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Abstract 

In this study, a noninteger-order proportional–integral–derivative (NIOPID) controller was used for controlling 

the speed of the direct current (DC) motor. The controller parameters have optimally been adjusted using the 

GWOJOS algorithm formed by combining the Grey Wolf Optimization (GWO) algorithm and the recently defined 

the Joint Opposite Selection (JOS) feature. The JOS brings a mutual reinforcement by a joint of the two opposition 

strategies Dynamic Opposite (DO) and Selective Leading Opposition (SLO). The DO and SLO improve the 

balance of exploration and exploitation, respectively, in a given search space. During the optimization phase, JOS 

helps GWO attack the target quickly by employing SLO. DO help GWO find more opportunities to find the most 

suitable prey. The GWO is able to improve its performance with JOS. This combination helps accelerating the 

convergence rate of GWO. We assessed GWOJOS's performance using the benchmark functions from the IEEE 

Congress on Evolutionary Computation 2017 (CEC2017). The benchmark covers composition, hybrid, 

multimodal, and unimodal functions. The NIOPID-based speed control system for DC-motor using the GWOJOS 

algorithm has been designed using a time domain objective function that takes into account the performance 

criteria (maximum overshoot, steady-state error, rising time, and settling time). Some analyses, including 

robustness, time and frequency domain simulations, have been used to evaluate the performance of the proposed 

novel approach. The evaluation results have shown that the performance of GWOJOS was better than the 

performance of GWO, Slime Mould Algorithm (SMA), Atom Search Optimization (ASO), Simulated Annealing 

(SA) and the hybrid optimization algorithm created by opposition-based learning (OBL) strategy of SA and SMA 

algorithms (OBLSMASA). 

Anahtar Kelimeler: NIOPID, DC Motor, GWO JOS, Metaheuristic Optimization 

Geliştirilmiş Gri Kurt Optimizasyon Algoritmasına Dayalı Kesirli 

Mertebeden Oransal İntegral Türevsel PID Denetleyici Tasarımı 

Öz 

Bu çalışmada, doğru akım (DC) motorunun hızını kontrol etmek için tam sayı olmayan mertebeden oransal-

integral-türevsel (NIOPID) kontrolör kullanılmıştır. Kontrolör parametreleri, GWO algoritması ve yeni 

tanımlanan JOS özelliğinin birleşiminden oluşan GWOJOS algoritması kullanılarak optimum şekilde 

ayarlanmıştır.  JOS, Dinamik Karşıtlık (DO) ve Seçici Lider Karşıtlık (SLO) olmak üzere iki karşıtlık stratejisinin 

bir araya getirilmesiyle karşılıklı bir güçlendirme sağlar. DO ve SLO, belirli bir arama uzayında sırasıyla keşif ve 

sömürü dengesini iyileştirir. Optimizasyon aşamasında JOS, SLO'yu kullanarak GWO'nun hedefe hızlı bir şekilde 

saldırmasına yardımcı olur. DO, GWO'nun en uygun avı bulmak için daha fazla fırsat bulmasına yardımcı olur. 

GWO, JOS ile performansını artırabilmektedir. Bu birleşim, GWO'nun yakınsama oranını hızlandırmaya yardımcı 

olur. GWOJOS'un performansını CEC2017'deki kıyaslama fonksiyonlarını kullanarak değerlendirdik. Kıyaslama 

bileşim, hibrit, multimodal ve unimodal fonksiyonları kapsamaktadır. GWOJOS algoritmasını kullanan DC-motor 

için NIOPID tabanlı hız kontrol sistemi, performans kriterlerini (maksimum aşım, kararlı durum hatası, yükselme 

süresi ve yerleşme süresi) dikkate alan bir zaman alanı amaç fonksiyonu kullanılarak tasarlanmıştır. Önerilen yeni 

yaklaşımın performansını değerlendirmek için sağlamlık, zaman ve frekans alanı simülasyonları dahil olmak üzere 

bazı analizler kullanılmıştır. Değerlendirme sonuçları GWOJOS'un performansının GWO, SMA, ASO, SA ve 

OBLSMASA algoritmaların performansından daha iyi olduğunu göstermiştir.  
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1. Introduction 

Optimization is not only a collection of techniques 

and tools or a way of thinking; it is also a 

fundamental requirement in the industry (Xu et 

al., 2021; Zhao et al., 2021, Zhang et al., 2022), 

and it falls under a large category of methods such 

as fuzzy logic optimization (Chen et al., 2019), 

robust optimization (Qu et al., 2021), multi-

branch learning methods (He et al., 2020), 

multiobjective optimization ( Cao et al, 2022,  Lin 

et al., 2022), large-scale tasks (Liu et al., 2021), 

constraint optimization, multi-dimensional 

optimizer (Meng et al., 2018), Wang et al., 2021). 

Large-Scale Tasks grow in complexity and 

dimensionality, specialized optimization methods 

are necessary and constraint optimization ensures 

feasible solutions while optimizing the objective 

functions. Memetic methods combine global 

search (e.g., genetic algorithms) with local search 

(e.g., gradient-based methods). Over the last few 

decades, numerous deterministic approaches have 

been created and developed to solve optimization 

problems However, deterministic models require 

knowledge of the properties of the optimization 

problem and the gradient information (Meng et 

al., 2019, Gursoy and Gunnec, 2018). The 

simplicity of metaheuristic optimization 

algorithms, reaching absolute optimum, 

applicability and derivative-free have made them 

significantly widespread. The sources of 

inspiration for swarm intelligence techniques are 

mostly natural colonies, flocks, herds, and 

schools. In this field, some popular MOAs include 

Evolutionary Programming (EP) (Sebald and 

Fogel, 1994), Genetic Algorithms (GA) (Holland, 

1992), Ant Colony Optimization (ACO) (Dorigo 

and Socha, 2007), Evolutionary Strategy (ES) 

(Alavi and Henderson, 1981), Differential 

Evolution (DE) (Lampinen and Storn, 2004), 

GWO (Mirjalili et al., 2014), and Particle Swarm 

Optimization (PSO) (Kennedy and Eberhat, 

1995). 

Drives that convert electrical energy into 

mechanical energy are called DC motors. DC 

motors are extensively employed as the primary 

drive in a wide range of industrial applications 

because of their comparatively low cost, excellent 

durability, and simple controllability (Ali, 2015, 

Rodriguez-Molina et al., 2017, Potnuru et al., 

2019). Meta-heuristic algorithms have been 

employed in studies pertaining to the speed 

control of DC motors. Conventional controllers, 

such as linear proportional-integral (PI) and 

proportional–integral–derivative (PID) 

controllers, have been extensively employed in 

the literature to regulate DC motors (Griffin, 

2003). NIOPID control is a non-conventional 

control method used in this study to operate the 

DC motor. The use of non-integer calculus to 

control theory has been explained in numerous 

studies (Podlubny, 1999, Petras, 1999), and its 

benefits have also been demonstrated. The 

traditional PID controller, which is based on non-

integer calculus, has been expanded into the 

NIOPID controller.  To achieve the desired 

controller, it is necessary to employ a highly 

effective tuning method in place of time-

consuming, low-performing classical tuning 

methods (Çelik and Öztürk, 2018).  

In this study, our aim is to enhance the GWO 

algorithm by using Joint Opposite Selection (JOS) 

(Arini et al., 2022b) strategy for finding the right 

balance between two stages exploration and 

exploitation. As shown in Table 1, the superiority 

of the improved GWO (GWOJOS) has been 

demonstrated using the benchmark CEC2017 

(Awad et al., 2016) functions. This superiority has 

been proven by statistical analysis. Furthermore, 

it has been demonstrated that the NIOPID 

parameters are effectively tuned for DC speed 

control using the GWOJOS algorithm 

2. Overview of the Gray Wolf Algorithm 

(GWO) 

The Grey Wolf (Canis lupus) is a member of the 

Canidae family. Grey wolves are regarded as apex 

predators at the top of the food chain. Figure 1 

illustrates their rigid social hierarchy, which is 

very intriguing. The pack is subject to the alpha's 

judgments. However, there has also been evidence 

of a democratic tendency when an alpha wolf 

follows the other wolves in the pack (Mirjalili et 

al., 2014),  
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Figure 1. Social hierarchy of the Gray Wolves 

The social hierarchy and group hunting of Grey 

Wolves are other interesting social behaviors, 

shown in Figure 2. The phases of gray wolf 

hunting are (Mirjalili et al., 2014):  

i)  Tracking, pursuing, and getting close 

to the prey, 

ii) chasing, encircling, and intimidating 

the victim until it gives up, 

iii) Assault the target. 

