

52

Volume 14, Issue 2, Page 52-63, 2025 https://doi.org/10.46810/tdfd.1545596 Research Article

HealthCraft: A Precision Model for Smart Resource Optimisation in Dynamic Big Data

Healthcare Environments

Ümit DEMİRBAGA1*

1 Bartın University, Engineering, Architecture and Design Faculty, Computer Engineering Department, Bartın,

Türkiye

Ümit DEMİRBAGA ORCID No: 0000-0001-5159-0723

*Corresponding author: udemirbaga@bartin.edu.tr

(Received: 10.09.2024, Accepted: 12.04.2025, Online Publication: 27.06.2025)

Keywords

Big data,

Cloud computing,

Machine learning,

Resource

utilisation,

Prediction

Abstract: Cloud computing offers scalable computing and storage capabilities to handle

massive healthcare data. When processing large-scale data, keeping the resource cost

reasonable is crucial. Nonetheless, resource utilisation is frequently inefficient because of the

inherent complexity and heterogeneity of distributed computing frameworks. In addition, it is

challenging to model resource utilisation from real fault-occurring cloud systems. This study

proposes an automated online resource utilisation prediction model that combines machine

learning (ML) methods with automated log data preprocessing to predict future resource

consumption. It allows smart and adaptable allocation of resources in large cloud-based data

infrastructures suffering from typical failures like CPU, memory, network, and data locality

problems. Using the Hadoop framework on a cloud cluster of 30 worker nodes, our model

predicts resource utilisation with up to 97.3% accuracy - outperforming the other baseline

models evaluated. In addition, our system accurately recognises resource bottlenecks. It reduces

execution time by up to 30%, even in fault-injected environments, implying that it is robust

enough for real-time big data analytics.

HealthCraft: Dinamik Büyük Veri Sağlık Hizmetleri Ortamlarında Akıllı Kaynak

Optimizasyonu için Hassas Bir Model

Anahtar

Kelimeler

Büyük veri,

Bulut bilişim,

Makine öğrenimi,

Kaynak kullanımı,

Tahmin

Öz: Bulut bilişim, büyük ölçekli sağlık verilerini işlemek için ölçeklenebilir hesaplama ve

depolama yetenekleri sunar. Büyük ölçekli verilerin işlenmesi sırasında, kaynak maliyetini

makul seviyede tutmak kritik öneme sahiptir. Bununla birlikte, dağıtık bilişim çerçevelerinin

doğasında bulunan karmaşıklık ve heterojenlik nedeniyle kaynak kullanımı sıklıkla verimsiz

olmaktadır. Ayrıca, gerçek hata oluşan bulut sistemlerinden kaynak kullanımını modellemek

zorlu bir süreçtir. Bu çalışma, otomatik bir çevrimiçi kaynak kullanım tahmin modeli önererek,

makine öğrenimi (ML) yöntemlerini otomatik günlük veri ön işleme ile birleştirerek gelecekteki

kaynak tüketimini tahmin etmektedir. Önerilen model, CPU, bellek, ağ ve veri yerelliği sorunları

gibi tipik arızalardan etkilenen büyük ölçekli bulut tabanlı veri altyapılarında akıllı ve

uyarlanabilir kaynak tahsisini mümkün kılmaktadır. Hadoop çerçevesini kullanarak 30 çalışan

düğümden oluşan bir bulut kümesinde, modelimiz kaynak kullanımını %97,3'e varan doğruluk

oranıyla tahmin etmektedir ve karşılaştırılan diğer temel modellerden daha üstün performans

göstermektedir. Ayrıca, sistemimiz kaynak darboğazlarını doğru bir şekilde tespit etmekte ve

hata enjekte edilmiş ortamlar dahil olmak üzere çalışma süresini %30’a kadar azaltmaktadır, bu

da onu gerçek zamanlı büyük veri analitiği için yeterince sağlam bir çözüm haline getirmektedir.

1. INTRODUCTION

With the increasing data and high internet speed,

industries are using cloud computing more widely to meet

their data analysis demands. The development of omics

sciences like genomics, proteomics, and metabolomics

has led to the collection of enormous volumes of data [1].

Data expansion is facilitated by the transition from paper

medical records to electronic health records (EHR) [2].

Using such detailed and extensive data, doctors,

www.dergipark.gov.tr/tdfd

https://orcid.org/0000-0001-5159-0723

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

53

epidemiologists, and health policy experts seek to

enhance population health and patient care. To properly

exploit the created big data within a reasonable time, it is

necessary to utilise the system resources efficiently.

However, the dependent structure of cloud-based big data

frameworks and the complex infrastructure of cloud

computing consisting of servers, storage devices,

networks, cloud management software and virtualisation

result in inefficient use of system resources and loss of

time and energy.

Resource utilisation prediction in big data systems

estimates the resource requirement required for the

successful completion of the application under current

conditions, which improves resource utilisation, reduces

costs and enhances performance. Statistical techniques

and ML methods are the most common to estimate

resource utilisation. In statistical methods (e.g. Automatic

Regression Modelling), the relationship between

variables is determined, and probability distributions are

used for assumptions. However, these methods are very

general because they make predictions for certain

intervals and cannot be estimated accurately [3]. ML

models, such as Support Vector Machine (SVM) [4],

Genetic Algorithm (GA) [5], and Neural Network (NN)

[6], are more widely adopted by researchers to perform a

more accurate prediction. Researchers perform resource

utilisation predictions of big data systems in simulators

and online systems. The simulation models [7-9] create a

virtual model by modelling the computer system

mathematically and revealing the system controls. Online

performance analysis systems [10-12] enable the

collection of performance metrics through system logs,

providing much more accurate and precise information.

