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FUZZY NONLINEAR SECOND ORDER VOLTERRA

INTEGRODIFFERENTIAL EQUATION

S.MELLIANI, A. MOUJAHID, A. KAJOUNI, AND L. S. CHADLI

Abstract. In this paper we generalized the definitions of family cosine and

sine in the fuzzy case. secondly we proved the existence and uniqueness of the
mild solution of nonlinear second order Volterra integrodifferential equation

with fuzzy initial data. Finally we given an application example.

1. Introduction

The problems of existence, uniqueness and other properties of solutions for the
second order systems have much attention in the recent years. It is advantageous
to treat second order abstract differential equations directly rather than to convert
into first order systems (refer, Fitzgibbon [8]). Fitzgibbon [8] used the second or-
der abstract system for establishing the boundedness of solutions of the equation
governing the transverse motion of an extensible beam. A useful technique for the
study of abstract second order equations is the theory of strongly continuous cosine
family of operators. We will make use of some of the basic ideas from cosine family
theory [7, 9, 19, 21, 22]. Motivation for second order systems can be found in [7,
12, 16, 19, 20].
In this regard H. L. Tidke and M. B. Dhakene are study the existence and unique-
ness of solutions of second order nonlinear Volterra integro-differential :

x′′(t) = Ax(t) + f(t, x(t))

∫ t

t0

k(t, s, x(s))ds, 0 ≤ t0 ≤ T

x(t0) = x0, x′(t0) = y0

where A is an infinitesimal generator of a strongly continuous cosine family {C(t) :
t ∈ R} in Banach space X, f : [t0, T ]×X ×X → X, k : [t0, T ]× [t0, T ]×X → X
are continuous functions and x0, y0 are given elements of X.
In this article we will generalize the definitions of family cosine and sine in the fuzzy
case, in the second part we will prove the existence and uniqueness of the mild
solution of the Previous problem with A is an infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} in space En, f : [t0, T ]×En×En → En,
k : [t0, T ]×[t0, T ]×En → En are continuous functions and x0, y0 are given elements
of En.

Date: June 1, 2017, accepted December 7, 2017.
Key words and phrases. Differential geometry, algebraic geometry.

1



2 S.MELLIANI, A. MOUJAHID, A. KAJOUNI, AND L. S. CHADLI

2. Preliminaries

We introduce notations, definitions and preliminary facts that will be used
throughout the paper.

Definition 2.1. A one parameter family {C(t) : t ∈ R} of bounded linear operators
in En is called a strongly continuous cosine family if and only if

• (a) C(0) = I (I is the identity operator on En);
• (b) C(t)x is strongly continuous in t on R for each fixed x ∈ En;
• (c) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R.

If {C(t) : t ∈ R} is a strongly continuous cosine family in En, then we define the
associated sine family {S(t) : t ∈ R} by

S(t)x =

∫ t

0

C(s)xds , x ∈ En, t ∈ R (3)

The infinitesimal generator A : En → En of a cosine family C(t) : t ∈ R is defined
by

Ax =
d2

dt2
C(t)x|t=0, x ∈ D(A)

where D(A) = {x ∈ En : C(·)x ∈ C2(R, En)}. Let M ≥ 1 and N be two positive
constants such that ‖C(t)‖ ≤M and ‖S(t)‖ ≤ N for all t ∈ [0, T ].

Definition 2.2. We say that x is a mild solution of the problem (1)-(2) if:

(i) x ∈ C([t0, T ], En) and x(t) ∈ D(A) for all t ∈ [t0, T ]

(ii) x(t) = C(t−t0)x0+S(t−t0)y0+
∫ t

t0
S(t−s)f(s, x(s),

∫ s

t0
k(s, τ, x(τ))dτ)dx, t ∈

[t0, T ] (4)

We list the following hypotheses for our convenience.

