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Abstract

In this study, a noninteger-order proportional—integral-derivative (NIOPID) controller was used for controlling
the speed of the direct current (DC) motor. The controller parameters have optimally been adjusted using the
GWOJOS algorithm formed by combining the Grey Wolf Optimization (GWO) algorithm and the recently defined
the Joint Opposite Selection (JOS) feature. The JOS brings a mutual reinforcement by a joint of the two opposition
strategies Dynamic Opposite (DO) and Selective Leading Opposition (SLO). The DO and SLO improve the
balance of exploration and exploitation, respectively, in a given search space. During the optimization phase, JOS
helps GWO attack the target quickly by employing SLO. DO help GWO find more opportunities to find the most
suitable prey. The GWO is able to improve its performance with JOS. This combination helps accelerating the
convergence rate of GWO. We assessed GWOJOS's performance using the benchmark functions from the IEEE
Congress on Evolutionary Computation 2017 (CEC2017). The benchmark covers composition, hybrid,
multimodal, and unimodal functions. The NIOPID-based speed control system for DC-motor using the GWOJOS
algorithm has been designed using a time domain objective function that takes into account the performance
criteria (maximum overshoot, steady-state error, rising time, and settling time). Some analyses, including
robustness, time and frequency domain simulations, have been used to evaluate the performance of the proposed
novel approach. The evaluation results have shown that the performance of GWOJOS was better than the
performance of GWO, Slime Mould Algorithm (SMA), Atom Search Optimization (ASO), Simulated Annealing
(SA) and the hybrid optimization algorithm created by opposition-based learning (OBL) strategy of SA and SMA
algorithms (OBLSMASA).

Anahtar Kelimeler: NIOPID, DC Motor, GWO JOS, Metaheuristic Optimization

Gelistirilmis Gri Kurt Optimizasyon Algoritmasina Dayah Kesirli

Mertebeden Oransal Integral Tiirevsel PID Denetleyici Tasarim

Oz

Bu c¢alismada, dogru akim (DC) motorunun hizint kontrol etmek i¢in tam say1 olmayan mertebeden oransal-
integral-tiirevsel (NIOPID) kontrolor kullanilmistir. Kontrolor parametreleri, GWO algoritmasi ve yeni
tamimlanan JOS o&zelliginin birlesiminden olusan GWOJOS algoritmasi kullanilarak optimum sekilde
ayarlanmistir. JOS, Dinamik Karsitlik (DO) ve Secici Lider Karsitlik (SLO) olmak iizere iki karsitlik stratejisinin
bir araya getirilmesiyle karsilikli bir giiclendirme saglar. DO ve SLO, belirli bir arama uzayinda sirasiyla kesif ve
sOmiirii dengesini iyilestirir. Optimizasyon asamasinda JOS, SLO'yu kullanarak GWO'nun hedefe hizli bir sekilde
saldirmasina yardimci olur. DO, GWO'un en uygun avi bulmak i¢in daha fazla firsat bulmasina yardimei olur.
GWO, JOS ile performansini artirabilmektedir. Bu birlesim, GWO'nun yakinsama oranini hizlandirmaya yardimect
olur. GWOJOS'un performansini CEC2017'deki kiyaslama fonksiyonlarini kullanarak degerlendirdik. Kiyaslama
bilesim, hibrit, multimodal ve unimodal fonksiyonlar1 kapsamaktadir. GWOJOS algoritmasini kullanan DC-motor
icin NIOPID tabanli hiz kontrol sistemi, performans kriterlerini (maksimum agim, kararli durum hatasi, yiikselme
siiresi ve yerlesme siiresi) dikkate alan bir zaman alan1 amag fonksiyonu kullamlarak tasarlanmistir. Onerilen yeni
yaklagimin performansini degerlendirmek igin saglamlik, zaman ve frekans alan1 simiilasyonlar1 dahil olmak iizere

bazi analizler kullanilmistir. Degerlendirme sonuglart GWOJOS'un performansinin GWO, SMA, ASO, SA ve
OBLSMASA algoritmalarin performansindan daha iyi oldugunu géstermistir.
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1. Introduction

Optimization is not only a collection of techniques
and tools or a way of thinking; it is also a
fundamental requirement in the industry (Xu et
al., 2021; Zhao et al., 2021, Zhang et al., 2022),
and it falls under a large category of methods such
as fuzzy logic optimization (Chen et al., 2019),
robust optimization (Qu et al., 2021), multi-
branch learning methods (He et al., 2020),
multiobjective optimization ( Cao et al, 2022, Lin
et al., 2022), large-scale tasks (Liu et al., 2021),
constraint  optimization, multi-dimensional
optimizer (Meng et al., 2018), Wang et al., 2021).
Large-Scale Tasks grow in complexity and
dimensionality, specialized optimization methods
are necessary and constraint optimization ensures
feasible solutions while optimizing the objective
functions. Memetic methods combine global
search (e.g., genetic algorithms) with local search
(e.g., gradient-based methods). Over the last few
decades, numerous deterministic approaches have
been created and developed to solve optimization
problems However, deterministic models require
knowledge of the properties of the optimization
problem and the gradient information (Meng et
al.,, 2019, Gursoy and Gunnec, 2018). The
simplicity ~of  metaheuristic  optimization
algorithms,  reaching  absolute  optimum,
applicability and derivative-free have made them
significantly widespread. The sources of
inspiration for swarm intelligence techniques are
mostly natural colonies, flocks, herds, and
schools. In this field, some popular MOAs include
Evolutionary Programming (EP) (Sebald and
Fogel, 1994), Genetic Algorithms (GA) (Holland,
1992), Ant Colony Optimization (ACO) (Dorigo
and Socha, 2007), Evolutionary Strategy (ES)
(Alavi and Henderson, 1981), Differential
Evolution (DE) (Lampinen and Storn, 2004),
GWO (Mirjalili et al., 2014), and Particle Swarm
Optimization (PSO) (Kennedy and Eberhat,
1995).

Drives that convert electrical energy into
mechanical energy are called DC motors. DC
motors are extensively employed as the primary
drive in a wide range of industrial applications
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because of their comparatively low cost, excellent
durability, and simple controllability (Ali, 2015,
Rodriguez-Molina et al., 2017, Potnuru et al.,
2019). Meta-heuristic algorithms have been
employed in studies pertaining to the speed
control of DC motors. Conventional controllers,
such as linear proportional-integral (Pl) and
proportional—integral—derivative (PID)
controllers, have been extensively employed in
the literature to regulate DC motors (Griffin,
2003). NIOPID control is a non-conventional
control method used in this study to operate the
DC motor. The use of non-integer calculus to
control theory has been explained in numerous
studies (Podlubny, 1999, Petras, 1999), and its
benefits have also been demonstrated. The
traditional PID controller, which is based on non-
integer calculus, has been expanded into the
NIOPID controller. To achieve the desired
controller, it is necessary to employ a highly
effective tuning method in place of time-
consuming, low-performing classical tuning
methods (Celik and Oztiirk, 2018).