Figure 2. The behavioral phases of the gray wolf in its natural life are shown as three main phases. 

Phase 1, searching for prey; Phase 2, attacking prey and Phase 3, catching prey. 

To design the social hierarchy of Gray Wolves 

and perform optimization, the mathematical 

model was established as follows: 

Encircling prey: �⃗� = |�⃗⃗� 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| ,  𝑋 (𝑡 +

1) = 𝑋 𝑝(𝑡) − 𝐴 �⃗� ,   𝑡 = current iteration ,  

�⃗⃗�  𝑎𝑛𝑑 𝐴 , coefficient vectors   𝑋 𝑝 =

the position of prey , and 𝑋 =

Possition of predator. Also, it calculated as  𝐴 =

2𝑎 𝑟 1 − 𝑎   𝑎𝑛𝑑 �⃗⃗� = 2𝑟 2  such that 𝑎 ∈ [0,2] is 

linearly decreasing, 𝑟 1, 𝑟 2 ∈ [0,1]  are random 

vectors. 

Hunting: Gray wolves have the ability to 

recognize the location of prey and surround them. 

The prey is usually guided by the alpha. Beta and 

delta may also occasionally participate in hunting. 

However, nothing can be determined about the 

location of the prey in a search space. It is 

assumed that alpha, beta, and delta wolves possess 

superior knowledge regarding the possible 

location of prey to statistically describe the 

hunting behavior of wolves. This saves the top 

three best solutions obtained so far and forces 

other search agents to update their positions based 

on the position of their best search agent. These 

narratives are formulated as follows: 

�⃗� 𝛼 = |�⃗⃗� 1𝑋 𝛼(𝑡) − 𝑋 (𝑡)|,  �⃗� 𝛽 = |�⃗⃗� 2𝑋 𝛽(𝑡) −

𝑋 (𝑡)|, 𝑎𝑛𝑑 �⃗� 𝛿 = |�⃗⃗� 3𝑋 𝛿(𝑡) − 𝑋 (𝑡)|, 

and 

𝑋 1(𝑡) = 𝑋 𝛼(𝑡) − 𝐴 1,    𝑋 2(𝑡) = 𝑋 𝛽(𝑡) −

𝐴 2, 𝑎𝑛𝑑 𝑋 3(𝑡) = 𝑋 𝛿(𝑡) − 𝐴 3. 

Thus, it was obtained 

𝑋 (𝑡 + 1) =
𝑋 1(𝑡) + 𝑋 2(𝑡) + 𝑋 3(𝑡)

3
.  

Attacking prey (exploitation): Gray wolves 

complete the hunt by attacking when the prey 

remains motionless, that is, when the prey's 

energy is exhausted, as shown in Figure 3. |𝐴|  <

 1 is forcing the wolves to attack the prey.  

The flow chart of the Gray Wolf's hunting strategy 

is given in Figure 4. As can be seen from this flow 

chart, the three main search positions used by gray 

wolves are alpha, beta, and delta. They split up to 

look for prey, then come together and attack it. 

When |A| >1, gray wolves are forced to leave their 

packs to find better prey. 

Search for prey (exploration): The three main 

search positions used by gray wolves are alpha, 

beta, and delta. They split up to look for prey, then 
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come together and attack it. When |𝐴| > 1, gray 

wolves are forced to leave their packs to find 

better prey (Mirjalili et al., 2014). 

 

Figure 3. The evolution of a prey's absolute 

escape energy ran for 1000 iterations around. 

 

Figure 4. Flow Chart of GWO 

In addition to the advantages of the Gray Wolf 

Optimization Algorithm such as simple 

applicability, high exploration capacity and 

flexible parameter settings, it also has 

disadvantages such as slow convergence, 

parameter sensitivity and local optimum 

problems. Therefore, the advantages and 

disadvantages of the algorithm should be taken 

into account depending on the problem and the 

requirements to be applied. Thus, an extra feature 

added to GWO can correct the disadvantages of 

GWO's hunting strategy and turn it into an 

advantage.  

In order to improve metaheuristic optimization 

algorithms, many techniques have been proposed. 

The use of OBL, chaos, hybridization and so on 

are some of these techniques. One of the most 

popular and effective techniques is OBL 

(Tizhoosh, 2005). In the last few years, OBL 

algorithms have attracted the interest of a large 

number of computer scientists. Many of the well-

known ones like GWO, GSA, SA, GA, PSO, 

ACO, ABC, DE, etc. Were improved using OBL. 

Opposite Centre Learning (OCL) was established 

by Liu et al. (2014), which defines the opposite 

point as the optimal solution among pairwise 

samples of the search space given a random 

starting point. Population-based search algorithms 

converge faster using this method. Rahnamayan et 

al. (2014) have proposed an OTDS (Oppositional 

Target-Domain Estimation) by dividing the 

search space into grids, which speeds up the 

estimation of the target domain. However, if the 

solution is close to a grid boundary, the 

computational complexity increases. There are 

few papers where researchers have used OBL in 

addition to GWO, according to a review of the 

literature. A simplex-based opposition is 

performed on all wolves in Elite Opposition-

based Learning (EOGWO) (Zhang et al., 2017). 

The wolves are divided into two subgroups and 

the best wolves in one subgroup replace the worst 

wolves in the other subgroup in the Improved 

Grey Wolf Optimizer (IGWO) (Nasrabadi et al., 

2016). In the two parts, one part is partially 
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counterbalanced (in one dimension), and the 

remaining part is opposed in all the dimensions. 

With each iteration, the number of completely 

opposing wolves decreases. Pradhan et al. (2017) 

have combined GWO and OBL named 

Oppositional Grey Wolf Optimization (OGWO) 

algorithm for solving the optimal operating 

strategy of the Economic Load Dispatch (ELD) 

problem. The algorithm combines two 

fundamental approaches: the hunting behavior 

and social hierarchy and the accelerate to 

convergence rate of the traditional GWO 

algorithm (mahdavi et al., 2018). Dhargupta et al. 

(2020) have combined OBL with GWO 

(SOGWO) to enhance its exploratory behavior 

while maintaining a fast convergence rate. 

2.1. Joint Opposite Selection (JOS) 

Selective Leading Opposition and Dynamic 

Opposite are two opposition learning methods 

that are combined to create the Joint Opposite 

Selection operator. In a particular search space, 

the DO and SLO enhance the balance of 

exploration to exploitation, respectively. SLO 

calculates the search agents' close distance 

dimension using a threshold value that decreases 

linearly. DO gives search agents opportunities to 

develop their capabilities in the search domain 

(Xu et al., 2014). Dynamic opposite consists of 

the combination of two different opposites: 

Quasi-opposite and reflection-opposite. 

Definition 1. (Dhargupta et al., 2020) Let 𝑥 ∈
[𝑎, 𝑏] be a real number. The opposite number of 

𝑥  (𝑥) is defined as follows: 

𝑥 = 𝑎 + 𝑏 − 𝑥. 

Definition 2. (Xu et al., 2005) Let 𝑥 ∈ [𝑎, 𝑏] be a 

real number. The quasi-opposite point of 𝑥  (𝑥𝑞) 

is defined as follows: 

𝑥𝑞 = 𝑟𝑎𝑛𝑑(𝑚, 𝑥 ). 