However, these technologies cannot offer predictive

support for resource usage in environments with different

failures. Moreover, most of these studies employ ML

techniques to forecast future resource consumption using

the historical traces of a data centre as their input. Despite

the impressive outcomes of ML-based models, there are

still certain limitations. Most models lack a precise

method for handling workload non-stationarity. The

interactions between characteristics of various sizes

should be taken into account. For example, Feedforward

Neural Networks (FNN), a part of a multi-layer

perceptron, can be used as an efficient approach for

dealing with complicated nonlinear systems since they

inherit the learning capabilities of neural network models

and the inference capabilities of fuzzy systems [13]. As a

result, several researchers have built sophisticated

controllers and represented complex plants using FNN

techniques [14-15].

Considering the above analysis, we propose a novel,

robust resource utilisation prediction model for cloud-

based big data systems that simultaneously handles

multiple resource sources under different fault conditions.

Unlike existing models focusing primarily on CPU or

memory usage, our approach integrates a multi-resource

machine learning framework that simultaneously

considers CPU, memory, network, and data locality

constraints, enabling more accurate and adaptable

resource provisioning. Our approach combines an

automated log data preprocessing module, a feature

extraction pipeline, and multi-resource machine learning

models to predict future resource consumption accurately.

We introduce a fault injection-based training mechanism

to enhance its adaptability to real-world conditions,

allowing the model to learn and generalise from system

anomalies.

As a first step, an automated data-driven pipeline is

proposed to move the raw data of multiple runs into a

form suitable for predicting the resource utilisation of the

big data cluster. Finally, the fine-tuned ML Models are

used to predict upcoming resource utilisation based on

historical system logs and injected fault conditions. We

evaluate our model under realistic conditions by injecting

four representative faults (CPU, memory, network and

data locality) that frequently happen in big data systems.

That way, we can test its performance when the

environment changes dynamically.

The contributions of this paper can be summarised as

follows:

• We introduce a fully automated pipeline to preprocess

log data that improves data quality and minimises

manual feature engineering.

• We design a multi-resource prediction model, jointly

considering CPU, memory, network and data locality

factors for more adaptive provisioning of cloud

resources.

• We also introduce a fault injection mechanism, which

allows the model to be trained and evaluated during

real-world faults, greatly improving robustness and

accuracy.

• We achieve a 97.3% prediction accuracy,

considerably outperforming traditional ML-based

resource utilisation models.

2. BACKGROUND

2.1. Navigating EHR Datasets

Significant developments have fuelled the ongoing

evolution of data in the dynamic landscape of omics

domains, such as proteomics, metabolomics, and

genomics [16]. The transition from traditional paper

medical records to Electronic Health Records (EHR)

highlights this change even more [17]. Due to the ensuing

explosion of large-scale healthcare data, healthcare

professionals—from doctors and epidemiologists to

specialists in health policy—have a critical chance to

make well-informed decisions that will eventually

improve population health and enhance patient care [18].

Therefore, building strong tools, infrastructure, and

methodologies is imperative to fully utilise big data’s

promise. To this end, the National Early Warning Score

(NEWS) was developed in the United Kingdom to

identify and treat patients with acute diseases when their

clinical condition worsens [19] [20].

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

54

2.1.1. Overview of the NEWS dataset

Patients with acute illnesses have seven physiological

parameters measured during clinical evaluation:

respiration rate, oxygen saturation, temperature, systolic

blood pressure, heart rate, consciousness, and oxygen.

The NEWS, ranging from 1 to 8 and representing the

severity of the illness, is calculated through the following

steps: Step 1: Acquiring the patient’s score on each of the

seven physiological parameters. Step 2: Adding together

all of the physiological parameter scores to calculate the

NEWS. Step 3: Checking if a single parameter has

reached the trigger threshold. We use the NEWS

data*generated based on the structure and values taken

from South Tees Hospitals NHS Foundation Trust† . This

allows us to confirm the effectiveness and dependability

of the proposed system. In addition to the seven distinct

physiological indicators, the dataset includes 52 other

factors about the health state of the patients, such as

weight, dates of admission, duration of hospital stay, pain

score, nausea, vomiting, and pulse. An urgent clinical

review should be triggered by an aggregate NEWS of 5 or

6, and a NEWS of 7 or above should trigger a high-level

clinical alert or emergency clinical review. An “Urgent or

emergency reaction” response is appropriate for NEWS

values more than 7, indicating “High clinical risk”.

2.2. MapReduce Paradigm for Big Healthcare Data

Big data in the healthcare industry refers to

heterogeneous, multi-spectral, incomplete, and uncertain

observations from primary sources that are presented in

structured, semi-structured, and unstructured formats and

include observations related to diagnosis, illness, injury,

treatment, physical and mental disorders, demography,

and disease prevention [21]. Unstructured data comprises

medical imaging, notes, environmental, clinical, lifestyle,

medication, and health economics data. Structured data

contains ICD codes, phenotype, genotype, and genomic

information [22]. In addition, the Internet of Things (IoT)

has spurred the development of data-driven applications

in industries, including transportation, networking, smart

cities, and healthcare. Various sensors and devices to

track a patient’s health have been widely used in the

health sector. MapReduce, a distributed programming

model, is implemented in Apache Hadoop‡ and Apache

Spark§ frameworks to analyse petabyte-scale datasets in

a parallel manner on computer clusters [23]. The data is

divided into smaller chunks using MapReduce, which

then turns each piece into a set of tuples known as key-

value pairs before eventually reducing these tuples.