In this study, our aim is to enhance the GWO
algorithm by using Joint Opposite Selection (JOS)
(Arini et al., 2022b) strategy for finding the right
balance between two stages exploration and
exploitation. As shown in Table 1, the superiority
of the improved GWO (GWOJOS) has been
demonstrated using the benchmark CEC2017
(Awad et al., 2016) functions. This superiority has
been proven by statistical analysis. Furthermore,
it has been demonstrated that the NIOPID
parameters are effectively tuned for DC speed
control using the GWQOJOS algorithm

2. Overview of the Gray Wolf Algorithm
(GWO)

The Grey Wolf (Canis lupus) is a member of the
Canidae family. Grey wolves are regarded as apex
predators at the top of the food chain. Figure 1
illustrates their rigid social hierarchy, which is
very intriguing. The pack is subject to the alpha's
judgments. However, there has also been evidence
of a democratic tendency when an alpha wolf
follows the other wolves in the pack (Mirjalili et
al., 2014),
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shown in Figure 2. The phases of gray wolf

AN hunting are (Mirjalili et al., 2014):
LI EEEAS . . . .
/ o Aot o ot """V i) t'cl)'rtz:](;k;)rr\g;/purswng, and getting close
LA Aot ot A N\ ’
i) chasing, encircling, and intimidating
Figure 1. Social hierarchy of the Gray Wolves the victim until it gives up,
The social hierarchy and group hunting of Grey iii) Assault the target.

Wolves are other interesting social behaviors,

Phase1 Phase2 Phase3

Figure 2. The behavioral phases of the gray wolf in its natural life are shown as three main phases.
Phase 1, searching for prey; Phase 2, attacking prey and Phase 3, catching prey.

To design the social hierarchy of Gray Wolves = |l71)?a(t) _)?(t)|, EB = |[72)?B(t) _
and perform optimization, the mathematical > = = o >
P P _ X()|, and Es = |UsX5(t) — X(©)],
model was established as follows:
o N . . and
Encircling prey: E = |UX,(t) —X(©)|, X(¢t+

1) = )?p(t) - AE, t = current iteration X.() =X, () — Ay, X(0) = )?ﬁ ®) -

Uand A , coefficient vectors X, = Ay and X5(t) = X5(t) — 4.
the position of prey : and X = Thus, it was obtained
Possition of predator. Also, it calculated as 4 =

2G7, —d and D = 27, such that d € [0,2] is
linearly decreasing, 74,7, € [0,1] are random
vectors.

X+ X0+ ig(t)_

X(t+1) = 2

Attacking prey (exploitation): Gray wolves

Hunting: Gray wolves have the ability to complete the hunt by attacking when the prey
recognize the location of prey and surround them. ~ remains motionless, that is, when the prey's
The prey is usually guided by the alpha. Betaand ~ €nergy is exhausted, as shown in Figure 3. [4| <
delta may also occasionally participate in hunting. 1 is forcing the wolves to attack the prey.

However, nothing can be determined about the
location of the prey in a search space. It is
assumed that alpha, beta, and delta wolves possess
superior knowledge regarding the possible
location of preyto statistically describe the
hunting behavior of wolves. This saves the top
three best solutions obtained so far and forces
other search agents to update their positions based

on the position of their best search agent. These  gearch for prey (exploration): The three main

narratives are formulated as follows: search positions used by gray wolves are alpha,
beta, and delta. They split up to look for prey, then

The flow chart of the Gray Wolf's hunting strategy
is given in Figure 4. As can be seen from this flow
chart, the three main search positions used by gray
wolves are alpha, beta, and delta. They split up to
look for prey, then come together and attack it.
When |A| >1, gray wolves are forced to leave their
packs to find better prey.
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come together and attack it. When |A| > 1, gray
wolves are forced to leave their packs to find
better prey (Mirjalili et al., 2014).

a

Prey Escape Energy
o E = o N

800

200 400 800

Iteration

1000

Figure 3. The evolution of a prey's absolute
escape energy ran for 1000 iterations around.

Siart

Calculate alpha, beta. and delta Imitial random values of parameiers a. A, C and
fitness values - alpha, beta and delta wolves X; (i—=1,2,...)
Update B 47‘{-55—{:::::-7 £ <<Max_iteration
Mo
w

End

Update Parameters

Calculate alpha, beta, and

Update X;

]

delta fitness values

Figure 4. Flow Chart of GWO

In addition to the advantages of the Gray Wolf
Optimization  Algorithm such as simple
applicability, high exploration capacity and
flexible parameter settings, it also has
disadvantages such as slow convergence,
parameter sensitivity and local optimum
problems. Therefore, the advantages and
disadvantages of the algorithm should be taken
into account depending on the problem and the
requirements to be applied. Thus, an extra feature
added to GWO can correct the disadvantages of
GWO's hunting strategy and turn it into an
advantage.

In order to improve metaheuristic optimization
algorithms, many techniques have been proposed.
The use of OBL, chaos, hybridization and so on
are some of these techniques. One of the most
popular and effective techniques is OBL
(Tizhoosh, 2005). In the last few years, OBL
algorithms have attracted the interest of a large
number of computer scientists. Many of the well-
known ones like GWO, GSA, SA, GA, PSO,
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ACO, ABC, DE, etc. Were improved using OBL.
Opposite Centre Learning (OCL) was established
by Liu et al. (2014), which defines the opposite
point as the optimal solution among pairwise
samples of the search space given a random
starting point. Population-based search algorithms
converge faster using this method. Rahnamayan et
al. (2014) have proposed an OTDS (Oppositional
Target-Domain Estimation) by dividing the
search space into grids, which speeds up the
estimation of the target domain. However, if the
solution is close to a grid boundary, the
computational complexity increases. There are
few papers where researchers have used OBL in
addition to GWO, according to a review of the
literature. A simplex-based opposition s
performed on all wolves in Elite Opposition-
based Learning (EOGWO) (Zhang et al., 2017).
The wolves are divided into two subgroups and
the best wolves in one subgroup replace the worst
wolves in the other subgroup in the Improved
Grey Wolf Optimizer (IGWQO) (Nasrabadi et al.,
2016). In the two parts, one part is partially
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counterbalanced (in one dimension), and the
remaining part is opposed in all the dimensions.
With each iteration, the number of completely
opposing wolves decreases. Pradhan et al. (2017)
have combined GWO and OBL named
Oppositional Grey Wolf Optimization (OGWO)
algorithm for solving the optimal operating
strategy of the Economic Load Dispatch (ELD)
problem. The algorithm combines two
fundamental approaches: the hunting behavior
and social hierarchy and the accelerate to
convergence rate of the traditional GWO
algorithm (mahdavi et al., 2018). Dhargupta et al.
(2020) have combined OBL with GWO
(SOGWO) to enhance its exploratory behavior
while maintaining a fast convergence rate.

2.1. Joint Opposite Selection (JOS)

Selective Leading Opposition and Dynamic
Opposite are two opposition learning methods
that are combined to create the Joint Opposite
Selection operator. In a particular search space,
the DO and SLO enhance the balance of
exploration to exploitation, respectively. SLO
calculates the search agents' close distance
dimension using a threshold value that decreases
linearly. DO gives search agents opportunities to
develop their capabilities in the search domain
(Xu et al., 2014). Dynamic opposite consists of
the combination of two different opposites:
Quasi-opposite and reflection-opposite.

Definition 1. (Dhargupta et al., 2020) Let x €
[a, b] be a real number. The opposite number of
x (%) is defined as follows:

X=a+b—x.

Definition 2. (Xu et al., 2005) Let x € [a,b] be a
real number. The quasi-opposite point of x (%)
is defined as follows:

%q =rand(m,x ).

+b AN -
Where m = aT and rand(m,%) is a random

number uniformly distributed between m and x .

Definition 3. (Xu et al., 2014) Let x € [a,b] be a
real number. The quasi-opposite point of x (x,)
is defined as follows:

X, = rand(m, x).
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Where m = aTer , and rand(m, x) is a random
number uniformly distributed between m and x .