Where 𝑚 =
𝑎+𝑏

2
 , and  𝑟𝑎𝑛𝑑(𝑚, 𝑥 ) is a random 

number uniformly distributed between 𝑚 𝑎𝑛𝑑 𝑥 . 

Definition 3. (Xu et al., 2014) Let 𝑥 ∈ [𝑎, 𝑏] be a 

real number. The quasi-opposite point of 𝑥  (𝑥𝑟) 

is defined as follows: 

𝑥𝑟 = 𝑟𝑎𝑛𝑑(𝑚, 𝑥 ). 

Where 𝑚 =
𝑎+𝑏

2
 , and  𝑟𝑎𝑛𝑑(𝑚, 𝑥) is a random 

number uniformly distributed between 𝑚 𝑎𝑛𝑑 𝑥 .  

Definition 4. (Xu et al., 2014) Let 

𝑃(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)  be a point such that 

𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 ∈ ℝ  and 𝑥𝑖 ∈ [𝑎𝑖 , 𝑏𝑖] . The 

opposite point of 𝑃  (�̂�) is defined as follows: 

𝑥𝑖 = 𝑎𝑖 + 𝑏𝑖 − 𝑥𝑖. 

Algorithm 1: Pseudocode of Selective Opposition 

(SO) (Dhargupta et al., 2020) 

Input: initial generation t, maximum generation T, 

population size N, dimension d 

Output: X̅dc ∶ new position based on selective 

opposition 

Threshold: 2 × (1 −
t

T
) 

for  i = 1:N 

if  Xi ≠ Xibest 

for j = 1: d 

        ddj = |Xibest,j − X|   {ddj =  difference 

distance for each dimension} 

if  ddj > threshold 

Identify the close distance dimensions   df 

Count the number of close distance dimensions  

 df 

else 

Identify the faraway distance dimensions    dc 

Count the number of far distance dimensions  

(dc) 

end 

end 

sum all ddj 

  src = 1 −
6∗∑ (ddj)

2
j=1

ddj∗(ddj
2−1)

2,   {src=Spearman’s 

Rank Correlation Coefficient} 

if src <= 0    and   df > dc 

Perform   X̅df
= Lbdf

+ Ubdf
− Xdf
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end 

end 

end 

SLO is an expansion of the SO idea embedded in 

GWO. Processes embedded in the GWO indicate 

the positions of search agents based on 

competence (optimal value) classified according 

to their social hierarchy. This strategy is to 

produce a faster convergence rate. However, its 

fast convergence rate can quickly lead to getting 

stuck in the local optimum, causing its 

performance to be unstable. 

Algorithm 2: Pseudocode of SLO (Dhargupta et 

al., 2020) 

Input: initial generation t, maximum generation T, 

population size N, dimension d 

Output: X̅dc ∶ new position based on selective 

opposition 

Threshold ∶  2 × (1 −
t

T
) 

for  i = 1:N 

if  Xi ≠ Xibest 

for j = 1: d 

        ddj = |Xibest,j − X|   { ddj = difference 

distance for each dimension} 

if  ddj < threshold 

Identify    dc (the close distance dimensions ) 

Count the number of  dc (dc = dc + 1) 

else 

Identify df  (the faraway distance dimensions ) 

Count the number df  (df = df + 1) 

end 

end 

sum all ddj 

  src = 1 −
6∗∑ (ddj)

2
j=1

ddj∗(ddj
2−1)

2,   {src=Spearman’s 

Rank Correlation Coefficient} 

if src <= 0    and   dc > df 

perform  X̅dc
= Lbdc

+ Ubdc
− Xdc

 

end 

end 

end 

 

 

Figure 5.  Hierarchical Development of Joint Opposite Selection 

Algorithm 3: Pseudo Code of DO (Xu et al., 2014)   Input: Jumping rate 𝐽𝑟 , Population size 𝑁  and 

Position 𝑋 
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Output:  

Stage 1: Population Initialization 

Initialize position X  

DOBL = Lb + Ub − X (DOBL is the OBL strategy) 

DROP = rand × DROP   ( DROP is the reflection 

opposition position ) 

DDO = X + rand × (DDO − X)    ( DDO is the 

dynamic opposite) 

DDO → X 

Stage 2: Population Generation utilizes the 

Jumping rate Jr. 

while nFE < maxFE do 

if rand < Jr  

DOBL = Lb + Ub − X 

DROP = rand × DROP 

DDO = X + rand × (DDO − X) 

DDO → X 

end  

end 

Rahnamayan et al. (2008) pointed out that 

opposite numbers are more likely to produce a 

better result than normal random numbers. 

Supporting evidence for this theory from 

scientific studies (Al-Qunaieer et al., 2010, 

Mahdavi et al., 2018, Arini et al., 2022a) have also 

confirmed that the opposite strategy produces 

remarkable results. Rahnamayan et al. (2008), 

established the concept of quasi-opposition based 

learning, or QOBL. It uses a jumping rate and 

determines the midpoint of opposite points to 

increase the likelihood of being near the solution. 

Quasi-reflection was introduced by Ergezer et al. 

(2009) and improves the BBO success rate while 

requiring less fitness computation. Xu et al. 

(2020) suggested DO in order to enhance 

exploration skills and generate diversity through 

asymmetric search behavior by combining quasi-

opposition and quasi-reflection. In order to solve 

multi-task optimization problems, the mutation 

technique is combined with the dynamic opposite 

to provide mutual learning (Li et al., 2021). 

Gonzalez (2007), proved that the balance between 

exploration and exploitation in the search space 

must be maintained for basic optimization 

processes. Many researchers have stated that there 

is no definitive formula to define the balance of 

exploration and exploitation in the search space 

and no Nature-inspired optimization algorithm to 

calculate this balance (Črepinšek et al., 2013, 

Yang et al., 2014; Morales-Castaneda et al., 

2020). Additionally, Wolpert et al. (1997) pointed 

out that no algorithm can solve all optimization 

problems. Afterwards, Wang et al. (2019) also 

investigated whether two opposites are better than 

one.  

Accordingly, it has been associated that DO is a 

subpart of exploration, SLO is a subpart of 

exploitation, and DO is the opposite of SLO. 

According to Gonzalez (2007), the opposing acts 

of exploration and exploitation reinforce each 

other. Therefore, the combination of DO and SLO 

were established the balance of mutual 

strengthening and has been named JOS (Arini, 

2022a). 

2.2. The proposed GWOJOS 

The Matlab code of the GWOJOS algorithm has 

been shared on GitHub by Florentina. You can 

find it in reference (GitHub, 2024). The main 

GWOJOS is performed even though the number 

of functional evaluations (nFE) is less than the 

maximum functional evaluation (𝑚𝑎𝑥𝐹𝐸). After 

the wolves have checked their boundaries and 

evaluated their fitness, the JOS strategy is used. 

Each time the wolves evaluate their fitness, the 

number of functional evaluations is updated. The 

best value of the fitness of the wolves is the 

position of the prey. 
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Figure 6: Flow Chart of GWOJOS 

Experimental setup and experimental results: 

The experimental results include required 

comprehensive statistical analysis such as 

Wilcoxon and comparison assessment with other 

algorithms, globally.  

The experiments were exhibited to solve single-

objective real parameter numerical optimization 

of CEC 2017. The CECs are the preferable 

standard benchmark problem set on single-

objective real parameters and required a specific 

standard value of the parameters to run the 

experiment as follows: 

1. The population size (N) equals to 30 (N = 30).

Note: The population size is fixed. 2. On each 

experiment, the maximum number of runs 

(maxRun) is 30 runs. 3. We tested on 29 

benchmark functions of CEC 2017. It is noted that 

only the F2 function on CEC 2017 was deleted 

due to an unconfirmed result on the experiment. 

4. Each benchmark function was tested on four

numbers of variables (dimension = D): 10D, 30D, 

50D and 100D, but only shown for 30D. 5. The 

maximum number of function evaluations 

(maxFE) is set up based on 10,000 multiply by the 

dimensions of 10D, 30D, 50D, and 100D. 6. For 

each run, the maximum number of iteration is 

defined by dividing maxFE with N. 7. The 

searching space is in the range of [−100, 100]𝐷,

where the lower bound (lb) is -100, the upper 

bound (ub) is 100. 