(H1) For t, s ∈ [t0, T ] and xi, yi ∈ En, i = 1, 2, there exist nonnegative constants
L,K such that

D(f(t, x1, y1), f(t, x2, y2) ≤ L[D(x1, x2) +D(y1, y2)]

and

D(k(t, s, x1), k(t, s, x2)) ≤ KD(x1, x2)

(H2) There exist two continuous functionsp, q : [t0, T ]→ R+ such that

D(f(t, x1, y), 0̂) ≤ p(t)[D(x, 0̂) +D(y, 0̂)]

and

D(k(t, s, x), 0̂) ≤ q(t)D(x, 0̂)

For all x, y ∈ En and t, s ∈ [t0, T ].
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We require the following Lemmas in our further discussion.

Lemma 2.3. Let u(t), p(t) and q(t) be real valued nonnegative continuous functions
defined on R+, for which the inequality

u(t) ≤ u0 +

∫ t

0

p(s)[

∫ s

0

q(τ)u(τ)dτ ]ds,

holds for all t ∈ R+, where u0 is a nonnegative constant, then

u(t) ≤ u0[1 +

∫ t

0

p(s) exp(

∫ s

0

p(τ)q(τ)dτ)ds],

holds for all t ∈ R+

3. Existence and Uniqueness of Mild Solution

Theorem 3.1. Let f : [t0, T ] × En × En → En is continuous and satisfied the
hypothesis (H1). Then for each x0, y0 ∈ En, the initial value problem (1).(2) has
a unique mild solution x ∈ CT on [t0, T ]. Moreover, the mapping (x0, y0)→ En is
Lipschitz continuous from En × En into CT .

Proof. Define a mapping F : CT → CT by

(Fx)(t) = C(t−t0)x0+S(t−t0)y0+

∫ t

t0

S(t−s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, t ∈ [t0, T ] (5)

step 1

Let x ∈ CT and h a small reel, we have:

D(Fx(t+ h), Fx(t)) = D(C(t+ h− t0)x0 + S(t+ h− t0)y0 +

∫ t+h

t0

S(t+ h− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, C(t− t0)x0

+ S(t− t0)y0 +

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτds))

≤ D(C(t+ h− t0)x0, C(t− t0)x0) +D(S(t+ h− t0)y0, S(t− t0)y0)

+ D(

∫ t+h

t0

S(t+ h− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds,

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds)

≤ D(C(t+ h− t0)x0, C(t− t0)x0) +D(S(t+ h− t0)y0, S(t− t0)y0)

+ D(

∫ t

t0

S(t+ h− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds,

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds)

+ D(

∫ t+h

t

S(t+ h− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, 0̂)

It is clear that

D(C(t+ h− t0)x0, C(t− t0)x0)→ 0 as h→ 0

D(S(t+ h− t0)y0, S(t− t0)y0)→ 0 as h→ 0
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D(

∫ t

t0

S(t+h−s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds,

∫ t

t0

S(t−s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds)→ 0 as h→ 0

D(

∫ t+h

t

S(t+ h− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, 0̂)→ 0 as h→ 0

Thus F (x) ∈ CT i.e F maps CT into itself.
step 2

We observe that the mild solution of the equations (1)(2) is a fixed point of
the operator equation Fx = x. Let x, y ∈ CT and using equation (5), and the
hypothesis, we obtain:

D((Fx)(t), (Fy)(t)) = D(C(t− t0)x0 + S(t− t0)y0 +

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, C(t− t0)x0 + S(t− t0)y0

+

∫ t

t0

S(t− s)f(s, y(s),

∫ s

t0

k(s, τ, y(τ))dτ)ds)

= D(

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds,

∫ t

t0

S(t− s)f(s, y(s),

∫ s

t0

k(s, τ, y(τ))dτ)ds)

≤
∫ t

t0

D(S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds,

∫ t

t0

S(t− s)f(s, y(s),

∫ s

t0

k(s, τ, y(τ))dτ)ds)

≤ N

∫ t

t0

D(f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, f(s, y(s),

∫ s

t0

k(s, τ, y(τ))dτ)ds)

≤ N

∫ t

t0

L[H(x, y) +KH(x, y)

∫ s

t0

dτ ]ds

≤ N

∫ t

t0

L[H(x, y) +KH(x, y)(s− t0)]ds

≤ N(t− t0)[L+ LK
(t− t0)

2
]H(x, y)
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Similarly by using the equation (5),(6) and the hypothesis we get :