MapReduce consists of two main phases, namely Map

and Reduce, which are carried out by the workers and

generate key-value pairs. During the shuffle phase, these

pairs are grouped by key and sent to the appropriate

Reducer. Subsequently, Reducer groups the key-value

pairs and constructs a smaller collection of data tuples

from these tuples. The final outputs are ultimately

produced and stored in the Hadoop Distributed File

System (HDFS). Fig. 1 depicts the working principle of

the MapReduce paradigm.

Figure 1. Overview of the MapReduce paradigm: Data processing workflow

2.3. Resource Utilisation Prediction

A resource utilisation prediction model estimates how

much resource the system will require in the future to

evaluate the system’s performance and assess whether the

system has adequate resources for users’ demands.

* https://github.com/umitdemirbaga/NEWS
† https://www.southtees.nhs.uk/

Resource utilisation prediction is adopted in diverse

applications [24-26]. Demand and resource consumption

estimates for large-scale data analysis are used to

customise workload predictive resource management

systems. The workloads, especially streaming data, are

dynamic and constantly changing for big data systems

[27]. Consequently, a robust and scalable resource

‡ https://hadoop.apache.org/
§ https://spark.apache.org/

Block 0

Block 1

Block 2

Block 3

Block n

Mapper

Mapper

Mapper

Reducer

Reducer

User Defined

Program

Namenode

File 0

File 1

Input Mapper phase Files on local disk Reducer phase Output

6

1

2

3 4 5

Start map
Start reduce

fork fork

fork

Local storeRead Read

Store

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

55

utilisation prediction model is required to provide

reasonable prediction accuracy. Conversely, resource

utilisation prediction enables access to free resources and

analyses the effects of allocating them to specific

workloads [28]. Resource utilisation for predicting the

system performance was first used in [29]. A few research

studies then created a framework for measuring system

performance based on usage patterns and evolution trends

in large-scale datasets. Mean Field Theory (MFT), which

studies the behaviour of high-dimensional complex

systems, has been used to successfully predict and

evaluate the performance of highly complex structures

such as Hadoop applications [30].

3. PROPOSED SYSTEM

This section introduces our novel resource utilisation

prediction model for big data systems. Fig. 2 presents the

high-level architecture of the proposed approach for big

healthcare data processing, which fundamentally consists

of three main components: a big data monitoring system,

a fault injection module, and a resource utilisation

prediction system.

Figure 2. The overview of the proposed system’s architecture

3.1. Monitoring Big Data Cluster for Log Collection

In this work, the Apache Hadoop framework is deployed

on AWS (Amazon Web Services) EC2 instances, and

MapReduce is used as a programming model for

processing big healthcare data. We deployed SmartMonit

[31], a real-time big data monitoring system, to collect

tasks and infrastructure information from the Hadoop

cluster in real-time. As shown in Fig. 3, SmartMonit has

two sub-agents, TaskAgent and SystemAgent, managed

** https://hadoop.apache.org/docs/r3.2.4/hadoop-yarn
†† https://github.com/hyperic/sigar

by SmartAgent. TaskAgent employs the

ResourceManager REST API** to collect the execution

status of each task, and SystemAgent employs the Sigar

API †† to gather computing resource metrics, such as

CPU/memory utilisation, network throughput, and disk

I/O speeds. SmartAgent is responsible for receiving raw

data from these two agents and storing it in a time-series

database, InfluxDB‡‡ , via RabbitMQ§§ , a message broker

system, for further processing.

‡‡ https://www.influxdata.com
§§ https://www.rabbitmq.com/

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

56

Figure 3. Model of monitoring agents (a); SmartMonit deployment in the proposed system (b)

3.2. Automated Data Pre-Processing

This data analysis pipeline module retrieves time-stamped

raw logs stored in a time series database and prepares

them for the next phase, implementing ML algorithms.

The automated data pre-processing module conceptually

consists of three main sections: data wrangling, feature

extraction, and feature selection.

3.2.1. Data wrangling

This module includes a comprehensive set of data

processing procedures to convert raw data collected from

the cloud-based big data cluster into more readily used

formats, including cleaning, organising, structuring, and

enriching.

• Regression imputation method for automatic

missing value imputation: The log collector

forwards the collected data simultaneously from

different APIs to the database or the next step for

processing. Due to network congestion, a temporary

outage of the Application Programming Interface

(API), or an issue with the API itself, API response

timeouts occur, in which the log collection process is

interrupted. In addition, missing values occur in data

sets for other reasons, such as storage limitations,

security filters, data loss during data collection or the

impossibility of measuring. Missing values in the

dataset affect the analysis results, making it difficult to

draw meaningful conclusions. To handle this, we

propose an automatic missing value imputation to

estimate and complete the missing values using the

regression imputation method due to collecting large

amounts of logs and the strong relationships between

the variables. We implemented the regression

imputation method by deploying the scikit-learn

library in Python.

• Automatic data encoding: In this module, we

combine one-hot encoding and label encoding

techniques to convert categorical or serial data into

numerical data that ML algorithms can easily process.

Extensive logs are collected from the cloud-based

Hadoop cluster deployed on AWS, including numeric

and label data (e.g. configuration parameters).

Therefore, using the label encoding technique, these

parameters are converted into digital forms and made

understandable by the machine.

3.2.2. Feature selection

Most of the relevant features are selected in this module

to help improve the performance of our ML models. To

this end, we implement the correlation analysis method,

which measures the linear relationship between each pair

of features. The implementation details are discussed in

§4.4. Evaluation of Resource Utilisation Prediction.