It is essential to examine the divergence of the 

proposed GWO-JOS compared to its original 

GWO from the population diversity. If the 

population is highly diverse, it means the 

population has difficulty converging. However, if 

the population has low diversity, then premature 

convergence might occur. The proposed JOS 

embedded on GWO shows the proportional 

balance on the diversity to avoid those 

occurrences. 
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Table 1: CEC2017 competition on single objective real parameter numerical optimization 

Categories 
Number of 

Functions 
Functions 

Optima, 

𝑭𝒊
∗ 

Unimodal 

Functions 
𝑓1 Shifted and Rotated Bent Cigar Function 100 

𝑓3 Shifted and Rotated Zakhrov Function 300 

Simple 

Multimodal 

Functions 

𝑓4 Shifted and Rotated Rosenbrock’s Function 400 

𝑓5 Shifted and Rotated Rastrigin’s Function 500 

𝑓6 
Shifted and Rotated Expanded Scaffer’s 

F6 Function 
600 

𝑓7 Shifted and Rotated Lunacek Bi_Rastringin’s Function 700 

𝑓8 Shifted and Rotated Non-Continuous Rastringin’s Function 800 

𝑓9 Shifted and Rotated Levy Function 900 

𝑓10 Shifted and Rotated Schwefel’s Function 1000 

Hybrid Functions 

𝑓11 
Hybrid Function 1 (𝑁 =  3)  Zakhrov, Rosenbrock’s, 

Rastrigin’s 
1100 

𝑓12 
Hybrid Function 2 (𝑁 =  3)  High-Conditioned Elliptic, 

Modified Schwefel’s, Ben Cigar 
1200 

𝑓13 
Hybrid Function 3 (𝑁 =  3) Ben Cigar, 

Rosenbrock’s, Lunacek Bi_Rastringin’s 
1300 

𝑓14 
Hybrid Function 4 (𝑁 =  4)  High-Conditioned Elliptic, 

Ackley, Schaffer’s 𝐹7, Rastringin’s 
1400 

𝑓15 
Hybrid Function 5 (𝑁 =  4) Ben Cigar, HGBat, 

Rastringin’s, Rosenbrock’s 
1500 

𝑓16 
Hybrid Function 6 (𝑁 =  4)  Expanded Schaffer’s 𝐹6 , 

HGBat, Rosenbrock’s, Modified Schwefel’s 
1600 

𝑓17 
Hybrid Function 6  (𝑁 =  5) Katsuura, Ackley, Expanded 

Griewank’s plus,   Rosenbrock’s, Schwefel’s, Rastringin’s 
1700 

𝑓18 
Hybrid Function 6 (𝑁 =  5)  High-Conditioned Elliptic, 

Ackley, Rastringin’s, HGBat, Discus 
1800 

𝑓19 

Hybrid Function 6 (𝑁 =  5 ) Bent Cigar, Rastringin’s, 

Griewank’s plus Rosenbrock’s, Weierstrass, Expanded 

Schaffer’s 𝐹6 

1900 

𝑓20 
Hybrid Function 6 (𝑁 =  5) HappyCat, Katsuura, Ackley, 

Rastringin’s, Modified Schwefel’s, Schaffer 𝐹7 
2000 

Composition 

Functions 

𝑓21 
Composition Function 1 (𝑁 =  3)  Rosenbrock’s, High 

Conditioned Elliptic, Rastringin’s 
2100 

𝑓22 
Composition Function 1 (𝑁 =  3)  Rastringin’s, 

Griewank’s, Modified Schwefel’s 
2200 

𝑓23 
Composition Function 1 (𝑁 =  4)  Rosenbrock’s, Ackley, 

Modified Schwefel’s, Rastringin’s 
2300 

𝑓24 
Composition Function 2 (𝑁 =  4) Ackley, High-

Conditioned Elliptic, Griewank’s, Rastringin’s 
2400 

𝑓25 
Composition Function 3 (𝑁 =  5) Rastringin’s, HappyCat, 

Ackley Discus, Rosenbrock’s 
2500 

𝑓26 

Composition Function 4 (𝑁 =  5) Expanded Schaffer’s 𝐹6, 
Modified Schwefel’s, Griewank’s, Rosenbrock’s, 

Rastringin’s 

2600 

𝑓27 

Composition Function 5 (𝑁 =  6)  HGBat, Rastringin’s, 

Modified Schewel’s, Bent Cigar, High-Conditioned Elliptic, 

Expanded Schaffer’s 𝐹6 

2700 

𝑓28 
Composition Function 6 (𝑁 =  6)  Ackley, Griewank, 

Discus, Rosenbrock, HappyCat, Expanded Schaffer’s 𝐹6 
2800 

𝑓29 Composition Function 7 (𝑁 =  3) 𝐹15, 𝐹16, 𝐹17 2900 

𝑓30 Composition Function 8 (𝑁 =  3) 𝐹15, 𝐹18, 𝐹19 3000 
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Algorithm 4: Pseudocodes of GWOJOS 

Initialize N Gray Wolves Populations 

Initialize the parameters a, A, C, alpha, beta and 

delta wolves positions and  

Randomly initialize individual in DO (Algorithm 

3) population of size N 

Modify the Xα,β,δ to XDO 

Initialize  𝑛𝐹𝐸 = 0, 𝑡 = 0  and 𝑇 =  Maximum 

iteration 

While nFE < maxFE do 

for i = 1:N 

Return back the search agents that go beyond the 

boundaries of the search space 

Calculate objective function for each search agent  

Update nFE 

Update Xα,β,δ 

Updating boundary for opposition after every 

iteration 

 (Threshold for SLO) a = 2 × 1 −
t

T
) 

Continue the process by applying Algorithm 2 

(Selective Leading Opposite)  

Update the Position of search agents including 

omegas (ω) 

if rand <  Jr  

if  nFE + SearchAgents_no <  maxFE 

Perform Algorithm 3 (Dynamic Opposite 

)                         

Assign  XDO   to   Xwolf  

end  

end  

end 

The experiments were conducted considering the 

following points: 

1. To demonstrate the effectiveness of the 

GWOJOS algorithm, a comparison with GWO 

was made below using CEC2017. 

2. The candidacy of the Random Jump Strategy of 

the jump ratio in GWOJOS, Jr=0.25. 

3. It demonstrated the successful JOS behavior 

and exploration ability. 

4.  The statistical analysis of the Wilcoxon Signed 

Rank Test performance of GWOJOS compared to 

its competitors' algorithms was presented. 

3 Main Result 

3.1. Experimental Results of Benchmark 

CEC2017 

Table 2. Comparison of GWO and GWOJOS performance using CEC2017 Benchmark for 30 

dimensions. 