Definition 4. (Xu et al, 2014) Let
P(xq,%3,x3,...,x,) be a point such that
X1,X2,X3, ..., X, ER and x; € [a;,b;] . The

opposite point of P (P) is defined as follows:
5C\l' =ai+bi—xi.

Algorithm 1: Pseudocode of Selective Opposition
(SO) (Dhargupta et al., 2020)

Input: initial generation t, maximum generation T,
population size N, dimension d

Output: X4 :
opposition

new position based on selective

t
Threshold: 2 % (1 — T)

fori=1:N
if Xi * Xibest
forj=1:d

ddj = [Xipestj — X| difference

distance for each dimension}

{dd; =

if dd; > threshold

Identify the close distance dimensions d¢

Count the number of close distance dimensions
de

else
Identify the faraway distance dimensions d.

Count the number of far distance dimensions

(de)

end
end
sum all dd;
src=1-— ij:l—(ddj)z {src=Spearman’s

dd;«(dd;?-1)"
Rank Correlation Coefficient}

if src <=0 and d;f > d.

Perform X4, = Lbg, + Ubg, — X,
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end
end
end

SLO is an expansion of the SO idea embedded in
GWO. Processes embedded in the GWO indicate
the positions of search agents based on
competence (optimal value) classified according
to their social hierarchy. This strategy is to
produce a faster convergence rate. However, its
fast convergence rate can quickly lead to getting
stuck in the local optimum, causing its
performance to be unstable.

Algorithm 2: Pseudocode of SLO (Dhargupta et
al., 2020)

Input: initial generation t, maximum generation T,
population size N, dimension d

Output: X4, :
opposition

new position based on selective

t
Threshold : 2 x (1 — ?)

for i=1:N
if Xi * Xibest
forj=1:d

dd] = |Xibest,j — Xl { dd] = difference
distance for each dimension}

if dd; < threshold

Identify d. (the close distance dimensions )
Count the number of d. (d. =d. + 1)

else

Identify d¢ (the faraway distance dimensions )

Count the number d¢ (df =df+ 1)

end
end
sum all dd;
src=1-— wzjzl—(ddj)z {src=Spearman’s

dd;«(dd;?-1)"
Rank Correlation Coefficient}

ifsrc <=0 and d.>ds
perform X4_ = Lbg_ + Ubg, — Xgq,
end

end

end

Opposition Based Learming contains

Opposition Function X =

Lb+0Ub — X

I

rlmprave—u waith

Merging Opposition obtains:
1. the center position and
opposite poosittion
2_the center position and
current position

| Do

rrrrrr

\—b{ Balance Mechanism I |

duce

Improved with

Several ideas by
1. Utilize linear decrement
operator
2. sSelect and count the close
distance dimension
3. Analyze using Spearman’s
Rank Corelation Coefficient

Selective Opposite
SO

Selective Leading
Opposite

SLO

Support

Exploitation

V - I _—

7
"

~ Joint Opposite Selection
JOS5

Figure 5. Hierarchical Development of Joint Opposite Selection

Algorithm 3: Pseudo Code of DO (Xu et al., 2014)
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Input: Jumping rate Jr, Population size N and
Position X
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Output:

Stage 1: Population Initialization

Initialize position X

Dogr, = Lb + Ub — X (Dggy, is the OBL strategy)

Dgrop = rand X Drop (Dgop iS the reflection

opposition position )

Dpo = X+ rand X (Dpg — X)
dynamic opposite)

(Dpo is the

Dpo = X

Stage 2: Population Generation utilizes the
Jumping rate Jr.

while nFE < maxFE do

if rand <Jr
Dopr, =Lb+Ub—X
Dgrop = rand X Dggp

Dpo = X+ rand X (Dpg — X)
Dpo = X
end
end

Rahnamayan et al. (2008) pointed out that
opposite numbers are more likely to produce a
better result than normal random numbers.
Supporting evidence for this theory from
scientific studies (Al-Qunaieer et al., 2010,
Mahdavi et al., 2018, Arini et al., 2022a) have also
confirmed that the opposite strategy produces
remarkable results. Rahnamayan et al. (2008),
established the concept of quasi-opposition based
learning, or QOBL. It uses a jumping rate and
determines the midpoint of opposite points to
increase the likelihood of being near the solution.
Quasi-reflection was introduced by Ergezer et al.
(2009) and improves the BBO success rate while
requiring less fitness computation. Xu et al.
(2020) suggested DO in order to enhance
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exploration skills and generate diversity through
asymmetric search behavior by combining quasi-
opposition and quasi-reflection. In order to solve
multi-task optimization problems, the mutation
technique is combined with the dynamic opposite
to provide mutual learning (Li et al., 2021).
Gonzalez (2007), proved that the balance between
exploration and exploitation in the search space
must be maintained for basic optimization
processes. Many researchers have stated that there
is no definitive formula to define the balance of
exploration and exploitation in the search space
and no Nature-inspired optimization algorithm to
calculate this balance (Crepinek et al., 2013,
Yang et al.,, 2014; Morales-Castaneda et al.,
2020). Additionally, Wolpert et al. (1997) pointed
out that no algorithm can solve all optimization
problems. Afterwards, Wang et al. (2019) also
investigated whether two opposites are better than
one.

Accordingly, it has been associated that DO is a
subpart of exploration, SLO is a subpart of
exploitation, and DO is the opposite of SLO.
According to Gonzalez (2007), the opposing acts
of exploration and exploitation reinforce each
other. Therefore, the combination of DO and SLO
were established the balance of mutual
strengthening and has been named JOS (Arini,
2022a).

2.2. The proposed GWOQOJOS

The Matlab code of the GWOJOS algorithm has
been shared on GitHub by Florentina. You can
find it in reference (GitHub, 2024). The main
GWOJOS is performed even though the number
of functional evaluations (nFE) is less than the
maximum functional evaluation (maxFE). After
the wolves have checked their boundaries and
evaluated their fitness, the JOS strategy is used.
Each time the wolves evaluate their fitness, the
number of functional evaluations is updated. The
best value of the fitness of the wolves is the
position of the prey.
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Start

Initial boundry of
position

Inmitial random wvalues of parameters a, A, C and
alpha, beta and delta wolves X; (i=1,2,....)

Check the boundaries
of the search space

Update s &

Fosition

Update FPrey

Update & Positions

Update Parameters

Calculate alpha. beta. and
delta filness values

Update X,

Figure 6: Flow Chart of GWOJOS

Experimental setup and experimental results:
The experimental results include required
comprehensive statistical analysis such as
Wilcoxon and comparison assessment with other
algorithms, globally.

The experiments were exhibited to solve single-
objective real parameter numerical optimization
of CEC 2017. The CECs are the preferable
standard benchmark problem set on single-
objective real parameters and required a specific
standard value of the parameters to run the
experiment as follows:

1. The population size (N) equals to 30 (N = 30).
Note: The population size is fixed. 2. On each
experiment, the maximum number of runs
(maxRun) is 30 runs. 3. We tested on 29
benchmark functions of CEC 2017. It is noted that
only the F2 function on CEC 2017 was deleted
due to an unconfirmed result on the experiment.
4. Each benchmark function was tested on four
numbers of variables (dimension = D): 10D, 30D,

Imitial 3 Position

Calculate alpha, beta. and delita
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fitness wvalues

o I <MaxFE

\
5

Update £
~

50D and 100D, but only shown for 30D. 5. The
maximum number of function evaluations
(maxFE) is set up based on 10,000 multiply by the
dimensions of 10D, 30D, 50D, and 100D. 6. For
each run, the maximum number of iteration is
defined by dividing maxFE with N. 7. The
searching space is in the range of [—100,100]?,
where the lower bound (Ib) is -100, the upper
bound (ub) is 100.