3.2.3. Feature extraction

This module generates new features based on input data

to identify the most significant linear combinations of

features. The main objective is to reduce the

dimensionality of feature vectors and categorise raw data

into distinct groups by facilitating the interpretability and

management of the data by ML models. To achieve this,

we employ Principal Component Analysis (PCA) in

Python, which helps create a new feature to specify the

resource utilisation levels, ranging from 0 to 2. These

steps are performed by following the steps below:

• PCA implementation: PCA is a dimensionality

reduction technique that transforms the original set of

features into a new set of orthogonal components,

known as principal components. In our

implementation, PCA efficiently captures the variance

within the log data, which enables us to pinpoint the

essential features that contribute significantly to the

overall resource utilisation patterns. By retaining the

principal components that capture the maximum

variance, we effectively reduce the dimensionality of

the data while preserving the crucial information

necessary for accurate resource utilisation prediction.

• Creation of new feature: Based on the outcomes of

PCA, a new feature is constructed to encapsulate the

resource utilisation levels. The determination of these

levels is as follows:

▪ 0: Low Resource Utilisation

▪ 1: Average Resource Utilisation

▪ 2: Highest Resource Utilisation

These explicit explanations aim to comprehensively

understand the methodology employed in setting and

labelling the resource utilisation levels for subsequent

predictions.

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

57

3.3. Fault Injection Modules

We have developed four fault injection models to

experience real design problems in big data systems,

which helps to test and improve the reliability and

resilience of our proposed system in highly possible fault

conditions, such as insufficient CPU and memory

resources, network congestion or low bandwidth, and data

locality issue in distributed systems, as indicated in our

previous work [12].

The fault injection process involves generating realistic

workloads and injecting faults into the VMs within a

cluster. The algorithm takes into account various

parameters, including VM ID (Vm), cluster (C), fault type

(F), list of faults (Fl), injection duration (Tm), time interval

(Ti), and workload (Wl).

3.3.1. CPU fault injection module

This module dynamically generates workload for the

CPU. A set of computations is executed in parallel to

increase the number of MIPS (million instructions per

second) in the selected VMs. This model creates a high-

dimensional Pascal’s triangle, where each number is the

sum of the two numbers just above it.

3.3.2. Memory fault injection module

It is designed to intentionally induce memory occupancy

in the nodes of a computer cluster by creating vector

objects in the memory, which enables monitoring the

execution times of applications and making accurate and

robust resource usage predictions when out-of-memory

conditions occur.

3.3.3. Network fault injection module

Intermediate key-value pairs generated during the Map

phase are distributed to the relevant nodes to be combined

in the Reduce phase. At this stage, the network is

overloaded, and delays occur. To improve data flow in

MapReduce, Hadoop employs several strategies,

including data compression, speculative execution, and

pipelining. However, none of these can prevent the

transfer of large data sets over the network. Since

speculative applications cause data blocks to be

transferred entirely to other nodes, delays are

experienced. To experience this, the network fault

injection module reduces bandwidth by transferring data

between nodes, which creates delays similar to those seen

in the Hadoop system.

3.3.4. Data locality fault injection module

The ability of a MapReduce job to process data on the

same node where the data is stored is known as data

locality. Moving data over the network imposes some

overheads that lead to delays if a task is assigned to the

node where the task’s input data is not stored. To create a

data locality issue, this module deletes the data blocks of

the selected nodes, which causes data transfer from the

other nodes that have a copy of the deleted blocks.

Algorithm 1: Fault injection into big data clusters

Input: - Vₘ: VM id,

 - C: cluster,

 - 𝒢: fault type,

 - Fₗ: list of faults,
 - Tₘ: injection duration,

 - Tᵢ: time interval,

 - Wₗ: workload.
1 // Initiate the process of fault injection

2 for selected Vₘ in C do

3

4

 // Generate Wₗ
GenerateWorkload(Wₗ)

5

6

 // Execute injection method

inj ← Assign(𝒢, Tₘ)

7

8

 // Inject into the C
C ← Inject(inj)

9

10

 // Interrupt the fault injection

sleep(Tᵢ)
11 end for

Algorithm 1 demonstrates the pseudocode of the fault

injection modules for big data clusters deployed on cloud

environments. First, the user identifies Vm and F; then,

based on the fault type, the workload is generated (see

Algorithm 1, Line 4). Afterwards, the fault is injected for

a predetermined time (Tm) (see Algorithm 1, Line 6). The

generated workload is finally loaded into the selected VM

(see Algorithm 1, Line 8). This process is suspended once

the resource utilisation reaches 90%.

3.4. Resource Utilisation Prediction for Big Data

Systems

To forecast the resource utilisation of big data systems,

we implement six well-known ML algorithms, namely

Support Vector Classifier (SVC), Gaussian Naïve Bayes,

Logistic Regression, K-Nearest Neighbors (KNN),

Decision Tree, and Random Forest. All these algorithms

are evaluated and compared, considering accuracy rates,

both online and offline analysis.

We propose an ML-based model with a pipeline that

includes automated log data preprocessing, feature

extraction, and multi-resource predictive modelling. This

model is trained on labelled resource utilisation logs with

supervised learning methods such as Decision Trees, k-

nearest Neighbors (k-NN), and Random Forest classifiers.

This is done so that the fault injection module can help

the model learn from real-world failure scenarios and try

to make the model robust to rare, unpredictable system

anomalies. In contrast to traditional models that consider

resource consumption in isolation, we model inter-

relations between CPU, memory, network, and data

locality constraints to allow for more adaptive and

accurate resource provisioning.

3.5. Fault Injection and Testing

The four fault scenarios (CPU, memory, network, and

data locality) were chosen because they are commonly

encountered in real-world cloud computing and big data

systems [12]. CPU overload failures are common in

distributed computing workloads, where tasks surpass

processing capacity due to high demand and end up

degrading system performance or forcing tasks to fail.

Memory leaks or too much memory usage can be a

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

58

common problem across long-running big data

applications, leading to system slowdowns or crashes.