F Ist. Anl GWO GWOJOS F GWO GWOJOS F GWO GWOJOS 

F1 

Min 9.86E+07 8.17E+05 

F12 

5.80E+05 1.10E+06 

F22 

2.40E+03 2.30E+03 

Max 5.65E+09 3.05E+07 4.58E+08 4.82E+07 9.38E+03 2.35E+03 

Std 1.33E+09 7.66E+06 1.12E+08 1.11E+07 2.05E+03 9.74E+00 

Media 1.54E+09 1.03E+07 2.91E+07 1.09E+07 5.32E+03 2.32E+03 

Mean 1.97E+09 1.17E+07 7.06E+07 1.35E+07 5.00E+03 2.32E+03 

F3 

Min 1.38E+04 8.61E+02 

F13 

4.49E+04 1.89E+04 

F23 

2.70E+03 2.69E+03 

Max 5.24E+04 4.46E+03 4.34E+08 7.82E+05 2.89E+03 2.88E+03 

Std 1.03E+04 9.68E+02 1.03E+08 1.83E+05 3.54E+01 4.42E+01 

Media 3.03E+04 2.04E+03 7.58E+04 8.27E+04 2.75E+03 2.73E+03 
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Mean 3.01E+04 2.17E+03 3.49E+07 1.47E+05 2.76E+03 2.74E+03 

F4 

Min 5.00E+02 4.76E+02 

F14 

3.38E+03 2.49E+03 

F24 

2.86E+03 2.85E+03 

Max 8.10E+02 5.31E+02 5.02E+05 1.07E+05 3.05E+03 3.02E+03 

Std 7.21E+01 1.59E+01 1.71E+05 2.84E+04 3.44E+01 4.33E+01 

Media 5.78E+02 5.10E+02 5.56E+04 2.35E+04 2.93E+03 2.89E+03 

Mean 6.00E+02 5.09E+02 1.36E+05 3.07E+04 2.93E+03 2.90E+03 

F5 

Min 5.55E+02 5.37E+02 

F15 

1.08E+04 8.19E+03 

F25 

2.92E+03 2.88E+03 

Max 6.43E+02 6.52E+02 3.42E+06 5.13E+04 3.08E+03 2.96E+03 

Std 1.96E+01 2.06E+01 1.06E+06 1.03E+04 3.89E+01 2.05E+01 

Media 6.06E+02 5.76E+02 3.58E+04 2.21E+04 2.98E+03 2.91E+03 

Mean 6.05E+02 5.76E+02 4.80E+05 2.40E+04 2.99E+03 2.91E+03 

F6 

Min 6.02E+02 6.00E+02 

F16 

2.10E+03 1.82E+03 

F27 

3.26E+03 2.81E+03 

Max 6.21E+02 6.06E+02 2.98E+03 2.82E+03 5.72E+03 4.65E+03 

Std 4.00E+00 1.78E+00 2.39E+02 2.51E+02 4.51E+02 5.98E+02 

Media 6.08E+02 6.02E+02 2.51E+03 2.34E+03 4.72E+03 2.92E+03 

Mean 6.09E+02 6.02E+02 2.48E+03 2.29E+03 4.70E+03 3.20E+03 

F7 

Min 7.95E+02 7.66E+02 

F17 

1.79E+03 1.77E+03 

F27 

3.21E+03 3.20E+03 

Max 1.02E+03 9.72E+02 2.34E+03 2.43E+03 3.32E+03 3.25E+03 

Std 5.44E+01 6.28E+01 1.32E+02 1.45E+02 2.73E+01 1.23E+01 

Media 8.62E+02 8.00E+02 1.95E+03 1.90E+03 3.24E+03 3.23E+03 

Mean 8.78E+02 8.24E+02 1.97E+03 1.94E+03 3.25E+03 3.22E+03 

F8 

Min 8.53E+02 8.43E+02 

F18 

3.91E+04 3.41E+04 

F28 

3.27E+03 3.21E+03 

Max 9.61E+02 8.89E+02 9.84E+06 6.45E+05 4.02E+03 3.30E+03 

Std 2.28E+01 1.20E+01 1.76E+06 1.85E+05 1.34E+02 2.42E+01 

Media 8.96E+02 8.71E+02 4.48E+05 1.21E+05 3.40E+03 3.23E+03 

Mean 8.97E+02 8.69E+02 8.19E+05 1.96E+05 3.42E+03 3.24E+03 

F9 

Min 1.14E+03 9.11E+02 

F19 

7.96E+03 1.55E+04 

F29 

3.49E+03 3.46E+03 

Max 3.97E+03 4.30E+03 3.34E+06 2.46E+06 4.13E+03 3.95E+03 

Std 6.89E+02 6.56E+02 7.13E+05 5.52E+05 1.58E+02 1.18E+02 

Media 1.73E+03 1.01E+03 1.75E+05 3.12E+05 3.70E+03 3.59E+03 

Mean 1.90E+03 1.20E+03 4.76E+05 5.16E+05 3.73E+03 3.62E+03 

F10 

Min 3.01E+03 2.66E+03 

F20 

2.15E+03 2.17E+03 

F30 

4.33E+05 1.63E+05 

Max 5.94E+03 8.15E+03 2.55E+03 2.61E+03 4.09E+07 1.17E+07 

Std 6.23E+02 1.14E+03 1.16E+02 1.21E+02 9.70E+06 2.81E+06 

Media 4.18E+03 3.68E+03 2.35E+03 2.30E+03 4.87E+06 2.53E+06 

Mean 4.24E+03 3.88E+03 2.36E+03 2.33E+03 7.72E+06 3.35E+06 

F11 

Min 1.29E+03 1.15E+03 

F21 

2.36E+03 2.34E+03 

 

  

Max 4.23E+03 1.32E+03 2.44E+03 2.48E+03   

Std 8.26E+02 4.06E+01 1.93E+01 2.53E+01   

Media 1.62E+03 1.23E+03 2.39E+03 2.36E+03   

Mean 1.91E+03 1.23E+03 2.39E+03 2.36E+03   

The experimental results in the Table 2 show a 

comparison among the proposed algorithm 

(GWO-JOS) and GWOfor 30 dimension. The 

total functions exhibited in Table 3 are evaluated 

in 10, 30, 50 and 100 dimensions on 29 

benchmark functions of CEC 2017. The 

experiment concludes from the mean of 30 runs 

which were experimented successively according 

to each function. The sign (+) at the bottom of 

Table 3 indicates that the development of 

opposition is better than the original and this 

positive indication are also highlighted. The sign 

(-) denotes the value of objective function is 

slightly higher than the original GWO. 

The Wilcoxon signed-rank test was used to 

compare the performance of GWOJOS vs. GWO 
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across multiple benchmark functions (F1–F30) at 

different dimensional settings (10, 30, 50, and 

100). The test provides insight into whether the 

two algorithms have statistically significant 

performance differences. The following can be 

mentioned as key observations. 

 Statistically Significant Results (p < 0.05) 

→ GWOJOS is Better: In most cases, the 

p-value is below 0.05, indicating that the 

difference between the two algorithms is 

statistically significant.. The positive 

ranks (Rank +) are significantly higher 

than the negative ranks (Rank -) in these 

cases, favoring GWOJOS over GWO. 

This suggests that GWOJOS consistently 

outperforms GWO in optimizing the 

given benchmark functions. 

 No Significant Difference (p ≥ 0.05) → 

Similar Performance: Some test cases 

(e.g., F4, F5, F13, F16, F17, F19, and 

F20) show p-values greater than 0.05, 

meaning there is no statistically 

significant difference between GWOJOS 

and GWO. In these cases, both algorithms 

exhibit comparable performance, and the 

improvements by GWOJOS are not large 

enough to be considered statistically 

meaningful.  

 Rare Cases Where GWO Outperforms 

GWOJOS: F9 (50D, 100D) shows a 

negative winner, indicating that GWO 

outperforms GWOJOS in these specific 

settings. This suggests that for certain 

high-dimensional functions, GWO may 

still be a viable or even better option. 

GWOJOS is generally superior to GWO in terms 

of optimization performance, as it wins in most 

test cases. However, there are a few benchmark 

functions where GWO still performs comparably 

or better, especially in higher-dimensional 

settings. The Wilcoxon test results provide strong 

statistical evidence supporting the advantages of 

GWOJOS. 

