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EXISTENCE AND UNIQUENESS RESULTS OF FUZZY

FRACTIONAL DIFFERENTIAL EQUATION WITH NONLOCAL

CONDITIONS

L.S. CHADLI, S. MELLIANI, K. HILAL, AND A. KAJOUNI

Abstract. In this paper, we discus the existence and uniqueness of mild solu-

tion to the fuzzy Cauchy Problem for the fractional differential equation with
nonlocal Dqx(t) = Ax(t) + tnf(t, x(t), Bx(t)), t ∈ [0, T ], n ∈ Z+, x(0) =

x0 + g(x) where 0 < q < 1, A is the generator of the fuzzy strongly semigroup
(S(t))t≥0 on En.

This is an example of a special section head

1. Introduction

The origin of Fractional Calculus goes back to Newton and Leibniz in the seventi-
eth century. It is a generalization of ordinary differential equations and integration
to arbitrary non integer orders. Fractional Calculus is widely and efficiently used
to describe many phenomena arising in Engineering, Physics, Economy, and Sci-
ence. Recently, fractional differential equations have attracted many authors (see
for instance [111713, 151720] and references therein).

The following equation{
Dq

0+x(t) = f(t, x(t)), 0 < t < 1
x(0) + x′(0) = 0, x(1) + x′(1) = 0

where Dq
0+ denotes the Caputo fractional derivative with 1 < q ≤ 2 was studied

by S. Zhang [20] and the existence of positive solutions was obtained using classical
fixed point theorems.

In [19], the author studied both the local and global existence of solutions to the
equation

{
Dqx(t) = f(t, x(t)),

x(k)(t0) = x
(k)
0 , k = 0, 1, ..., n− 1
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in a finite dimensional space. The results are obtained via construction and the
contraction mapping principle. Recently G.M. NGurkata [17] has considered the
Cauchy Problem with nonlocal conditions

{
Dqx(t) = f(t, x(t)), t ∈ [0, T ],
x(0) + g(x) = x0,

in a general Banach space X with 0 < q < 1. By means of the Krasnoselskiis
Theorem, existence of solution was also obtained. In his pioneering paper [4], K.
Deng has indicated that the nonlocal condition x(0) + g(x) = x0 can be applied in
physics with better effect than the usual local Cauchy Problem x(0) = x0. Deng
used

g(x) =

p∑
k=1

ckx(tk),

where ck, k = 1, 2, ..., p, are given constants and 0 < t1 < t2 < ... < tp.T ,
to describe the diffusion phenomenon of a small amount of gas in a transparent
tube. In this case, the Cauchy problem allows additional measurements at tk, k =
1, 2, ..., p. From a theoretical stand point, the nonlocal condition above appears
more general than the classical initial value problem.

Lets observe also that since Dengs paper, such problem has also attracted several
authors including A. Aizicovici, L. Byszewski, K. Ezzinbi, Z. Fan, J. Liu, J. Liang,
Y. Lin, T.-J. Xiao, E. Hernndez, H. Lee, etc. (see for instance [1178, 14, 17] and
the references therein).

We are motivated here by [9] where the authors study the existence and unique-
ness of the mild solution to the problem with initial value{

Dqx(t) = f(t, x(t)), Gx(t), Sx(t), t > t0
x(0) = x0,

where 0 < q ≤ 1, and A is the generator of a strongly continuous semigroup
(T (t))t≥0.

In this regard G.M.Mophou and G.M.N’Gurkata [see ] are study the existence
of the mild solution for fractional differential equations with nonlocal conditions:{

Dqx(t) = Ax(t) + tnf(t, x(t), Bx(t)), t ∈ [0, T ], n ∈ Z+,
x(0) = x0 + g(x),

Where T is a positive real, 0 < q < 1, A is the generator of a C0-semigroup

(S(t))t≤0 on a Banach space X,Bx(t) :=
∫ t

0
K(t, s)x(s)ds,K ∈ C(D,R+) with

D := t{(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T} and

B∗ = sup
t∈[0,T ]