Network congestion or packet loss impacts data-

intensive applications, and the momentum is even higher

in distributed computing frameworks like Apache Spark

and Hadoop. Data locality in cloud computing refers to

when a task is scheduled on a compute node that is remote

from the data it needs to consume, which can greatly

increase the cost of I/O and result in a waste of compute

resources. These types of failures are well-known in

other real-world failures of cloud and big data systems,

which are incorporated into our model to ensure our

approach is not formulated against a trivial model but

rather in facing real-world challenges in large-scale

computing environments.

4. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the

proposed system, including experimental setup and

evaluation of resource utilisation prediction.

4.1. Experimental Setup

4.1.1. Environments

To evaluate our system, we set up a Hadoop cluster on

AWS, consisting of 1 master and 30 worker nodes, each

with 4 cores, 16 GB of memory, and 1TB of SSD storage.

We chose Ubuntu Server*** 20.04 LTS and SSD Volume

Type as an operating system, and deployed Apache

Hadoop 3.2.4††† and Apache Hive‡‡‡ 3.1.3 versions.

4.1.2. Benchmarks and workload

We use the NEWS data detailed in §2.1. Navigating EHR

datasets to evaluate the proposed system, taken from

South Tees Hospitals NHS Foundation Trust§§§ . The data

includes 1M patients’ healthcare data, including 552

different features, such as pulse, age, sex, nausea, given

drugs, weight, length of stay, discharged deceased, etc.

The data size for bencmarking the proposed system is 35

GB of healthcare data.

4.1.3. Methodology

Our experiments aim to evaluate the performance and

accuracy of the proposed system. To this end, we inject

four common faults separately, enabling data analysis

under possible scenarios. We perform Hive queries in

parallel over the dataset with five repetitions, comprising

25 experiments, including data processing without any

faults.

4.2. Hyperparameter Tuning

We train the ML models using default or initial

hyperparameters to establish a baseline performance.

Following this, we employ a systematic Grid Search

approach to optimise hyperparameters for each model,

such as maximum depth (max_depth) and minimum

samples split (min_samples_split) in Decision Trees, and

the regularisation parameter (C) and kernel in SVC while

the number of trees (n_trees), maximum depth

(max_depth), and minimum samples split

(min_samples_split) parameters are tuned for Random

Forest model. Once the optimal hyperparameters are

identified, the models are re-trained to enhance their

capabilities in predicting resource utilisation within

cloud-based big data systems.

After conducting hyperparameter tuning, the optimal

values for each model were selected based on validation

performance. The final hyperparameter values used in our

experiments are summarised in Table 1.

Following this, we used Grid Search tuning**** related to

hyperparameters using the various data partitions from

the cloud-based big data system logs to assess the tuned

hyperparameters' generalisability. Subsets of varying

workload patterns were used to train and validate the

models to determine their adaptability. We found that

optimal hyperparameter values were more or less stable

across datasets. Still, some small variations were found in

tuning parameters because models like Random Forest

and KNN are sensitive to dataset distribution. The

models remained highly predictive despite the changes,

confirming our hyperparameter selection's stability and

performance.

Although the Grid Search optimisation process makes

improving our model performance in our study possible,

it also applies to many other cloud computing scenarios.

Hyperparameter tuning can be performed in real-time big

data analytics using online learning approaches that

continuously update model parameters as new data is

received. Hyperparameter search strategies such as

Bayesian Optimisation or Reinforcement Learning-based

tuning could be adopted in edge-computing environments

to reduce the overhead of exhaustive search methods, as

edge devices do not possess unlimited computational

resources. On the other hand, in heterogeneous workload

scenarios, transfer learning methods can help provision

previously optimised hyperparameters across workloads

without starting the model training process from scratch.

Such emphasises the wider relevance of hyperparameter

optimisation beyond the narrative of this paper and leaves

space for further research on adaptive tuning techniques.

*** https://ubuntu.com/
††† https://hadoop.apache.org/release/3.2.4.html
‡‡‡ https://hive.apache.org/

§§§ https://www.southtees.nhs.uk/
**** https://scikit-learn.org/stable/modules/grid_search.html

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

59

Table 1. Final hyperparameter values after tuning

Model Hyperparameter Value

Support Vector Classifier (SVC)
Kernel RBF

Regularization (C) 1.0

Gaussian Naïve Bayes Smoothing factor 1e-9

Logistic Regression
Regularization (C) 0.01

Solver Lbfgs

KNN
Number of neighbors (K) 5

Distance metric Euclidean

Decision Tree

Max depth 10

Minimum samples split 2

Criterion Gini

Random Forest

Number of trees 100

Max depth 15

Minimum samples split 4

Criterion Entropy

4.3. Cross-Validation

We conduct a 10-fold cross-validation process to ensure

robust and unbiased performance assessment for the

developed models. This process divides the dataset into

ten equal-sized folds, where nine are used for training and

one for validation in each iteration. The process is

repeated for all ten folds, and the final reported results

represent the average performance metrics (accuracy,

precision, recall, F1-score) across all folds to ensure

robustness and mitigate bias. In this way, we guarantee to

provide more reliable and generalised ML models in

predicting resource utilisation within cloud-based big data

systems.

4.4. Evaluation of Resource Utilisation Prediction

This section provides a detailed explanation of the

experimental evaluation conducted to assess the

performance and reliability of the proposed system within

real-world cloud computing environments. To this end,

we processed the big healthcare dataset over a Hadoop

cluster in AWS. We gather different log datasets with and

without injection faults. With the help of the automated

preprocessing system, logs are labelled, ranging from 0 to

2, based on resource utilisation levels. Fig. 4 demonstrates

the data distribution of each stage for resource utilisation.