Table 3: Scalability Analysis  

F 
 

GWOJOS vs.GWO 

Dim P-Value z-Value Rank (-) Rank (+) Statistically 

significant 

Winner 

F1 10 0.135908 -1.4912 305 160 0 (p≥0.05) = 

30 0.000002 -4.7821 465 0 1 (p < 0.05) + 

50 0.000002 -4.7821 465 0 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F3 10 0.000002 -4.7821 465 0 1 (p < 0.05) + 

30 0.000002 -4.7821 465 0 1 (p < 0.05) + 

50 0.000002 -4.7821 465 0 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F4 10 0.628843 -0.4834 256 209 0 (p≥0.05) = 

30 0.000004 -4.6176 457 8 1 (p < 0.05) + 

50 0.000002 -4.7821 465 0 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F5 10 0.530440 -0.6273 263 202 0 (p≥0.05) = 

30 0.000053 -4.0417 429 36 1 (p < 0.05) + 

50 0.000009 -4.4325 448 17 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F6 10 0.013194 -2.4785 253 112 1 (p < 0.05) + 

30 0.000004 -4.6382 458 7 1 (p < 0.05) + 

50 0.000002 -4.7410 463 2 1 (p < 0.05) + 

100 0.000005 -4.5765 455 10 1 (p < 0.05) + 

F7 10 0.001036 -3.2807 392 73 1 (p < 0.05) + 

30 0.001484 -3.1778 387 78 1 (p < 0.05) + 
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50 0.000009 -4.4325 448 17 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F8 10 0.097772 -1.6558 313 152 0 (p≥0.05) = 

30 0.000024 -4.2268 438 27 1 (p < 0.05) + 

50 0.000010 -4.4119 447 18 1 (p < 0.05) + 

100 0.000002 -4.7204 462 3 1 (p < 0.05) + 

F9 10 0.000003 -4.6587 459 6 1 (p < 0.05) + 

30 0.000148 -3.7949 417 48 1 (p < 0.05) + 

50 0.909931 0.1131 227 238 0 (p≥0.05) = 

100 0.000716 0.000716 68 397 0 (p≥0.05) - 

F10 10 0.042767 -2.0260 331 134 1 (p < 0.05) + 

30 0.003379 -2.9310 375 90 1 (p < 0.05) + 

50 0.000106 -3.8771 421 44 1 (p < 0.05) + 

100 0.000031 -4.1651 435 30 1 (p < 0.05) + 

F11 10 0.001382 -3.1984 388 77 1 (p < 0.05) + 

30 0.000002 -4.7821 465 0 1 (p < 0.05) + 

50 0.000002 -4.7821 465 0 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F12 10 0.198610 -1.2855 295 170 0 (p≥0.05) = 

30 0.005667 -2.7664 367 98 1 (p < 0.05) + 

50 0.000004 -4.6176 457 8 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F13 10 0.477947 -0.7096 267 198 0 (p≥0.05) = 

30 0.428430 -0.7919 271 194 0 (p≥0.05) = 

50 0.000004 -4.6382 458 7 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F14 10 0.130592 -1.5118 306 159 0 (p≥0.05) = 

30 0.002957 -2.9721 377 88 1 (p < 0.05) + 

50 0.000053 -4.0417 429 36 1 (p < 0.05) + 

100 0.000002 -4.7204 462 3 1 (p < 0.05) + 

F15 10 0.000205 -3.7126 413 52 1 (p < 0.05) + 

30 0.000160 -3.7743 416 49 1 (p < 0.05) + 

50 0.000420 -3.5275 404 61 1 (p < 0.05) + 

100 0.000002 -4.7204 462 3 1 (p < 0.05) + 

F16 10 0.349346 -0.9359 278 187 0 (p≥0.05) = 

30 0.027029 -2.2111 340 125 1 (p < 0.05) + 

50 0.007731 -2.6636 362 103 1 (p < 0.05) + 

100 0.000003 -4.6793 460 5 1 (p < 0.05) + 

F17 10 0.599936 -0.5245 258 207 0 (p≥0.05) = 

30 0.298944 -1.0387 283 182 0 (p≥0.05) = 

50 0.040702 -2.0465 332 133 1 (p < 0.05) + 

100 0.000420 -3.5275 404 61 1 (p < 0.05) + 

F18 10 0.125438 -1.5323 307 158 0 (p≥0.05) = 

30 0.000664 -3.4041 398 67 1 (p < 0.05) + 

50 0.002585 -3.0133 379 86 1 (p < 0.05) + 

100 0.000022 -4.2474 439 26 1 (p < 0.05) + 

F19 10 0.416534 -0.8124 272 193 0 (p≥0.05) = 

30 0.557743 0.5862 204 261 0 (p≥0.05) = 

50 0.003162 -2.9516 376 89 1 (p < 0.05) + 

100 0.000002 -4.7410 463 2 1 (p < 0.05) + 

F20 10 0.465283 0.7302 197 268 0 (p≥0.05) = 

30 0.530440 -0.6273 263 202 0 (p≥0.05) = 

50 0.044919 -2.0054 330 135 1 (p < 0.05) + 

100 0.097772 -1.6558 313 152 0 (p≥0.05) = 

F21 10 0.000049 -4.0622 430 35 1 (p < 0.05) + 
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30 0.000082 -3.9388 424 41 1 (p < 0.05) + 

50 0.000002 -4.7616 464 1 1 (p < 0.05) + 

100 0.000002 -4.7616 464 1 1 (p < 0.05) + 

F22 10 0.280214 -1.0798 285 180 0 (p≥0.05) = 

30 0.000002 -4.7821 465 0 1 (p < 0.05) + 

50 0.000012 -4.3708 445 20 1 (p < 0.05) + 

100 0.000016 -4.3091 442 23 1 (p < 0.05) + 

F23 10 0.236936 -1.1827 290 175 0 (p≥0.05) = 

30 0.007271 -2.6842 363 102 1 (p < 0.05) + 

50 0.000616 -3.4246 399 66 1 (p < 0.05) + 

100 0.000002 -4.7616 464 1 1 (p < 0.05) + 

F24 10 0.000031 -4.1651 435 30 1 (p < 0.05) + 

30 0.013194 -2.4785 353 112 1 (p < 0.05) + 

50 0.002585 -3.0133 379 86 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F25 10 0.004390 -2.8487 371 94 1 (p < 0.05) + 

30 0.000002 -4.7204 462 3 1 (p < 0.05) + 

50 0.000002 -4.7821 465 0 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F26 10 0.001197 -3.2395 390 75 1 (p < 0.05) + 

30 0.000002 -4.7821 465 0 1 (p < 0.05) + 

50 0.000002 -4.7821 465 0 1 (p < 0.05) + 

100 0.000002 -4.7410 463 2 1 (p < 0.05) + 

F27 10 0.002105 -3.0750 382 83 1 (p < 0.05) + 

30 0.000136 -3.8154 418 47 1 (p < 0.05) + 

50 0.000005 -4.5559 454 11 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F28 10 0.017518 -2.3756 348 117 1 (p < 0.05) + 

30 0.000002 -4.7821 465 0 1 (p < 0.05) + 

50 0.000002 -4.7821 465 0 1 (p < 0.05) + 

100 0.000002 -4.7821 465 0 1 (p < 0.05) + 

F29 10 0.007271 -2.6842 363 102 1 (p < 0.05) + 

30 0.013194 -2.4785 353 112 1 (p < 0.05) + 

50 0.002765 -2.9927 378 87 1 (p < 0.05) + 

100 0.000034 -4.1445 434 31 1 (p < 0.05) + 

F30 10 0.020671 -2.3139 345 120 1 (p < 0.05) + 

30 0.007271 -2.6842 363 102 1 (p < 0.05) + 

50 0.001593 -3.1572 386 79 1 (p < 0.05) + 

 100 0.000174 -3.7537 415 50 1 (p < 0.05) + 

Diversity analysis and exploration-exploitation 

analysis of the GWOJOS algorithm for CEC2017 

benchmarks are displayed in Figure 7. These 

analyses have shown how important the 

exploration-exploitation balance is. Additionally, 

the experimental results show that the effect of the 

JOS strategy on the exploration-exploitation 

balance. This is consistent with the purpose of the 

study.  
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Figure 7: Exploration-Exploitation and diversity 

analysis of GWO and GWOJOS algorithms 

Fitness values, fitness average value and box plot 

representations of GWOJOS and GWO 

algorithms for 30 runs are shown in Figure 8. 

From this analysis, the superiority of GWOJOS 

over GWO is seen. 

 

 

 

 

Figure 8: Convergence and stability analysis of 

GWO and GWOJOS. 