It is essential to examine the divergence of the
proposed GWO-JOS compared to its original
GWO from the population diversity. If the
population is highly diverse, it means the
population has difficulty converging. However, if
the population has low diversity, then premature
convergence might occur. The proposed JOS
embedded on GWO shows the proportional
balance on the diversity to avoid those
occurrences.
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Table 1: CEC2017 competition on single objective real parameter numerical optimization

Categories Number of Functions O[:*)tlma,
Functions F;

Unimodal fi Shifted and Rotated Bent Cigar Function 100

Functions fs Shifted and Rotated Zakhrov Function 300
fa Shifted and Rotated Rosenbrock’s Function 400
fs Shifted and Rotated Rastrigin’s Function 500

Simple £, IEgilf:ted apd Rotated Expanded Scaffer’s 600

Multimodal Function . o .

Functions f7 Sh%fted and Rotated Lunacek Bl_Rastrlnglq’s Eunctlon . 700
fs Shifted and Rotated Non-Continuous Rastringin’s Function 800
fo Shifted and Rotated Levy Function 900
fio Shifted and Rotated Schwefel’s Function 1000

Hybrid Function 1 (N = 3) Zakhrov, Rosenbrock’s
Rastrigin’s
Hybrid Function 2 (N = 3) High-Conditioned Elliptic
fiz Modified Schwefel’s, Ben Cigar

Hybrid Function 3 (N = 3) Ben Cigar,
fis Rosenbrock’s, Lunacek Bi_Rastringin’s
Hybrid Function 4 (N = 4) High-Conditioned Elliptic
fra Ackley, Schaffer’s F7, Rastringin’s
Hybrid Function 5 (N = 4) Ben Cigar, HGBat

fir » 1100
11200
1300

' 1400

fis Rastringin’s, Rosenbrock’s 1500
Hybrid Functions f Hybrid Function 6 (N = 4) Expanded Schaffer’s F6, 1600
16 HGBat, Rosenbrock’s, Modified Schwefel’s

Hybrid Function 6 (N = 5) Katsuura, Ackley, Expanded
Griewank’s plus, Rosenbrock’s, Schwefel’s, Rastringin’s
f Hybrid Function 6 (N = 5) High-Conditioned Elliptic, 1800
18 Ackley, Rastringin’s, HGBat, Discus
Hybrid Function 6 (N = 5) Bent Cigar, Rastringin’s,
fio Griewank’s plus Rosenbrock’s, Weierstrass, Expanded 1900
Schaffer’s F6
f Hybrid Function 6 (N = 5) HappyCat, Katsuura, Ackley, 2000
20 Rastringin’s, Modified Schwefel’s, Schaffer F7
Composition Function 1 (N = 3) Rosenbrock’s, High
fai Conditioned Elliptic, Rastringin’s
Composition  Function 1 (N = 3) Rastringin’s
f2z Griewank’s, Modified Schwefel’s
Composition Function 1 (N = 4) Rosenbrock’s, Ackley,
f23 Modified Schwefel’s, Rastringin’s
Composition Function 2 (N = 4) Ackley, High-
faa Conditioned Elliptic, Griewank’s, Rastringin’s
£ Composition Function 3 (N = 5) Rastringin’s, HappyCat, 2500
Composition 25 Ackley Discus, Rosenbrock’s
Functions Composition Function 4 (N = 5) Expanded Schaffer’s F6,
fa6 Modified  Schwefel’s,  Griewank’s, = Rosenbrock’s, 2600
Rastringin’s
Composition Function 5 (N = 6) HGBat, Rastringin’s,
fa7 Modified Schewel’s, Bent Cigar, High-Conditioned Elliptic, 2700
Expanded Schaffer’s F6
£ Composition Function 6 (N = 6) Ackley, Griewank, 2800
28 Discus, Rosenbrock, HappyCat, Expanded Schaffer’s F6
fa9 Composition Function 7 (N = 3) F15,F16,F17 2900
f30 Composition Function 8 (N = 3) F15, F18, F19 3000

fir 1700

2100

» 2200

2300

2400

228



Improved Gray Wolf Optimization Algorithm...

Dogan and Basak / RTEU-JSE 6(1) 220-244 2025

Algorithm 4: Pseudocodes of GWOJOS
Initialize N Gray Wolves Populations

Initialize the parameters a, A, C, alpha, beta and
delta wolves positions and

Randomly initialize individual in DO (Algorithm
3) population of size N

Modify the Xa,B,S to Xpo

Initialize nFE =0,t =0 and T = Maximum
iteration

While nFE < maxFE do
fori=1:N

Return back the search agents that go beyond the
boundaries of the search space

Calculate objective function for each search agent
Update nFE
Update X¢g.5

Updating boundary for opposition after every
iteration

(Threshold for SLO)a=2x1 — %)

Continue the process by applying Algorithm 2
(Selective Leading Opposite)

Update the Position of search agents including
omegas (w)

ifrand < Jr
if nFE + SearchAgents_no < maxFE

Perform  Algorithm 3 (Dynamic Opposite
)

Assign Xpo to Xyorr
end
end
end

The experiments were conducted considering the
following points:

1. To demonstrate the effectiveness of the
GWOJOS algorithm, a comparison with GWO
was made below using CEC2017.

2. The candidacy of the Random Jump Strategy of
the jump ratio in GWOJOS, Jr=0.25.

3. It demonstrated the successful JOS behavior
and exploration ability.

4. The statistical analysis of the Wilcoxon Signed
Rank Test performance of GWOJOS compared to
its competitors' algorithms was presented.

3 Main Result

3.1. Experimental Results of Benchmark
CEC2017

Table 2. Comparison of GWO and GWOJOS performance using CEC2017 Benchmark for 30

dimensions.

F Ist. Anl GWO

GWOJOS F GWO

GWOJOS F GWO GWOJOS

Min 9.86E+07 8.17E+05
Max 5.65E+09 3.05E+07
F, Std
Media  1.54E+09 1.03E+07
Mean 1.97E+09 1.17E+07

5.80E+05 1.10E+06
4.58E+08 4.82E+07
1.33E+09 7.66E+06 Fi, 1.12E+08 1.11E+07 F, 2.05E+03 9.74E+00
2.91E+07 1.09E+07
7.06E+07 1.35E+07