Figure 4. Training data distribution over the features based on resource utilisation levels

In the Hadoop ecosystem, tasks are distributed equally to

all compute nodes by default, resulting in less powerful

nodes (in terms of resources) needing more time to

complete their tasks. To simulate the results of these

issues in a heterogeneous big data system, we perform

data processing under different scenarios, namely with

and without faults. Fig. 5 shows the resource utilisation

results for CPU, memory, and network over total

execution time (makespan). As seen in Fig. 5(a), CPU

utilisation is between 70% and 82%, and makespan varies

from 60 to 66 seconds when there are no faults in the

system. However, insufficient computation power of the

node reaches 100%, increasing the makespan by around

30% (see Fig. 5(b)). Moreover, the data locality issue

suspends data processing until the data transfer is

complete, reducing CPU usage by 20% and increasing the

makespan by 10% as seen in Fig. 6(c). The nodes with less

memory resources than others in a heterogeneous big data

cluster perform similarly. On nodes with insufficient

memory, memory usage and makespan are inversely

proportional (Fig. 5(d) and Fig. 5(e)). Moreover, Fig. 5(f)

data locality issue decreases memory usage but increases

makespan. Compared to Fig. 5(g) (under healthy

conditions), Fig. 5(h) and Fig. 5(i) show that the

makespan increases when the network usage increases

and the number of executions increases dramatically

when there is a data locality problem and network fault is

injected to simulate the nodes with low bandwidth

connections.

For a detailed analysis of our predictive system, we also

apply accuracy, precision, recall, and F1-score as

performance metrics (as shown in Fig. 6), which bring

individual aspects to model assessment. Accuracy is the

percentage of correctly classified instances concerning

the total number of cases, giving us a descriptor of overall

performance. In resource utilisation datasets, imbalanced

classes are commonplace, so accuracy is not necessarily

a good indicator. Precision is defined as the number of

true positives divided by the sum of true positives and

false positives, which helps to minimise false alarms.

Recall (sensitivity), on the other hand, quantifies the

precision of positive classification by determining the

fraction of correctly identified adverse cases, which is

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

60

important for high-utilisation or failure-prone cases. That

is where the F1-score, the harmonic mean of precision

and recall, come into play, where a distinct balance is

necessary between false positives and false negatives,

which serve as a powerful metric in dynamic cloud-based

big data environments.

Figure 5. Makespan vs resource utilisation under different scenarios

The proposed algorithms show a high performance in the

energy prediction per resource under several online and

offline failure situations. Now, we get the most accurate

model, k-NN at 97.30%, followed by the random forest at

95.10%. K-NN is relatively successful as it can detect

complex patterns and associations in the dataset by

evaluating the closeness of examples in the feature space.

The degree of sample closeness in this approach is an

effective way of presenting how the k-NN structure

succeeds in defining nuanced relations. In contrast, it

operates using an ensemble of decision trees, merging

predictions of the multiple trees to form a comprehensive

insight into feature-target connections. Although the

accuracy is the same, both these models manage to learn

muscle patterns relevant enough to be captured in the

prediction, making them appropriate candidates for

dependency to ensure the success of our predictive

framework. Generally, accuracy is not always the

appropriate metric to assess a model’s performance,

especially when the classes are unbalanced. Metrics like

accuracy, recall, or F1 score, which offer a more complex

understanding of a model’s performance, are better suited

to these circumstances. Hence, the reviewed dataset is

probably properly balanced if the F1 score, recall, and

accuracy are equal.

Our ML-based model provides a 97.3% accuracy rate and

does much better than baseline approaches. Incorporating

fault injection modules renders the model more resilient,

automatically adapting to maintain a high prediction

performance level in dynamic workload fluctuations. Our

results show the effectiveness of our approach in a real

cloud-based big data environment, efficiently handling

resource fluctuations, and maintaining high prediction

performance across different execution scenarios.

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

61

Figure 6 Comparison of performance evaluation metrics for ML algorithms.

5. RELATED WORK

In recent years, researchers have extensively studied

resource utilisation prediction for cloud-based big data

systems with different aspects, aims, and applications.

5.1. Resource Utilisation Prediction in Cloud

Computing

Several recent works have engaged ML models to predict

resource utilisation in cloud computing systems.

Mehmood et al. developed a hybrid resource utilisation

prediction model based on KNN and Decision Trees,

resulting in better accuracy for workload prediction [32].

However, this model does not cater to fast-evolving

cloud scenarios. Al-Asaly et al. developed a deep

learning-based model for autonomic cloud computing

environments, intentionally aiming to predict workload.

Although their model outperformed traditional

approaches, it is not based on real-time system monitoring

and, therefore, was not as effective in dynamic cloud-

based big data systems [33]. RL algorithms have recently

been proposed to better provision cloud resources. For

instance, Nguyen et al. developed an RL-based model for

decentralised IoMT (Internet of Medical Things)

networks that outperforms alternative solutions regarding

resource allocation efficiency and reduced latency [38].

Gao et al. introduced a dynamic simulation budget

allocation method, and an optimal computing budget

allocation (OCBA) strategy was proposed to maximise

resource utilisation efficiency [35]; however, this method

is designed for passing in cloud environments.

5.2. Fault-Tolerant Resource Management in Big Data

Systems

In recent years, fault-tolerant cloud computing strategies

have gained much attention in the literature. Rahmanian

et al. proposed an ensemble-based resource utilisation

prediction model using Learning Automata, which uses

the Single and Multiple Window concepts to train a

resource utilisation prediction model. Nonetheless, this

technique does not provide a real-time adjustment, as it is

not accompanied by any live system observant [34].