4. Speed Control Development 

4. 1. Modeling of DC Motor System 

This section introduces a DC motor setup 

consisting of both a mechanical load and a DC 
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motor. The main goal is to effectively regulate the 

motor's speed and torque through the 

implementation of a control system. The 

equivalent circuit for this specific type of DC 

motor is illustrated in Figure 9. 

 

Figure 9. Equivalent circuit of DC motor. 

This system is regarded as a linear system and the 

mechanical stress is represented as a constant 

torque (𝜏𝐿) to create a mathematical model. The 

speed of the DC motor is controlled by regulating 

the armature voltage 𝑣𝑎(𝑡) . This produces an 

electromechanical force while armature current 

𝑖𝑎(𝑡)  adjusts proportionally to the rotational 

speed (İzci and Ekinci, 2023). To model the DC 

motor, the following differential expressions 

characterizing the motor's speed and torque 

dynamics are provided: 

𝑣𝑎(𝑡) = 𝑖𝑎(𝑡)𝑅𝑎 + 𝐿𝑎
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝐸𝑏   (1) 

while the flux remains constant, the induced 

voltage  𝐸𝑏 in the motor is linearly proportional to 

angular velocity 𝜔 as follows 

𝐸𝑏 = 𝐾𝑏  
𝑑𝜃(𝑡)

𝑑𝑡
= 𝐾𝑏 𝜔(𝑡)  (2) 

A total torque consists of the impact of the inertia 

and fractional torques which is given by 

𝑇𝐸 − 𝑇𝐿 = 𝐽
𝑑𝜔(𝑡)

𝑑𝑡
+ 𝐵 ω(t) = 𝐾𝑚𝑖𝑎(𝑡) (3) 

where 𝑅𝑎  and 𝐿𝑎  are the resistance and 

inductance of the DC motor respectively. 𝐸𝑏 is the 

back electromotive force, 𝐾𝑏 is the constant, 𝜃 is 

the angular velocity, 𝜔 is the motor shaft velocity, 

𝑇𝐸 , 𝑇𝐿  are the electric and load torques 

respectively, 𝐽  indicates the motor's moment of 

inertia. 𝐵  and 𝐾𝑚  are frictional and torque 

constants respectively. Applying Laplace 

transform to equations (1-3) (with zero initial 

conditions) which leads to 

v(s) = (Ls + Ra)ia(s) + Eb(s)   

  (4) 

Eb(s) = Kbω(s)    (5) 

TE(s) − TL(s) = (Js + b)ω(s) = Kmia(s)  

   (6) 

Simplifying equations (4) and (6) results in  

i(s) =
v(s)−Kbω(s)

Las+Ra
     (7) 

ω(s) =  
TE(s)−TL(s)

Js+B
=

Km

Js+B
ia(s)  (8) 

The DC motor’s transfer function can be 

expressed as follows:  

Gp(s) =
ω(s)

v(s)
=

Km

(Las+Ra)(Js+B)+KbKm
,  TL(s) = 0 

(9) 

4. 2. NIOPID Controller 

Non-integer (fractional) calculus is a 

generalization of integration and differentiation to 

non-integer order fundamental operator 𝐷𝑟
𝑎
𝑡  

where 𝑎  and 𝑡  are the limits and (𝑟 ∈ 𝑅) is the 

order of the operation. The two definitions used 

for the fractional differantial 𝐷𝑟
𝑎
𝑡  are the 

Grünwald-Letnikov (GL) definition and the 

Riemann-Liouville (RL) definition (Xue et al., 

2006). Further, it has been mentioned in the 

literature that for a wide class of functions, these 

two definitions are equivalent (Xue et al., 2006).  

Then, the fractional PID controlller is writen as: 

GNIOPID(s) = Kp + KIs
−λ + KDsμ, (λ, μ > 0) . 

(10) 

in which  𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are proportional, integral 

and derivative gains when 𝜆  and 𝜇  denote 

fractional integral and derivative orders 

respectively.  Besides, a block diagram of a 

NIOPID-controlled DC motor system is displayed 

in Figure 10. The NIOPID controller can 

efficiently regulate the speed of DC motors as it 

has a more flexible control structure for the 

stabilization of dynamic systems. In addition to 

PID control, the NIOPID controller has fractional 

order terms (λ and μ) (İzci et al., 2023).  Selection 
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of 𝜆, 𝜇  gives the classical controllers  𝑃𝐼𝐷 

controller (𝜆, 𝜇 = 1).  

 

Figure 10. Diagram showcasing the NIOPID 

control implementation in the DC motor system 

The NIOPID-controlled DC motor's closed-loop 

transfer function is provided as follows: 

Gcl(s) =
ω(s)

ωref(s)
=

GNIOPID(s)×GP(s)

1+GNIOPID(s)×Gp(s)
 , TL = 0 

(11) 

Substituting 𝐺𝑃(𝑠) and  𝐺𝑁𝐼𝑂𝑃𝐼𝐷(𝑠) into equation 

(11), one has  

𝐺𝑐𝑙 =
𝐾𝑚(𝐾𝑝+𝐾𝑖𝑠

−𝜆+𝐾𝑑𝑠𝜇)

[ℵ1+ℵ2]
    (12) 

where ℵ1 = (𝐽𝑠 + 𝐵)(𝐿𝑎𝑠 + 𝑅𝑎) + 𝐾𝑏𝐾𝑚  and 

ℵ2 = 𝐾𝑚(𝐾𝑝 + 𝐾𝑖𝑠
−𝜆 + 𝐾𝑑𝑠𝜇) 

4. 3. Objective Function 

The problem of DC motor speed regulation is 

considered a minimization problem treated by the 

GWOJOS. The following procedures define the 

related system as an optimization problem. Then, 

the NIOPID controller's settings will be ideal. In 

the first place, the problem's dimension is shown 

as [𝑥1, . . , 𝑥5] = [𝐾𝑝 𝐾𝑖 𝐾𝑑   𝜆  𝜇] and the objective 

function, 𝐹(�⃗⃗� )  (İzci and Ekinci, 2023) for the 

corresponding minimization problem is  given as: 

𝐹(�⃗⃗� ) = (1 − 𝑒−𝜎) × (𝐸𝑠𝑠 +
𝑀𝑝

100
) + 𝑒−𝜎 ×

(𝑡𝑆𝑇 − 𝑡𝑅𝑇)     (13) 

where  𝜎 is a balancing coefficient (𝜎 = 1, in this 

paper), 𝐸𝑠𝑠 represents the steady-state error, 𝑀𝑝 

denotes the overshoot,  𝑡𝑆𝑇  signifies the settling 

period, and 𝑡𝑅𝑇 refers to the rise period. The limits 

of parameters are 0.001 ≤ 𝐾𝑝, 𝐾𝑖 𝐾𝑑 ≤ 20  and 

0 ≤ 𝜆, 𝜇 ≤ 2.  These limits are identical to 

(Tepljakov and Tepljakov, 2017, Hekimoğlu, 

2019, İzci et al., 2021, İzci and Ekinci, 2023, 

Ayinla et al., 2024, Sarma and Bardalai, 2024). 

Figure 11 shows a block schematic of the 

suggested approach to design the parameters of 

the NIOPID control scheme for the direct-current 

powered motor systems. 

 

Figure 11.  Schematic of NIOPID control tuning 

procedure for the DC motor system with the 

GWOJOS 

4. 4. Statistical Analysis 

This section evaluates the statistical performance 

of the GWOJOS.  Figure 12 displays the curve of 

the objective function for the best run at each 

iteration and the best fitness values found for each 

run. Also, a boxplot illustrating the distribution of 

objective function values produced by algorithms 

is presented in Figure 12. The best run of the 

optimization process yields the following 

controller parameters: with GWOJOS, 𝐾𝑝 =20,  

𝐾𝑖 =20, 𝐾𝑑  =14.4397, 𝛾 =   0.8181 and 𝜇 =

0.9988. Figure 13 shows the alteration of control 

parameters. This graphic aids in our 

comprehension of how the controller's settings 

vary throughout the optimization procedure. 