2.40E+03 2.30E+03
9.38E+03 2.35E+03

5.32E+03 2.32E+03
5.00E+03 2.32E+03

Min 1.38E+04 8.61E+02
= Max 5.24E+04 4.46E+03 C
3 std 1.03E+04 9.68E+02 ' *°

Media  3.03E+04 2.04E+03

4.49E+04 1.89E+04
4.34E+08 7.82E+05
1.03E+08 1.83E+05
7.58E+04 8.27E+04

2.70E+03 2.69E+03
2.89E+03 2.88E+03
3.54E+01 4.42E+01
2.75E+03 2.73E+03

Fo3
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Mean 3.01E+04 2.17E+03 3.49E+07 1.47E+05 2.76E+03 2.74E+03
Min 5.00E+02 4.76E+02 3.38E+03 2.49E+03 2.86E+03 2.85E+03
Max 8.10E+02 5.31E+02 5.02E+05 1.07E+05 3.05E+03 3.02E+03
Fs  Std 7.21E+01 159E+01 Fis 1.71E+05 2.84E+04 Fau 3.44E+01 4.33E+01
Media  5.78E+02 5.10E+02 5.56E+04 2.35E+04 2.93E+03 2.89E+03
Mean 6.00E+02 5.09E+02 1.36E+05 3.07E+04 2.93E+03 2.90E+03
Min 5.55E+02 5.37E+02 1.08E+04 8.19E+03 2.92E+03 2.88E+03
Max 6.43E+02 6.52E+02 3.42E+06 5.13E+04 3.08E+03 2.96E+03
Fs Std 1.96E+01 2.06E+01 Fi5 1.06E+06 1.03E+04 F 3.89E+01 2.05E+01
Media  6.06E+02 5.76E+02 3.58E+04 2.21E+04 2.98E+03 2.91E+03
Mean 6.05E+02 5.76E+02 4,.80E+05 2.40E+04 2.99E+03 2.91E+03
Min 6.02E+02 6.00E+02 2.10E+03 1.82E+03 3.26E+03 2.81E+03
Max 6.21E+02 6.06E+02 2.98E+03 2.82E+03 5.72E+03  4.65E+03
Fe Std 4, 00E+00 1.78E+00 Fis 2.39E+02 2.51E+02 F,; 4.51E+02 5.98E+02
Media  6.08E+02 6.02E+02 2.51E+03 2.34E+03 4.72E+03 2.92E+03
Mean 6.09E+02 6.02E+02 2.48E+03 2.29E+03 4, 70E+03 3.20E+03
Min 7.95E+02 7.66E+02 1.79E+03 1.77E+03 3.21E+03 3.20E+03
Max 1.02E+03 9.72E+02 2.34E+03 2.43E+03 3.32E+03 3.25E+03
F, Std 5.44E+01 6.28E+01 Fi7 1.32E+02 1.45E+02 F,; 2.73E+01 1.23E+01
Media  8.62E+02 8.00E+02 1.95E+03 1.90E+03 3.24E+03 3.23E+03
Mean 8.78E+02 8.24E+02 1.97E+03 1.94E+03 3.25E+03 3.22E+03
Min 8.53E+02 8.43E+02 3.91E+04 3.41E+04 3.27E+03 3.21E+03
Max 9.61E+02 8.89E+02 9.84E+06 6.45E+05 4.02E+03 3.30E+03
Fs Std 2.28E+01 1.20E+01 Fi3 1.76E+06 1.85E+05 Fps 1.34E+02 2.42E+01
Media  8.96E+02 8.71E+02 4,48E+05 1.21E+05 3.40E+03 3.23E+03
Mean 8.97E+02 8.69E+02 8.19E+05 1.96E+05 3.42E+03 3.24E+03
Min 1.14E+03 9.11E+02 7.96E+03 1.55E+04 3.49E+03 3.46E+03
Max 3.97E+03 4.30E+03 3.34E+06 2.46E+06 4.13E+03 3.95E+03
Fo Std 6.89E+02 6.56E+02 Fi9 7.13E+05 5.52E+05 Fy 1.58E+02 1.18E+02
Media  1.73E+03 1.01E+03 1.75E+05 3.12E+05 3.70E+03 3.59E+03
Mean 1.90E+03 1.20E+03 4, 76E+05 5.16E+05 3.73E+03 3.62E+03
Min 3.01E+03 2.66E+03 2.15E+03 2.17E+03 4.33E+05 1.63E+05
Max 5.94E+03 8.15E+03 2.55E+03 2.61E+03 4.09E+07 1.17E+07
Fio Std 6.23E+02 1.14E+03 F, 1.16E+02 1.21E+02 F3 9.70E+06 2.81E+06
Media  4.18E+03 3.68E+03 2.35E+03 2.30E+03 487E+06 2.53E+06
Mean 4,24E+03 3.88E+03 2.36E+03 2.33E+03 7.72E+06 3.35E+06
Min 1.29E+03 1.15E+03 2.36E+03 2.34E+03
Max 423E+03 1.32E+03 2.44E+03 2.48E+03
Fi1 Std 8.26E+02 4.06E+01 F» 1.93E+01 2.53E+01
Media  1.62E+03 1.23E+03 2.39E+03 2.36E+03
Mean 1.91E+03 1.23E+03 2.39E+03 2.36E+03

The experimental results in the Table 2 show a
comparison among the proposed algorithm
(GWO-JOS) and GWOfor 30 dimension. The
total functions exhibited in Table 3 are evaluated
in 10, 30, 50 and 100 dimensions on 29
benchmark functions of CEC 2017. The
experiment concludes from the mean of 30 runs
which were experimented successively according
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to each function. The sign (+) at the bottom of
Table 3 indicates that the development of
opposition is better than the original and this
positive indication are also highlighted. The sign
(-) denotes the value of objective function is
slightly higher than the original GWO.

The Wilcoxon signed-rank test was used to
compare the performance of GWOJOS vs. GWO
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across multiple benchmark functions (F1-F30) at
different dimensional settings (10, 30, 50, and
100). The test provides insight into whether the
two algorithms have statistically significant
performance differences. The following can be
mentioned as key observations.

! Statistically Significant Results (p < 0.05)
— GWOIJOS is Better: In most cases, the
p-value is below 0.05, indicating that the
difference between the two algorithms is
statistically significant.. The positive
ranks (Rank +) are significantly higher
than the negative ranks (Rank -) in these
cases, favoring GWOJOS over GWO.
This suggests that GWOJOS consistently
outperforms GWO in optimizing the
given benchmark functions.

No Significant Difference (p > 0.05) —
Similar Performance: Some test cases
(e.g., F4, F5, F13, F16, F17, F19, and
F20) show p-values greater than 0.05,

significant difference between GWOJOS
and GWO. In these cases, both algorithms
exhibit comparable performance, and the
improvements by GWQJOS are not large
enough to be considered statistically
meaningful.

Rare Cases Where GWO Outperforms
GWOJOS: F9 (50D, 100D) shows a
negative winner, indicating that GWO
outperforms GWQOJOS in these specific
settings. This suggests that for certain
high-dimensional functions, GWO may
still be a viable or even better option.

GWOJOS is generally superior to GWO in terms
of optimization performance, as it wins in most
test cases. However, there are a few benchmark
functions where GWO still performs comparably
or better, especially in higher-dimensional
settings. The Wilcoxon test results provide strong
statistical evidence supporting the advantages of
GWOJOS.

meaning there is no statistically
Table 3: Scalability Analysis

F GWOJOS vs.GWO

Dim P-Value z-Value Rank (-) Rank (+) Statistically Winner
significant

Fi 10 0.135908  -1.4912 305 160 0 (p=0.05) =
30 0.000002  -4.7821 465 0 1 (p <0.05) +
50 0.000002  -4.7821 465 0 1 (p <0.05) +
100 0.000002  -4.7821 465 0 1(p<0.05) +

Fs 10 0.000002  -4.7821 465 0 1 (p<0.05) +
30 0.000002  -4.7821 465 0 1(p<0.05) +
50 0.000002  -4.7821 465 0 1(p<0.05) +
100 0.000002  -4.7821 465 0 1 (p <0.05) +

Fs 10 0.628843  -0.4834 256 209 0 (p=0.05) =
30 0.000004  -4.6176 457 8 1(p<0.05) +
50 0.000002  -4.7821 465 0 1 (p <0.05) +
100 0.000002  -4.7821 465 0 1 (p <0.05) +

