the 

cloud. In: 2013 International Conference on Cloud 

Computing and Big Data. IEEE; 2013. p. 387–94. 

[7] Alwasel K, Calheiros RN, Garg S, Buyya R, Pathan 

M, Georgakopoulos D, et al. Bigdatasdnsim: A 

simulator for analyzing big data applications in 

software-defined cloud data centers. Softw Pract 

Exp. 2021;51(5):893–920. 

[8] Jung J, Kim H. Mr-cloudsim: Designing and 

implementing mapreduce computing model on 

cloudsim. In: 2012 International Conference on ICT 

Convergence (ICTC). IEEE; 2012. p. 504–9. 

[9] Calcaterra C, Carmenini A, Marotta A, Bucci U, 

Cassioli D. Maxhadoop: an efficient scalable 

emulation tool to test sdn protocols in emulated 

hadoop environments. J Netw Syst Manage. 

2020;28(4):1610–38. 

[10] Datadog [Internet]. New York: Datadog Inc.; [cited 

2020 Jul 13]. Available from: 

https://www.datadoghq.com/ 

[11] Apache Chukwa [Internet]. [cited 2020 Jul 14]. 

Available from: https://chukwa.apache.org/ 

[12] Demirbaga U, Wen Z, Noor A, Mitra K, Alwasel K, 

Garg S, et al. Autodiagn: An automated real-time 

diagnosis framework for big data systems. IEEE 

Trans Comput. 2021;71(5):1035–48. 

[13] Zhao K, Li S, Kang Z. Takagi-sugeno fuzzy 

modeling and control of nonlinear system with 

adaptive clustering algorithms. In: 2018 10th 

International Conference on Modelling, 

Identification and Control (ICMIC). IEEE; 2018. p. 

1–6. 

[14] Er MJ, Deng C. Obstacle avoidance of a mobile 

robot using hybrid learning approach. IEEE Trans 

Ind Electron. 2005;52(3):898–905. 

[15] Al-Asaly MS, Bencherif MA, Alsanad A, Hassan 

MM. A deep learning-based resource usage 

prediction model for resource provisioning in an 

autonomic cloud computing environment. Neural 

Comput Appl. 2021;1–18. 

[16] Royal College of Physicians. National early warning 

score (NEWS): standardising the assessment of 

acute-illness severity in the NHS. London: Report of 

working party; 2012. 

[17] Ross M, Wei W, Ohno-Machado L. “Big data” and 

the electronic health record. Yearb Med Inform. 

2014;23(1):97–104. 



     

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025 
 

 

63 

[18] Li S, Kang L, Zhao XM, et al. A survey on 

evolutionary algorithm based hybrid intelligence in 

bioinformatics. Biomed Res Int. 2014;2014:1–12. 

[19] World Health Organization. Partnering for health 

early warning systems [Internet]. [cited 2025 Jun 

21]. Available from: https://public-

old.wmo.int/en/bulletin/partnering-health-early-

warning-systems 

[20] McGinley A, Pearse RM. A national early warning 

score for acutely ill patients: A new standard should 

help identify patients in need of critical care. BMJ. 

2012;345(7869):9–9. 

[21] Aujla GS, Jindal A. A decoupled blockchain 

approach for edge-envisioned IoT-based healthcare 

monitoring. IEEE J Sel Areas Commun. 

2021;39(2):491–9. 

[22] Mehta N, Pandit A. Concurrence of big data 

analytics and healthcare: A systematic review. Int J 

Med Inform. 2018;114:57–65. 

[23] Dean J, Ghemawat S. Mapreduce: simplified data 

processing on large clusters. Commun ACM. 

2008;51(1):107–13. 

[24] Sun X, Ansari N, Wang R. Optimizing resource 

utilization of a data center. IEEE Commun Surv 

Tutor. 2016;18(4):2822–46. 

[25] Ikhlasse H, Benjamin D, Vincent C, Hicham M. 

Multimodal cloud resources utilization forecasting 

using a bidirectional gated recurrent unit predictor 

based on a power efficient stacked denoising 

autoencoders. Alex Eng J. 2022;61(12):11565–77. 

[26] Meng Y, Rao R, Zhang X, Hong P. Crupa: A 

container resource utilization prediction algorithm 

for autoscaling based on time series analysis. In: 

2016 International Conference on Progress in 

Informatics and Computing (PIC). IEEE; 2016. p. 

468–72. 

[27] Margara A, Urbani J, Van Harmelen F, Bal H. 

Streaming the web: Reasoning over dynamic data. J 

Web Semant. 2014;25:24–44. 

[28] Hameed A, Khoshkbarforoushha A, Ranjan R, 

Jayaraman PP, Kolodziej J, Balaji P, et al. A survey 

and taxonomy on energy efficient resource 

allocation techniques for cloud computing systems. 

Comput. 2016;98:751–74. 

[29] Armstrong B, Eigenmann R. Performance 

forecasting: Towards a methodology for 

characterizing large computational applications. In: 

Proceedings of 1998 International Conference on 

Parallel Processing (Cat. No. 98EX205). IEEE; 

1998. p. 518–25. 

[30] Benaim M, Le Boudec JY. A class of mean field 

interaction models for computer and communication 

systems. Perform Eval. 2008;65(11–12):823–38. 

[31] Demirbaga U, Noor A, Wen Z, James P, Mitra K, 

Ranjan R. Smartmonit: Real-time big data 

monitoring system. In: 2019 38th Symposium on 

Reliable Distributed Systems (SRDS). IEEE; 2019. 

p. 357–72. 

[32] Mehmood T, Latif S, Malik S. Prediction of cloud 

computing resource utilization. In: 2018 15th 

International Conference on Smart Cities: 

Improving Quality of Life Using ICT & IoT 

(HONET-ICT). IEEE; 2018. p. 38–42. 

[33] Al-Asaly MS, Bencherif MA, Alsanad A, Hassan 

MM. A deep learning-based resource usage 

prediction model for resource provisioning in an 

autonomic cloud computing environment. Neural 

Comput Appl. 2021;1–18. 

[34] Rahmanian AA, Ghobaei-Arani M, Tofighy S. A 

learning automata-based ensemble resource usage 

prediction algorithm for cloud computing 

environment. Future Gener Comput Syst. 

2018;79:54–71. 

[35] Gao S, Xiao H, Zhou E, Chen W. Robust ranking 

and selection with optimal computing budget 

allocation. Automatica. 2017;81:30–6. 

[36] Khan MA, Jan MA, He X. Blockchain-based edge 

computing frameworks for IoT applications: A 

comprehensive survey. IEEE Internet Things J. 

2021;8(1):22–39. 

[37] Aujla M, Jindal R. Blockchain-based healthcare 

monitoring for edge computing environments: 

Performance evaluation and analysis. IEEE Trans 

Ind Inform. 2020;16(3):2204–13. 

[38] Nguyen DC, Pathirana PN, Ding M, Seneviratne A. 

BEdgeHealth: A decentralized architecture for edge-

based IoMT networks using blockchain. arXiv. 

2021;arXiv:2109.14295. 

[39] Akbari Zarkesh M, Dastani E, Safaei B, Movaghar 

A. EdgeLinker: Practical blockchain-based 

framework for healthcare fog applications to 

enhance security in edge-IoT data communications. 

arXiv. 2024;arXiv:2408.15838. 

[40] Cheikhrouhou O, Mershad K, Jamil F, Mahmud R, 

Koubaa A, Moosavi SR. A lightweight blockchain 

and fog-enabled secure remote patient monitoring 

system. arXiv. 2023;arXiv:2301.03551. 