∫ t

0

K(t, s)ds <∞

f : R×X ×X → X is a nonlinear function, g : C([0, T ], X)→ D(A) is continu-
ous and 0 < q < 1. The derivative Dq is understood here in the Caputo sense.
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In this paper we are concerned with the existence and uniqueness of the mild
solution to fuzzy Cauchy Problem for the fractional differential equation with non-
local conditions

(1.1)

{
Dqx(t) = Ax(t) + tnf(t, x(t), Bx(t)) t ∈ [0, T ] n ∈ Z
x(0) = x0 + g(x)

where T is a positive real, 0 < q < 1, A is the generator of the fuzzy strongly

semigroup (S(t))t≥0 on En, B(x(t)) =
∫ t

0
K(t, s)x(s)ds, K ∈ C(D,R+)

D = {(t, s) ∈ R2 + 0 ≤ s ≤ t ≤ T}
B∗ = supt∈[0,T ]

∫ t
0
K(t, s)ds

f : [0, T ]× En × En → En is a nonlinear function.
g : C([0, T ], En) → D(A) is continuous and 0 < q < 1 the fuzzy derivative: Dq is
understood in the caputo since.

1.1. Existence and uniqueness.

(1.2)

{
Dqx(t) = Ax(t) + tnf(t, x(t), Bx(t)) t ∈ [0, T ] n ∈ Z
x(0) = x0 + g(x)

where T is a positive real, 0 < q < 1, A is the generator of the fuzzy strongly

semigroup (S(t))t≥0 on En, B(x(t)) =
∫ t

0
K(t, s)x(s)ds, K ∈ C(D,R+)

D = {(t, s) ∈ R2 + 0 ≤ s ≤ t ≤ T}
B∗ = supt∈[0,T ]

∫ t
0
K(t, s)ds

f : [0, T ]× En × En → En is a nonlinear function.
g : C([0, T ], En) → D(A) is continuous and 0 < q < 1 the fuzzy derivative: Dq is
understood in the caputo since.

Definition 1.1. we say that x is a mild solution of 1.2 if:

(1) x ∈ C([0, T ], En), x(t) ∈ D(A) for all t ∈ [0, T ]

(2) x(t) = S(t)(x0 + g(x)) + 1
Γ(α)

∫ t
0
(t− s)q−1snS(t− s)f(s, x(s), Bx(s))ds

We assume that:

• (H1)f : [0, T ]× En × En → En is continuous.
• (H2) there exist functions u1, u2 ∈ L1

loc([0, T ],R+) such that:
D(f(t, x, u), f(t, y, v)) ≤ u1D(x, y)+u2D(u, v) for all t ∈ [0, T ] and x, y, u, v ∈
En

• (H3):g : C([0, T ], En) → D(A) is continuous and there exists a constant b
nonegative such that D(g(x), g(y)) ≤ bD(x, y) for all x, y ∈ CT
• (H4):x0 ∈ D(A)
• (H5): the function εn(t) : [0, T ]→ R+, n ∈ Z

εn(t) = MT [b+
T q−1

Γ(q)

tn+1

n+ 1
(‖ µ1 ‖L1

loc
+B∗ ‖ µ2 ‖L1

loc
)]

satisfied 0 < εn(t) ≤ γ < 1 for all 0 ≤ t ≤ T .
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Theorem 1.2.

Under assumption (H1)-(H5), if A is the generator of a fuzzy strongly semigroup
(S(t))t≥0 on En, then the problem 1.2 has a unique mild solution.

Proof.
Define F : C → C by:

x(t) 7→ F (x(t)) = S(t)(x0 + g(x)) +
1

Γ(q)

∫ t

0

(t− s)q−1S(t− s)snf(s, x(s), Bx(s))ds

Step 1

Let x ∈ C and h ∈ R+

D(F (x(t+ h)), F (x(t))) = D(S(t+ h)(x0 + g(x)) +
1

Γ(q)

∫ t+h

0

(t+ h− s)q−1snS(t+ h− s)f(s, x(s), Bx(s))ds, S(t)(x0 + g(x))

+
1

Γ(q)

∫ t

0

(t− s)q−1snS(t− s)f(s, x(s), Bx(s))ds)

≤ D(S(t)S(h)(x0 + g(x)), S(t)(x0 + g(x)))