Fs 10 0.530440  -0.6273 263 202 0 (p=0.05) =
30 0.000053  -4.0417 429 36 1 (p <0.05) +
50 0.000009  -4.4325 448 17 1 (p <0.05) +
100 0.000002  -4.7821 465 0 1 (p<0.05) +

Fe 10 0.013194  -2.4785 253 112 1 (p<0.05) +
30 0.000004  -4.6382 458 7 1 (p <0.05) +
50 0.000002  -4.7410 463 2 1 (p<0.05) +
100 0.000005  -4.5765 455 10 1 (p<0.05) +

F, 10 0.001036  -3.2807 392 73 1 (p <0.05) +
30 0.001484  -3.1778 387 78 1 (p <0.05) +
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50  0.000009 -4.4325 448 17 1 (p < 0.05) +
100 0.000002  -4.7821 465 0 1 (p < 0.05) +
Fs 10 0097772  -1.6558 313 152 0 (p>0.05) =
30  0.000024 -4.2268 438 27 1 (p < 0.05) +
50  0.000010  -4.4119 447 18 1 (p < 0.05) +
100 0.000002  -4.7204 462 3 1 (p < 0.05) +
Fe 10  0.000003 -4.6587 459 6 1 (p < 0.05) +
30  0.000148  -3.7949 417 48 1 (p < 0.05) +
50 0909931 01131 227 238 0 (p>0.05) =
100 0.000716  0.000716 68 397 0 (p>0.05) -
Fo 10  0.042767 -2.0260 331 134 1 (p < 0.05) +
30 0003379 -2.9310 375 90 1 (p < 0.05) +
50  0.000106 -3.8771 421 44 1 (p < 0.05) +
100 0.000031  -4.1651 435 30 1 (p < 0.05) +
Fu 10 0001382 -3.1984 388 77 1 (p < 0.05) +
30  0.00002 -4.7821 465 0 1 (p < 0.05) +
50  0.000002 -4.7821 465 0 1 (p < 0.05) +
100 0.000002  -4.7821 465 0 1 (p < 0.05) +
F, 10 0198610 -1.2855 295 170 0 (p>0.05) =
30  0.005667 -2.7664 367 98 1 (p < 0.05) +
50  0.000004 -4.6176 457 8 1 (p < 0.05) +
100 0.000002  -4.7821 465 0 1 (p < 0.05) +
Fis 10 0477947 -0.7096 267 198 0 (p>0.05) =
30 0428430 -0.7919 271 194 0 (p>0.05) =
50  0.000004 -4.6382 458 7 1 (p < 0.05) +
100 0.000002  -4.7821 465 0 1 (p < 0.05) +
F. 10 0130592 -15118 306 159 0 (p>0.05) =
30  0.002957 -2.9721 377 88 1 (p < 0.05) +
50  0.000053  -4.0417 429 36 1 (p < 0.05) +
100  0.000002  -4.7204 462 3 1 (p < 0.05) +
Fis 10  0.000205 -3.7126 413 52 1 (p < 0.05) +
30  0.000160 -3.7743 416 49 1 (p < 0.05) +
50  0.000420 -3.5275 404 61 1 (p < 0.05) +
100 0.000002  -4.7204 462 3 1 (p < 0.05) +
Fie 10 0349346 -09359 278 187 0 (p>0.05) =
30 0027029 -2.2111 340 125 1 (p < 0.05) +
50  0.007731  -2.6636 362 103 1 (p < 0.05) +
100 0.000003  -4.6793 460 5 1 (p < 0.05) +
Fr 10 0599936  -0.5245 258 207 0 (p>0.05) =
30  0.298944 -1.0387 283 182 0 (p>0.05) =
50  0.040702  -2.0465 332 133 1 (p < 0.05) +
100 0.000420 -3.5275 404 61 1 (p < 0.05) +
Fs 10 0125438 -15323 307 158 0 (p>0.05) =
30  0.000664  -3.4041 398 67 1 (p < 0.05) +
50  0.002585 -3.0133 379 86 1 (p < 0.05) +
100  0.000022  -4.2474 439 26 1 (p < 0.05) +
Fio 10 0416534 -08124 272 193 0 (p>0.05) =
30 0557743 05862 204 261 0 (p>0.05) =
50  0.003162 -2.9516 376 89 1 (p < 0.05) +
100 0.000002  -4.7410 463 2 1 (p < 0.05) +
Fo 10 0465283 07302 197 268 0 (p>0.05) =
30 0530440 -0.6273 263 202 0 (p>0.05) =
50  0.044919  -2.0054 330 135 1 (p < 0.05) +
100 0.097772  -1.6558 313 152 0 (p>0.05) =
Fu 10  0.000049  -4.0622 430 35 1 (p < 0.05) +
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30  0.000082 -3.9388 424 41 1 (p < 0.05) 4
50  0.000002 -47616 464 1 1 (p < 0.05) +
100 0.000002 -4.7616 464 1 1 (p < 0.05) +
Fr 10 0280214 -1.0798 285 180 0 (p>0.05) =
30  0.000002 -4.7821 465 0 1 (p < 0.05) +
50  0.000012 -4.3708 445 20 1 (p < 0.05) +
100 0.000016  -4.3001 442 23 1 (p < 0.05) 4
Fs 10 0236936  -1.1827 290 175 0 (p>0.05) =
30 0.007271 -2.6842 363 102 1 (p < 0.05) +
50  0.000616  -3.4246 399 66 1 (p < 0.05) +
100 0.000002  -4.7616 464 1 1 (p < 0.05) 4
F.s 10 0000031  -4.1651 435 30 1 (p < 0.05) +
30 0013194 -2.4785 353 112 1 (p < 0.05) +
50  0.002585 -3.0133 379 86 1 (p < 0.05) 4
100 0.000002  -4.7821 465 0 1 (p < 0.05) 4
Fs 10 0004390 -2.8487 371 94 1 (p < 0.05) +
30  0.000002 -4.7204 462 3 1 (p < 0.05) +
50  0.000002 -4.7821 465 0 1 (p < 0.05) +
100 0.000002  -4.7821 465 0 1 (p < 0.05) +
Fs 10 0001197 -3.2395 390 75 1 (p < 0.05) +
30  0.000002 -47821 465 0 1 (p < 0.05) +
50  0.000002 -47821 465 0 1 (p < 0.05) +
100 0.000002  -4.7410 463 2 1 (p < 0.05) +
Fr 10  0.002105 -3.0750 382 83 1 (p < 0.05) +
30 0.000136 -3.8154 418 47 1 (p < 0.05) +
50  0.000005 -45559 454 11 1 (p < 0.05) +
100 0.000002  -4.7821 465 0 1 (p < 0.05) N
Fs 10 0017518 -2.3756 348 117 1 (p < 0.05) +
30  0.000002 -4.7821 465 0 1 (p < 0.05) +
50  0.000002 -47821 465 0 1 (p < 0.05) +
100 0.000002  -4.7821 465 0 1 (p < 0.05) N
Foo 10 0007271  -2.6842 363 102 1 (p < 0.05) +
30 0013194 -2.4785 353 112 1 (p < 0.05) +
50  0.002765 -2.9927 378 87 1 (p < 0.05) +
100 0.000034  -4.1445 434 31 1 (p < 0.05) +
Fo 10 0020671 -2.3139 345 120 1 (p <0.05) +
30 0.007271 -2.6842 363 102 1 (p < 0.05) +
50  0.001593 -3.1572 386 79 1 (p < 0.05) 4
100 0.000174 -3.7537 415 50 1 (p < 0.05) +

Diversity analysis and exploration-exploitation
analysis of the GWOJOS algorithm for CEC2017
benchmarks are displayed in Figure 7. These
analyses have shown how important the
exploration-exploitation balance is. Additionally,
the experimental results show that the effect of the
JOS strategy on the exploration-exploitation
balance. This is consistent with the purpose of the
study.
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Figure 7: Exploration-Exploitation and diversity e

analysis of GWO and GWQOJOS algorithms
Figure 8: Convergence and stability analysis of

Fitness values, fitness average value and box plot ~ GWO and GWOQJOS.
representations of GWOJOS and GWO

algorithms for 30 runs are shown in Figure 8. 4. Speed Control Development
From this analysis, the superiority of GWOJOS

. 4. 1. Modeling of DC Motor System
over GWO is seen. g y

This section introduces a DC motor setup
consisting of both a mechanical load and a DC
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motor. The main goal is to effectively regulate the
motor's speed and torque through the
implementation of a control system. The
equivalent circuit for this specific type of DC
motor is illustrated in Figure 9.