D(F 2x(E), F 2y(t)) = D(F (Fx(t)), F (Fy)(t))

= D(

∫ t

t0

S(t− s)f(s, Fx(s),

∫ s

t0

k(s, τ, Fx(τ))dτ)ds),

∫ t

t0

S(t− s)f(s, Fy(s),

∫ s

t0

k(s, τ, Fy(τ))dτ)ds)

≤
∫ t

t0

D(S(t− s)f(s, Fx(s),

∫ s

t0

k(s, τ, Fx(τ))dτ)ds,

∫ t

t0

S(t− s)f(s, Fy(s),

∫ s

t0

k(s, τ, Fy(τ))dτ)ds)

≤ NL

∫ t

t0

D(F (Fx(s)), F (Fy)(s))ds+NL

∫ t

t0

K

∫ s

t0

D(F (Fx(s)), F (Fy)(s))dτds

≤ NL[NL
(t− t0)2

2!
+NLK

(t− t0)3

3!
]H(x, y) +NL[NL

∫ t

t0

(t− t0)2

2!
ds+NLK

∫ t

t0

(t− t0)3

3!
ds]H(x, y)

≤ N2 (t− t0)2

2!
[L2 + 2L2K

(t− t0)

3
+ L2K2 (t− t0)2

4× 3
]H(x, y)

≤ N2 (t− t0)2

2!
[L2 + 2L2K

(t− t0)

2!
+ L2K2 (t− t0)2

4
]H(x, y)

≤ (t− t0)2

2!
[L2 + 2L2K

(t− t0)

2!
+ LK

(t− t0)

2
]2H(x, y)

By marking use of the equation (5),(7) and iteration it follows that:

D(Fnx(t), Fny(t)) ≤ (t− t0)n

n!
[N(L+ LK

(t− t0)

2!
)]nH(x, y)

For n large enough, 1
n! [TN(L+ LKT

2 )]n < 1 Thus, there exists a positive integer
n such that Fn is a contraction in En. Then there exists a unique x ∈ En such
that Fnx = x. Furthermore, we have:

Fn(Fx) = F (Fnx) = Fx

Hence Fx is a unique fixed point of Fn, so we conclude that x is the unique mild
solution of (1).(2).

Suppose that y is another mild solution of the initial value problem (1) with
y(t0) = x∗0, y

′(t0) = y∗0 on [t0, T ]. Using the equation (4) and the hypothesis (H1),
we have:

D(x(t), y(t)) = D(C(t− t0)x0 + S(t− t0)y0 +

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds), C(t− t0)x∗0

+ S(t− t0)y∗0 +

∫ t

t0

S(t− s)f(s, y(s),

∫ s

t0

k(s, τ, y(τ))dτ)ds)

≤ D(C(t− t0)x0 + C(t− t0)x∗0) +D(C(t− t0)y0 + C(t− t0)y∗0)

+

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds),

∫ t

t0

S(t− s)f(s, y(s),

∫ s

t0

k(s, τ, y(τ))dτ)ds)

≤ MD(x0, x
∗
0) +ND(y0, y

∗
0) +

∫ t

t0

[D(x(t), y(t)) +

∫ s

t0

kD(x(τ), y(τ))dτ ]ds

By applying lemma (2) know as the Pachpahe’s inequality with u(t) = D(x(t), y(t))
and u0 = 0 to the inequality (9), we get:
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D(x(t), y(t)) ≤ [MD(x0, x
∗
0) +ND(y0, y

∗
0)]× [1 +NL

∫ t

t0

exp(

∫ s

t0

(NL+K)dτ)ds]

This proves that the uniqueness of x, i. e. for x0, y0 ∈ En, the initial value
problem (1).(2) has a unique mild solution x ∈ CT on t0 ≤ t ≤ T and also Lipschitz
continuity of the mapping (x0, y0) → x. This completes the proof of the Theorem
1.

�

Theorem 3.2. Let the hypothesis (H2) be satisfied. Then all solutions of (1)(2)
are bounded on [0, T ].