+
1

Γ(q)
D(

∫ h

0

(t+ h− s)q−1snS(t+ h− s)f(s, x(s), Bx(s))ds+

∫ t+h

h

(t+ h− s)q−1snS(t+ h− s)f(s, x(s), Bx(s))ds,

∫ t

0

(t− s)q−1snS(t− s)f(s, x(s), Bx(s))ds)

≤ D(S(t)S(h)(x0 + g(x)), S(t)(x0 + g(x)))

+
1

Γ(q)
D(

∫ h

0

(t+ h− s)q−1snS(t+ h− s)f(s, x(s), Bx(s))ds, 0̃)

+
1

Γ(q)
D(

∫ t

0

(t− s)q−1(s+ h)nS(t− s)f(s+ h, x(s+ h), Bx(s+ h))ds,

∫ t

0

(t− s)q−1snS(t− s)f(s, x(s), Bx(s))ds)

≤ D(S(t)S(h)(x0 + g(x)), S(t)(x0 + g(x)))

+
1

Γ(q)

∫ h

0

D((t+ h− s)q−1snS(t+ h− s)f(s, x(s), Bx(s)), 0̃)ds

+
1

Γ(q)
MT q−1

∫ t

0

expω(t−s)D((s+ h)nf(s+ h, x(s+ h), Bx(s+ h)), snS(t− s)f(s, x(s), Bx(s)))ds

it is clear that D(S(t)S(h)(x0 + g(x)), S(t)(x0 + g(x)))→ 0 as h→ 0

and
∫ h

0
D((t+ h− s)q−1snS(t+ h− s)f(s, x(s), Bx(s)), 0̃)ds→ 0 as h→ 0

and by the dominated convergence theorem:
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0

expω(t−s)D((s+h)nf(s+h, x(s+h), Bx(s+h)), snS(t−s)f(s, x(s), Bx(s)))ds→
0 as h→ 0

Hence F (x) ∈ C i.e F maps C into itself.

Step2:

let t ∈ [0, T ] and x, y ∈ C,then we have

D(F (x(t)), F (y(t))) = D(S(t)(x0 + g(x)) +
1

Γ(q)

∫ t

0

(t− s)q−1snS(t− s)f(s, x(s), Bx(s))ds, S(t)(x0 + g(y))

+
1

Γ(q)

∫ t

0

(t− s)q−1snS(t− s)f(s, y(s), By(s))ds)

= D(S(t)(x0 + g(x)), S(t)(x0 + g(y)))

+
1

Γ(q)
D(

∫ t

0

(t− s)q−1snS(t− s)f(s, x(s), Bx(s))ds,

∫ t

0

(t− s)q−1snS(t− s)f(s, y(s), By(s))ds)

≤ M exp(ωt)D(g(x), g(y))

+
1

Γ(q)

∫ t

0

D((t− s)q−1snS(t− s)f(s, x(s), Bx(s)), (t− s)q−1snS(t− s)f(s, y(s), By(s)))ds

≤ MT bH(x, y) +
1

Γ(q)

∫ t

0

(t− s)q−1M exp(ω(t− s))snD(f(s, x(s), Bx(s)), f(s, y(s), By(s)))ds

≤ MT bH(x, y) +
T q−1MT

Γ(q)

∫ t

0

sn(µ1(s)D(x(s), y(s)) + µ2(s)D(Bx(s), By(s)))ds

≤ MT bH(x, y) +
T q−1MT

Γ(q)
(

∫ t

0

snµ1(s)ds)H(x, y)

+
T q−1MT

Γ(q)
B∗(

∫ t

0

snµ2(s)ds)H(x, y)

≤ MT [b+
T q−1

Γ(q)

tn+1

n+ 1
(‖ µ1 ‖L1

loc
+B∗ ‖ µ2 ‖L1

loc
)]H(x, y)

≤ εn(t)H(x, y)

so we get :H(Fx, F (y)) ≤ γH(x, y) where γ < 1.

Hence F is the contraction. Then the problem 1.2 has a unique mild solution
x(t).

x(t) = S(t)(x0 + g(x)) +
1

Γ(q)

∫ t

0

(t− s)q−1S(t− s)snf(s, x(s), Bx(s))ds

�
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