Khan et al. surveyed blockchain-based edge computing

frameworks, which can be applied in IoT applications,

pointing out the benefits of using blockchain, including

security protection and decentralised resource

management [36]. Akbari Zarkesh et al. proposed

EdgeLinker, a blockchain-based security mechanism

designed for healthcare fog applications to ensure secure

data transmission in distributed edge computing networks

[39]. Byzantine Fault Tolerance (BFT) techniques have

also been employed to maintain reliability in cloud

environments. This also addresses the problem of having

faulty nodes in a system using these methods, which is

common for consensus in blockchain networks [40].

5.3. How Our Model Differs from Prior Work

Our enhanced model, however, is based on an automated

structured analysis log data preprocessing pipeline that

processes logs in real-time, automating feature extraction

and transformation activities before ML model input,

allowing for strong input into these models. The second

branch is inspired by the characteristics of real-world

errors, which are often omitted in prior studies, and we

present four fault injection modules (CPU, memory,

network, and data locality faults) to assess the system's

performance under real-world errors. While most

previous work tends to consider only CPU or memory

prediction separately, we build a model that can predict

multiple usages under changing workloads. Our model

outperforms existing methods, achieving up to 97.3%

prediction accuracy using hyperparameter-optimised

fine-tuned ML algorithms. To clarify these comparisons,

we summarise our model and related works in Table 2

below:

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

62

Table 2. Comparison of Related Studies

Study Resource Type
Fault

Tolerance

Real-Time

Adaptability
Method Used Accuracy (%)

[32] CPU & Memory No Moderate KNN & Decision Tree 91.5

[33] CPU, Memory No No
Deep Learning-Based

Workload Forecasting
95.4

[34]

CPU & Memory No No Learning Automata 93.0

[36] Edge/IoT Yes Moderate
Blockchain-Based Secure

Resource Management
N/A

[39]
Edge Computing &

Healthcare
Yes Yes

Blockchain-Based Secure

Communication
N/A

Our Proposed

Model

CPU, Memory, Network, Data

Locality
Yes Yes

ML-Based Prediction & Fault

Injection
97.3

6. CONCLUSION

Effective resource utilisation is the most critical aspect of

processing large amounts of data in an acceptable amount

of time. Inefficient resource utilisation is a common

problem in cloud-based big data systems due to system

heterogeneity, complexity, and unexpected errors, making

it challenging to predict resource utilisation for provision

resources. This article proposes an automated log data

preprocessing-based online resource usage forecasting

model using ML algorithms for big data systems. The

experiments conducted under different fault scenarios

show that our system predicts resource utilisation with a

high accuracy rate and can identify the bottlenecks that

lead to ineffective resource utilisation in big data systems.

The prediction of resource utilisation plays a crucial role

in big data systems regarding time and cost management

and provides the necessary provision of resources in case

of need. Our system can help predict resource utilisation

to embrace this matter for big data systems.

Acknowledgement

The author would like to express their sincere gratitude to

South Tees Hospitals NHS Foundation Trust (United

Kingdom) for their valuable support in providing access

to anonymised healthcare data, which significantly

contributed to the development of this study.

REFERENCES

[1] Koppad S, Gkoutos GV, Acharjee A. Cloud

computing enabled big multi-omics data analytics.

Bioinform Biol Insights. 2021;15.

[2] Wu PY, Cheng CW, Kaddi CD, Venugopalan J,

Hoffman R, Wang MD. –omic and electronic health

record big data analytics for precision medicine.

IEEE Trans Biomed Eng. 2016;64(2):263–73.

[3] Kumar J, Singh AK. Workload prediction in cloud

using artificial neural network and adaptive

differential evolution. Future Gener Comput Syst.

2018;81:41–52.

[4] Gui B, Wei X, Shen Q, Qi J, Guo L. Financial time

series forecasting using support vector machine. In:

2014 Tenth International Conference on

Computational Intelligence and Security. IEEE;

2014. p. 39–43.

[5] Kim KJ, Han I. Genetic algorithms approach to

feature discretization in artificial neural networks for

the prediction of stock price index. Expert Syst Appl.

2000;19(2):125–32.

[6] Ullrich M, Lässig J. Current challenges and

approaches for resource demand estimation in the

cloud. In: 2013 International Conference on Cloud

Computing and Big Data. IEEE; 2013. p. 387–94.

[7] Alwasel K, Calheiros RN, Garg S, Buyya R, Pathan

M, Georgakopoulos D, et al. Bigdatasdnsim: A

simulator for analyzing big data applications in

software-defined cloud data centers. Softw Pract

Exp. 2021;51(5):893–920.

[8] Jung J, Kim H. Mr-cloudsim: Designing and

implementing mapreduce computing model on

cloudsim. In: 2012 International Conference on ICT

Convergence (ICTC). IEEE; 2012. p. 504–9.

[9] Calcaterra C, Carmenini A, Marotta A, Bucci U,

Cassioli D. Maxhadoop: an efficient scalable

emulation tool to test sdn protocols in emulated

hadoop environments. J Netw Syst Manage.

2020;28(4):1610–38.

[10] Datadog [Internet]. New York: Datadog Inc.; [cited

2020 Jul 13]. Available from:

https://www.datadoghq.com/

[11] Apache Chukwa [Internet]. [cited 2020 Jul 14].

Available from: https://chukwa.apache.org/

[12] Demirbaga U, Wen Z, Noor A, Mitra K, Alwasel K,

Garg S, et al. Autodiagn: An automated real-time

diagnosis framework for big data systems. IEEE

Trans Comput. 2021;71(5):1035–48.

[13] Zhao K, Li S, Kang Z. Takagi-sugeno fuzzy

modeling and control of nonlinear system with

adaptive clustering algorithms. In: 2018 10th

International Conference on Modelling,

Identification and Control (ICMIC). IEEE; 2018. p.