Proof. Let

x(t) = C(t−t0)x0+S(t−t0)y0+

∫ t

t0

S(t−s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, t ∈ t0, T ]

be a solution of (1), (2). Using hypothesis (H2), we have:

MD(x(t), 0̂) ≤MD(x0, 0̂) +ND(y0, 0̂) +

∫ t

t0

ND(f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ, 0̂)ds

≤MD(x(t), 0̂) ≤MD(x0, 0̂)+ND(y0, 0̂)+

∫ t

t0

Np(s)[D(x(s), 0̂)+

∫ t

t0

q(τ)D(x(τ), 0̂)dτ ]ds

applying lemma (2), with u(t) = D(x(t)), we get :

D(x(t)) ≤ [MD(x0 +ND(y0][1 +

∫ t

t0

Np(s) exp(

∫ t

t0

[Np(τ) + q(τ)]dτ)ds]

≤ [MD(x0) +N(y0)][1 +

∫ t

0

NP exp(T [NP +Q])ds]

≤ [MD(x0) +N(y0)][1 + TNP exp(T [NP +Q])], (13)

Where

P = max
t∈[0,T ]

p(t) and Q = max
t∈[0,T ]

q(t).

Thus, the boundedness of x(t) follows from inequality (13). This completes the
proof of the theorem 2 �

Example
In order to illustrate the applications of some of our result established in previous
section, we consider the following partial nonlinear differential equation of the from:

∂2w(t, u)

∂t2
=
∂2w(t, u)

∂u2
+
w(t, u) sin(w(t, u))

(1 + t)(1 + t2)

+

∫ t

0

sw(s, u)

(1 + t)
ds, t ∈ [0, 1], u ∈ I = [0, π], (14)

w(t, 0) = w(t, π) = 0̂, t ∈ [0, 1], (15)
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w(0, u) = x0(u) ∈ En, u ∈ I (16)

∂w(t, u)

∂t
|t=0 = y0(u) ∈ En, u ∈ I, (17)

Let us take w(t, u) = x(t)(u). Since

f(t, x(t),

∫ t

t0

k(t, s, x(s))ds) =
x(t) sin(x(t))

(1 + t)(1 + t2)
+

∫ t

0

sx(s)

(1 + t)
ds

Second order integrodifferential equations
and

k(t, s, x(s)) =
sx(s)

(1 + t)
,

we have

D(f(t, x1,Kx1), f(t, x2,Kx2) ≤ 2

(1 + t)(1 + t2)
D(x1, x2)+

∫ t

0

s

(1 + t)
D(x1(s), x2(s))ds

≤ 2

(1 + t)(1 + t2)
H(x1, x2) +

t2

2(1 + t)
H(x1, x2)

≤ LH(x1, x2)

Were

L = max
t∈[0,1]

{ 2

(1 + t)(1 + t2)
,

t2

2(1 + t)
andkx :=

∫ t

t0

k(t, s, x(s))ds}

Also, we obtain

D(f(t, x,Kx), 0̂) ≤ 1

(1 + t)(1 + t2)
H(x, 0̂) +

∫ t

0

s

(1 + t)
H(x, 0̂)ds

≤ [
1

(1 + t)(1 + t2)
+

t2

2(1 + t)
]H(x)

≤ p(t)H(x, 0̂)

where

p(t) = [
1

(1 + t)(1 + t2)
+

t2

2(1 + t)
]

Similarly, we can estimate for the function k:

D(f(t, x1,Kx1), f(t, x2,Kx2) ≤ s

(1 + t)
D(x1, x2)

≤ KH(x1, x2)

Were
K = sup

0≤s≤t≤1
{ s

(1 + t)
},

and for 0 ≤ s ≤ t ≤ 1

D(k(t, s, x)) ≤ s

(1 + t)
H(x, 0̂) ≤ q(t)H(x, 0̂)

where

q(t) =
t

(1 + t)
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We define the operator A : D(A) ⊂ En → En by Aw = wuu, where D(A) =
{w(·) ∈ En : w(0) = w(π) = 0}. It is well known that A is the generator of strongly
continuous cosine function {C(t) : t ∈ R} on En.

Where the hypothesisH1 andH2 are satisfied by using theorem (1) and (2). Then
the problem (14),(15),(16) and (17) has a unique mild solution which is bounded
on [0, 1].
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