Figure 9. Equivalent circuit of DC motor.

This system is regarded as a linear system and the
mechanical stress is represented as a constant
torque (t;) to create a mathematical model. The
speed of the DC motor is controlled by regulating
the armature voltage v, (t). This produces an
electromechanical force while armature current
io(t) adjusts proportionally to the rotational
speed (Izci and Ekinci, 2023). To model the DC
motor, the following differential expressions
characterizing the motor's speed and torque
dynamics are provided:

LUGY

Va(t) = ig()Ry + Ly dt

1)

b

while the flux remains constant, the induced
voltage E}, inthe motor is linearly proportional to
angular velocity w as follows

0
Ep =Ky — ==Ky 0(t) )

A total torque consists of the impact of the inertia
and fractional torques which is given by

dw(t)
dt

Tg =T, =] + B () = Kniy(t) )
where R, and L, are the resistance and
inductance of the DC motor respectively. E,, is the
back electromotive force, K, is the constant, 9 is
the angular velocity, w is the motor shaft velocity,
Tz , T, are the electric and load torques
respectively, / indicates the motor's moment of
inertia. B and K, are frictional and torque
constants  respectively.  Applying  Laplace
transform to equations (1-3) (with zero initial
conditions) which leads to
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v(s) = (Ls + Ry)ia(s) + Ep(s)
4)

Ep(s) = Kpw(s) (®)

Te(s) = T(s) = s + b)w(s) = Knia(s)
(6)

Simplifying equations (4) and (6) results in

v(s)—Kpw(s)

i(s) = X )
Tg(s)-T Km .
w(s) = S = i (s) ®)

The DC motor’s transfer function can be

expressed as follows:
Gp(s) = % = (Las+Ra)(;<sn+lB)+Kme’ Ti(s) =0
(9)

4. 2. NIOPID Controller

Non-integer  (fractional) calculus is a

generalization of integration and differentiation to
non-integer order fundamental operator ‘DT
where a and t are the limits and (r € R) is the
order of the operation. The two definitions used
for the fractional differantial D" are the
Griinwald-Letnikov (GL) definition and the
Riemann-Liouville (RL) definition (Xue et al.,
2006). Further, it has been mentioned in the
literature that for a wide class of functions, these
two definitions are equivalent (Xue et al., 2006).

Then, the fractional PID controlller is writen as:

Gniopin(8) = Kp + Kis™ + Kps*, (A, u > 0)
(10)

in which K, K; and K, are proportional, integral
and derivative gains when A and u denote
fractional integral and derivative orders
respectively. Besides, a block diagram of a
NIOPID-controlled DC motor system is displayed
in Figure 10. The NIOPID controller can
efficiently regulate the speed of DC motors as it
has a more flexible control structure for the
stabilization of dynamic systems. In addition to
PID control, the NIOPID controller has fractional
order terms (4 and ) (Izci et al., 2023). Selection
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of A, u gives the classical controllers PID

controller (A, u = 1).

o

|-

—

T
Laos + o

@ — ==
—] —@°

Figure 10. Diagram showcasing the NIOPID
control implementation in the DC motor system
The NIOPID-controlled DC motor's closed-loop
transfer function is provided as follows:

+

Whet

s *
Ky + =L+ Kps*

®(s) _ _Gniopip()XGp(s)
wref(s)  1+Gniopip (S)XGp(s)

Ga(s) =
(11)

lTLZO

Substituting Gp (s) and Gyopp (s) into equation
(11), one has

_ Km(Kp+Kis™t+KgsM)

G = [Ry+X,]

(12)

where X; = (Js + B)(Lys + Ra) + K, K, and
R, = K (Kp + Kis™ + Kgs#)

4. 3. Objective Function

The problem of DC motor speed regulation is
considered a minimization problem treated by the
GWOJOS. The following procedures define the
related system as an optimization problem. Then,
the NIOPID controller's settings will be ideal. In
the first place, the problem's dimension is shown
as [xy,..,xs5] = [K, K; Kg A p] and the objective
function, F(K) (izci and Ekinci, 2023) for the
corresponding minimization problem is given as:

M
E, +—L%

F(B) = (1-e=) x( o

(tst — tgrr)

) +e 9%
(13)
where ¢ is a balancing coefficient (¢ = 1, in this

paper), E, represents the steady-state error, M,
denotes the overshoot, tgr signifies the settling
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period, and tgy refers to the rise period. The limits
of parameters are 0.001 < K,,, K; K; < 20 and
0<Au<2 These limits are identical to
(Tepljakov and Tepljakov, 2017, Hekimoglu,
2019, Izci et al., 2021, Izci and Ekinci, 2023,
Ayinla et al., 2024, Sarma and Bardalai, 2024).
Figure 11 shows a block schematic of the
suggested approach to design the parameters of
the NIOPID control scheme for the direct-current
powered motor systems.

Figure 11. Schematic of NIOPID control tuning
procedure for the DC motor system with the
GWOJOS

4. 4. Statistical Analysis

This section evaluates the statistical performance
of the GWOJOS. Figure 12 displays the curve of
the objective function for the best run at each
iteration and the best fitness values found for each
run. Also, a boxplot illustrating the distribution of
objective function values produced by algorithms
is presented in Figure 12. The best run of the
optimization process vields the following
controller parameters: with GWOJOS, K, =20,
K; =20, K; =14.4397, y = 0.8181 and u =
0.9988. Figure 13 shows the alteration of control
parameters. This graphic aids in our
comprehension of how the controller's settings
vary throughout the optimization procedure.
Figure 14 shows the best objective function values
obtained over 30 runs. It is clear to see that the
GWOJOS is significantly superior to other
optimizers. The GWOJOS provides a fast
convergence rate and the quality of the solution.



Improved Gray Wolf Optimization Algorithm...

Dogan and Basak / RTEU-JSE 6(1) 220-244 2025

=107

L @

Fitness Values
a

0.004

Best Fitness Values
w

Speed Control Design of DC motor

1 ! L
10 20
Runs

20 30
Iteration

10 40 o

a

10 DG Motor FOPID Controller Design

6.5

+

55

4.5

3.5

2.5

Figure 12. The convergence trends, best fitness value at each run (a), and boxplot (b) achieved by the
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Figure 13. The wvarying of the NIOPID
controller’s parameters over the iterations with the
GWOJOS algorithm

O ective function

2
Mumber of runs

Figure 14. Best objective function values
obtained from all independent runs of the
GWOJOS algorithm

5. Simulation Results and Discussion

This section presents the simulation results of the
developed controller. All simulations are
conducted on MATLAB/Simulink software
installed on a personal computer with an Intel ®
core i5 processor at 2.4 GHz and 8 GB RAM. The

FOMCON toolbox is employed to obtain a non-
integer order PID controller. The closed-loop
responses in terms of time and frequency domains
are shown in Figures 15 and 16, respectively. The
specifications of the closed-loop system in time
and frequency domains are given in Table 4.