1–6.

[14] Er MJ, Deng C. Obstacle avoidance of a mobile

robot using hybrid learning approach. IEEE Trans

Ind Electron. 2005;52(3):898–905.

[15] Al-Asaly MS, Bencherif MA, Alsanad A, Hassan

MM. A deep learning-based resource usage

prediction model for resource provisioning in an

autonomic cloud computing environment. Neural

Comput Appl. 2021;1–18.

[16] Royal College of Physicians. National early warning

score (NEWS): standardising the assessment of

acute-illness severity in the NHS. London: Report of

working party; 2012.

[17] Ross M, Wei W, Ohno-Machado L. “Big data” and

the electronic health record. Yearb Med Inform.

2014;23(1):97–104.

Tr. J. Nature Sci. Volume 14, Issue 2, Page 52-63, 2025

63

[18] Li S, Kang L, Zhao XM, et al. A survey on

evolutionary algorithm based hybrid intelligence in

bioinformatics. Biomed Res Int. 2014;2014:1–12.

[19] World Health Organization. Partnering for health

early warning systems [Internet]. [cited 2025 Jun

21]. Available from: https://public-

old.wmo.int/en/bulletin/partnering-health-early-

warning-systems

[20] McGinley A, Pearse RM. A national early warning

score for acutely ill patients: A new standard should

help identify patients in need of critical care. BMJ.

2012;345(7869):9–9.

[21] Aujla GS, Jindal A. A decoupled blockchain

approach for edge-envisioned IoT-based healthcare

monitoring. IEEE J Sel Areas Commun.

2021;39(2):491–9.

[22] Mehta N, Pandit A. Concurrence of big data

analytics and healthcare: A systematic review. Int J

Med Inform. 2018;114:57–65.

[23] Dean J, Ghemawat S. Mapreduce: simplified data

processing on large clusters. Commun ACM.

2008;51(1):107–13.

[24] Sun X, Ansari N, Wang R. Optimizing resource

utilization of a data center. IEEE Commun Surv

Tutor. 2016;18(4):2822–46.

[25] Ikhlasse H, Benjamin D, Vincent C, Hicham M.

Multimodal cloud resources utilization forecasting

using a bidirectional gated recurrent unit predictor

based on a power efficient stacked denoising

autoencoders. Alex Eng J. 2022;61(12):11565–77.

[26] Meng Y, Rao R, Zhang X, Hong P. Crupa: A

container resource utilization prediction algorithm

for autoscaling based on time series analysis. In:

2016 International Conference on Progress in

Informatics and Computing (PIC). IEEE; 2016. p.

468–72.

[27] Margara A, Urbani J, Van Harmelen F, Bal H.

Streaming the web: Reasoning over dynamic data. J

Web Semant. 2014;25:24–44.

[28] Hameed A, Khoshkbarforoushha A, Ranjan R,

Jayaraman PP, Kolodziej J, Balaji P, et al. A survey

and taxonomy on energy efficient resource

allocation techniques for cloud computing systems.

Comput. 2016;98:751–74.

[29] Armstrong B, Eigenmann R. Performance

forecasting: Towards a methodology for

characterizing large computational applications. In:

Proceedings of 1998 International Conference on

Parallel Processing (Cat. No. 98EX205). IEEE;

1998. p. 518–25.

[30] Benaim M, Le Boudec JY. A class of mean field

interaction models for computer and communication

systems. Perform Eval. 2008;65(11–12):823–38.

[31] Demirbaga U, Noor A, Wen Z, James P, Mitra K,

Ranjan R. Smartmonit: Real-time big data

monitoring system. In: 2019 38th Symposium on

Reliable Distributed Systems (SRDS). IEEE; 2019.

p. 357–72.

[32] Mehmood T, Latif S, Malik S. Prediction of cloud

computing resource utilization. In: 2018 15th

International Conference on Smart Cities:

Improving Quality of Life Using ICT & IoT

(HONET-ICT). IEEE; 2018. p. 38–42.

[33] Al-Asaly MS, Bencherif MA, Alsanad A, Hassan

MM. A deep learning-based resource usage

prediction model for resource provisioning in an

autonomic cloud computing environment. Neural

Comput Appl. 2021;1–18.

[34] Rahmanian AA, Ghobaei-Arani M, Tofighy S. A

learning automata-based ensemble resource usage

prediction algorithm for cloud computing

environment. Future Gener Comput Syst.

2018;79:54–71.

[35] Gao S, Xiao H, Zhou E, Chen W. Robust ranking

and selection with optimal computing budget

allocation. Automatica. 2017;81:30–6.

[36] Khan MA, Jan MA, He X. Blockchain-based edge

computing frameworks for IoT applications: A

comprehensive survey. IEEE Internet Things J.

2021;8(1):22–39.

[37] Aujla M, Jindal R. Blockchain-based healthcare

monitoring for edge computing environments:

Performance evaluation and analysis. IEEE Trans

Ind Inform. 2020;16(3):2204–13.

[38] Nguyen DC, Pathirana PN, Ding M, Seneviratne A.

BEdgeHealth: A decentralized architecture for edge-

based IoMT networks using blockchain. arXiv.

2021;arXiv:2109.14295.

[39] Akbari Zarkesh M, Dastani E, Safaei B, Movaghar

A. EdgeLinker: Practical blockchain-based

framework for healthcare fog applications to

enhance security in edge-IoT data communications.

arXiv. 2024;arXiv:2408.15838.

[40] Cheikhrouhou O, Mershad K, Jamil F, Mahmud R,

Koubaa A, Moosavi SR. A lightweight blockchain

and fog-enabled secure remote patient monitoring

system. arXiv. 2023;arXiv:2301.03551.