Figure 14 shows the best objective function values 

obtained over 30 runs.  It is clear to see that the 

GWOJOS is significantly superior to other 

optimizers. The GWOJOS provides a fast 

convergence rate and the quality of the solution. 
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Figure 12. The convergence trends, best fitness value at each run (a), and boxplot (b) achieved by the 

GWOJOS algorithm. 

 

Figure 13. The varying of the NIOPID 

controller’s parameters over the iterations with the 

GWOJOS algorithm 

 

Figure 14. Best objective function values 

obtained from all independent runs of the 

GWOJOS algorithm 

5. Simulation Results and Discussion 

This section presents the simulation results of the 

developed controller. All simulations are 

conducted on MATLAB/Simulink software 

installed on a personal computer with an Intel ® 

core i5 processor at 2.4 GHz and 8 GB RAM. The 

FOMCON toolbox is employed to obtain a non-

integer order PID controller. The closed-loop 

responses in terms of time and frequency domains 

are shown in Figures 15 and 16, respectively. The 

specifications of the closed-loop system in time 

and frequency domains are given in Table 4. 

 

Figure15: Step response of the GWOJOS-

NIOPID controlled system 

 

Figure 16: Comparison of Bode plot with 

NIOPID controllers 
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Table 4: Evaluation of performance regarding time and frequency response characteristics  

 

Alg. Tr Ts OS (%) Ess(%) 

Gain 

Margin 

(dB) 

Phase 

Margin 

(deg) 

 

GWOJOS 

(Proposed) 

0.0071098 0.012091 0 0.026468 ∞ 178.9590 

5. 1. Comparison with Recently Developed 

Methods 

To verify the effectiveness of the proposed 

GWOJOS-NIOPID controller, this subsection 

performs comparisons using the recently 

developed methods such as SMA-NIOPID, 

OBLSMASA- NIOPID (Tepljakov and 

Tepljakov, 2017), ASO-NIOPID (Ayinla et al., 

2024), GWO-NIOPID (Hekimoğlu, 2019). Figure 

18 compares the closed-loop responses of DC 

motor with different controllers.  To demonstrate 

the superiority of the GWOJOS-NIOPID 

controllers over other approaches documented in 

the literature, we present the results of a 

performance analysis focusing on time-domain 

features in Table 5.  

Robustness Analysis 

The robustness analysis was performed by 

varying the electrical resistance (𝑅𝑎) of the DC 

motor with ±25% and torque constant (𝐾𝑚) with 

±20% separately. This leads to four different 

testing cases. The closed-loop step responses for 

all cases are shown in Figures 18, 19, 20 and 21. 

Despite varying parameters in the DC motor 

system, the proposed GWOJOS-NIOPID 

controller provides a satisfying performance over 

the other controllers.  Table 6 compares results 

achieved by PID and GWOJOS-NIOPID 

controllers for the time-domain performance 

assessment.  

 

Figure 17. Comparison of step response 

dynamics between the proposed method and other 

methodologies. 

 

Figure 18.  Comparison of closed-loop     

responses in the      DC motor for Case I. 

 

Figure 19. Comparison of closed-loop 

responses in the DC motor for Case II. 
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Table 5. Performance analysis in case of different scenarios  

CASES Metrics GWOJOS GWO ASO 
OBLSMAS

A 
SMA 

Nominal 

Case 

Tr 0.0071098 0.043995 0.033151 0.012688 0.024175 

Ts 0.012091 0.075312 0.055502 0.019787 0.038442 

OS (%) 0 0.30006 0 1.8925 0.60724 

Ess(%) 0.026468 0.0091974 0.12963 0.27943 
0.003157

3 

Case I: 

Ra=0.30 

and 

Km=0.012 

Tr 0.009831 0.055929 0.042453 0.016461 0.03101 

Ts 0.16124 0.095608 0.072934 0.026277 0.05086 

OS (%) 0 0.24162 0 0.81883 0 

Ess(%) 0.045856 0.12579 0.27829 0.2535 0.11581 

Case II: 

Ra=0.30 

and 

Km=0.018 

Tr 0.0057112 0.036032 0.027055 0.010264 0.019705 

Ts 0.012445 0.061703 0.044593 0.029981 0.030878 

OS (%) 2.1888 0.37418 0.33004 2.9356 1.2651 

Ess(%) 0.045856 0.12579 0.12192 0.21698 0.019382 

Case III: 

Ra=0.50 

and 

Km=0.012 

Tr 0.0098104 0.055918 0.042431 0.016429 0.030965 

Ts 0.15189 0.095845 0.073016 0.026189 0.050757 

OS (%) 0 0.20236 0 0.86782 0 

Ess(%) 0.056653 0.034993 0.14006 0.37494 0.023642 

Case IV: 

Ra=50 

and 

Km=0.018 

Tr 0.0057059 0.03603 0.027047 0.010254 0.01969 

Ts 0.012534 0.061808 0.044617 0.030134 0.030851 

OS (%) 2.2274 0.34511 0.31307 2.9676 1.273 

Ess(%) 0.076308 0.09864 0.030561 0.2981 0.07315 

 

Figure 20.  Comparison of closed-loop 

responses in the DC motor for Case III. 

 

Figure 21.  Comparison of closed-loop 

responses in the DC motor for Case IV. 
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Table 6. Time domain performance analysis of direct current motor system employing various PID 

controllers.  

Adjustment Method 

Transient response and quality indicators 

Maximum 

Overshoot 

(%) 

Rise time 

(Sec) 

(0:1 0:9) 

Settling 

Time (sec) 

(62%) 

ZLG 

GWOJOS-NIOPID 0 0.0071098 0.012091 0.0020 

Levy flight distribution with Nelder–Mead algorithm 

baed 

Proportional integral-derivative (PID) (Izci, 2021) 

0 0.0462 0.0813 0.0129 

Harris-hawks optimization based PID  

(Ekinci et al., 2020) 
0 0.0568 0.1003 0.0160 

Henry gas solubility optimization based PID  

(Ekinci et al., 2021) 
0 0.0684 0.1186 0.0185 

Slime mould algorithm based PID  

(Izci and Ekinci, 2021) 
0 0.0491 0.0857 0.0135 

Atom search optimization based PID  

(Hekimoğlu, 2019) 
0 0.0692 0.1535 0.0310 

Grey wolf optimization based PID  

(Agarwal et al., 2018) 
1.5062 0.1388 0.2052 0.0340 

Stochastic fractal search algorithm based PID  

(Bhatt et al., 2019) 
0 0.5436 1.4475 0.3325 

Kidney-inspired algorithm-based PID  

(Hekimoğlu, 2019) 
0 0.0445 0.0922 0.0176 

Invasive weed optimization algorithm based PID 

(Khalilpour et al., 2011) 
6.9759 0.4189 1.2533 0.3511 

Particle swarm optimization based PID  

(Khalilpour et al., 2011) 
24.2406 0.3560 1.8028 0.6855 

6. Conclusion 

The Joint Opposite Selection operator consists of 

Selective Leading Opposition and Dynamic 

Opposite methods.  In a particular search space, 

the DO and SLO enhance the balance of 

exploration to exploitation, respectively. SLO 

calculates the search agents' close distance 

dimension using a threshold value that decreases 

linearly. DO gives search agents opportunities to 

develop their capabilities in the search domain. 

The JOS operator is combined with the GWO 

algorithm, which is widely used in the literature. 

Although GWO is widely used, it has 

disadvantages in finding the best results. This 

combination has improved the performance of 

GWO. The effectiveness of the improved GWO 

algorithm has been tested using CEC2017 

benchmarks. The results show that the improved 

GWO gives better results than the original GWO 

and its superiority has been proven with the 

Wilcoxon sign test. These results are analyzed and 

visually displayed. In addition, the NIOPID speed 

control design problem for a DC motor has been 

solved. Extensive simulation results have shown 

that the improved GWO-based NIOPID controller 

outperforms existing methods when comparing 

PID and NIOPID controllers designed using 

various optimization techniques in the literatüre.  
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