Motor Speed (rad/s)

— — -Reference
GWOJOS-FOFID

0.1 02 03 0.4 05 06

Time (s)

0.7

Figurel5: Step response of the GWOJOS-
NIOPID controlled system

Bode Disgram

(-]

2l
=3

Mageitude {d8)
T h
(-}

o8

Phase |dag)
k
o

10°
Frequancy (radis)

Figure 16: Comparison of Bode plot with
NIOPID controllers
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Table 4: Evaluation of performance regarding time and frequency response characteristics

Gain Phase
Alg. Tr T 0S (%) Ess(%) Margin Margin

(dB) (deg)
GWOJOS  0.0071098  0.012091 0 0.026468 0 178.9590
(Proposed)

5. 1. Comparison with Recently Developed
Methods

To verify the effectiveness of the proposed
GWOJOS-NIOPID controller, this subsection
performs comparisons using the recently
developed methods such as SMA-NIOPID,
OBLSMASA- NIOPID  (Tepljakov  and
Tepljakov, 2017), ASO-NIOPID (Ayinla et al.,
2024), GWO-NIOPID (Hekimoglu, 2019). Figure
18 compares the closed-loop responses of DC
motor with different controllers. To demonstrate
the superiority of the GWOJOS-NIOPID
controllers over other approaches documented in
the literature, we present the results of a
performance analysis focusing on time-domain
features in Table 5.

Robustness Analysis

The robustness analysis was performed by
varying the electrical resistance (R,) of the DC
motor with +25% and torque constant (K,) with
+20% separately. This leads to four different
testing cases. The closed-loop step responses for
all cases are shown in Figures 18, 19, 20 and 21.
Despite varying parameters in the DC motor
system, the proposed GWOJOS-NIOPID
controller provides a satisfying performance over
the other controllers. Table 6 compares results
achieved by PID and GWOJOS-NIOPID
controllers for the time-domain performance
assessment.

Motor Speed (rads)

o5 o
Time (s)

Figure 17. Comparison of step response
dynamics between the proposed method and other
methodologies.

™

Motor Speed (rad/s)

Motor Speed (rad's)

0.04  0.06
Time (s)

02 03 04 05
Time (s)

06 07 08 089 1

Figure 18.
responses in the

Comparison of closed-loop
DC motor for Case I.

Mator Spoed (rad's)

T
AN

¥

|

-

Figure 19. Comparison of closed-loop
responses in the DC motor for Case II.
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Table 5. Performance analysis in case of different scenarios

CASES  Metrics GWOJOS GWO ASO gBLSMAS SMA
T, 0.0071008 0043995 0033151 _ 0012688 0024175
vominal T 0012001 0075312 0055502 0019787  0.038442
oo 0S (%) 0 0.30006 0 1.8925 0.60724
Ess(%) 0026468 00091974 012963  0.27943 3'003157
case T, 0009831 0055929 0042453 0016461  0.03101
R=030 T 016124 0095608 0072934 0026277  0.05086
and 0S (%) 0 0.24162 0 0.81883 0
Kn=0.012  Ess(%) 0045856  0.12579 027829  0.2535 0.11581
Casell. T, 00057112 0036032  0.027055 0010264  0.019705
R=030 T 0012445 0061703 0044593 0029981  0.030878
and 0S (%) 2.1888 0.37418 033004  2.9356 1.2651
Kn=0.018 Ess(%) 0045856 012579 012192  0.21698 0.019382
Case - T 00098104 0055918  0.042431 0016429  0.030965
R=050 T 015189 0095845 0073016 0026189  0.050757
and 0S (%) 0 0.20236 0 0.86782 0
Kn=0.012  Ess(%) 0056653 0034993 014006  0.37494 0.023642
Case v T, 0.0057059  0.03603 0027047 0010254 0.01969
R=50 T 0012534 0061808 0044617 0030134  0.030851
and 0S (%) 2.2274 0.34511 031307 29676 1.273
Kn=0.018  Ess(%) 0076308 009864 0030561  0.2981 0.07315

Motor Speed (rad/s)
o
@

Motor Speed (rads)

0.020.040.060.08 0.1 0.12
Time (s}

[=" = +Reference
GWOJOS-FOPID
GWO-FOPID
ASO-FOPID
OBLSMASA-FOPID

SMA-FOPID

0 01 02 03 04 05 06 07 08 09 1
Time (s)

Figure 20. Comparison of closed-loop
responses in the DC motor for Case Il1.
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Motor Speed (radls)

4 F
Time (s}

Figure 21. Comparison of closed-loop
responses in the DC motor for Case IV.
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Table 6. Time domain performance analysis of direct current motor system employing various PID

controllers.

Transient response and quality indicators

Adjustment Method Maximum Rise time  Settling
Overshoot (Sec) Time (sec) ZLG
(%) (0:10:9) (62%)

GWOJOS-NIOPID 0 0.0071098 0.012091 0.0020

Levy flight distribution with Nelder—Mead algorithm

baed 0 0.0462 0.0813 0.0129

Proportional integral-derivative (PID) (lzci, 2021)

Harris-hawks optimization based PID

(Ekinci et al., 2020) 0 0.0568 0.1003 0.0160

Henry gas solubility optimization based PID

(Ekinci et al., 2021) 0 0.0684 0.1186 0.0185

Slime mould algorithm based PID

(Izci and Ekinci, 2021) 0 0.0491 0.0857 0.0135

Atom search optimization based PID

(Hekimoglu, 2019) 0 0.0692 0.1535 0.0310

Grey wolf optimization based PID

(Agarwal et al., 2018) 1.5062 0.1388 0.2052 0.0340

Stochastic fractal search algorithm based PID

(Bhatt et al., 2019) 0 0.5436 1.4475 0.3325

Kidney-inspired algorithm-based PID

(Hekimoglu, 2019) 0 0.0445 0.0922 0.0176

Invasive weed optimization algorithm based PID

(Khalilpour et al,, 2011) 6.9759 0.4189 1.2533 0.3511

Particle swarm optimization based PID 249406  0.3560 1.8028 0.6855

(Khalilpour et al., 2011)

6. Conclusion

The Joint Opposite Selection operator consists of
Selective Leading Opposition and Dynamic
Opposite methods. In a particular search space,
the DO and SLO enhance the balance of
exploration to exploitation, respectively. SLO
calculates the search agents' close distance
dimension using a threshold value that decreases
linearly. DO gives search agents opportunities to
develop their capabilities in the search domain.
The JOS operator is combined with the GWO
algorithm, which is widely used in the literature.
Although GWO is widely wused, it has
disadvantages in finding the best results. This
combination has improved the performance of
GWO. The effectiveness of the improved GWO
algorithm has been tested using CEC2017
benchmarks. The results show that the improved
GWO gives better results than the original GWO
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and its superiority has been proven with the
Wilcoxon sign test. These results are analyzed and
visually displayed. In addition, the NIOPID speed
control design problem for a DC motor has been
solved. Extensive simulation results have shown
that the improved GWO-based NIOPID controller
outperforms existing methods when comparing
PID and NIOPID controllers designed using
various optimization techniques in the literatiire.
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