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ABSTRACT

As global energy demands surge and the environmental implications of fossil fuel dependence 
become more pronounced, there is an urgent need to transition toward more sustainable and 
eco-friendly energy alternatives. This underscores the dire need for sustainable, secure, and 
environmentally friendly energy solutions. To this end, efficient energy management strategies 
combined with the optimal design of hybrid renewable energy systems are paramount for ju-
diciously harnessing renewable resources. In such systems, wind turbines, photovoltaic panels, 
diesel generators, and battery storage must be meticulously sized to ensure cost-efficiency, en-
vironmental sensitivity, and resilience against unpredictable load variations. Addressing these 
design challenges, our study emphasized the significance of strategic efficiency, prudential com-
ponent selection, and system dependability. We designed an off-grid hybrid renewable energy 
system, incorporating photovoltaic panels, wind turbines, battery storage, and diesel generators, 
to meet the annual energy requirements of a university campus. After recording data for a full 
year, which included metrics on solar radiation, wind speed, ambient temperature, and campus 
load, we developed a model founded on comprehensive energy management strategies. This 
model aims to identify optimal design parameters, reduce annual costs, achieve sustainable en-
ergy benchmarks, and ensure a harmonious power exchange between system components. For 
optimization, we used an array of algorithms, notably the genetic algorithms, particle swarm 
optimization, gravity search algorithms, and hybrid algorithms, such as the hybrid genetic al-
gorithm-particle swarm optimization and the hybrid gravity search algorithm-particle swarm 
optimization, supplemented by the HOMERPro software. Our findings revealed that the inte-
gration of photovoltaic panels with battery storage led to an annual system cost of $671,474.98, 
a levelized cost of energy of $0.1800, a total net present cost of $10,898,221.74, and a renewable 
energy fraction of 100%. It became evident that the hybrid genetic algorithm combined with 
particle swarm optimization, when aligned with astute energy management strategies, was more 
effective in determining optimal design parameters than other methodologies. Through this re-
search, we offer profound insights into the dynamics of hybrid renewable energy systems, serv-
ing as a guide for pragmatic design and tangible implementation.

Cite this article as: Güven AF, Yörükeren N. A comparative study on hybrid GA-PSO 
performance for stand-alone hybrid energy systems optimization. Sigma J Eng Nat Sci 
2024;42(5):1410−1438.

Research Article

A comparative study on hybrid GA-PSO performance for stand-alone 
hybrid energy systems optimization 

Aykut Fatih GÜVEN1,* , Nuran YÖRÜKEREN2

1Department of Electrical and Electronics Engineering, Yalova University, Yalova, 77200, Türkiye
2Department of Electrical Engineering, Kocaeli University, Kocaeli, 41001, Türkiye

ARTICLE INFO

Article history
Received: 20 June 2023
Revised: 31 July 2023
Accepted: 12 September 2023

Keywords:
Cost of Energy; Genetic 
Algorithm Partical Swarm 
Optimization; Energy 
Management System Optimal 
Sizing Design; Stand-Alone 
Renewable Microgrid System 

*Corresponding author.
*E-mail address: afatih.guven@yalova.edu.tr
This paper was recommended for publication in revised form by 
Editor-in-Chief Ahmet Selim Dalkilic

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

https://sigma.yildiz.edu.tr
https://orcid.org/0000-0002-1071-9700
https://orcid.org/0000-0002-5092-4952
http://creativecommons.org/licenses/by-nc/4.0/


Sigma J Eng Nat Sci, Vol. 42, No. 5, pp. 1410−1438, October, 2024 1411

INTRODUCTION

Background
Due to the escalating levels of global production, elec-

trical energy has emerged as a fundamental element under-
pinning the development of societies and nations [1]. Thus, 
power plants often depend on fossil fuels for electricity 
generation. However, the adverse environmental impacts 
associated with the increased use of fossil fuels, coupled 
with the rising energy prices and the growth in global sur-
face temperatures due to heightened emission rates, have 
become untenable [2]. It is reported that a significant por-
tion of the world’s fossil fuel originates from coal, primar-
ily used for electricity generation. This has led to increased 
greenhouse gas emissions, contributing to global warming 
and obstructing sustainable lifestyles [3]. Turkey’s new cli-
mate policy underscores the importance of reducing green-
house gas emissions, particularly given their significant 
role in climate change during energy production. A strate-
gic plan is required to phase out fossil fuels, eliminate fos-
sil fuel support and incentives, allocate public resources to 
renewable energy investments, particularly solar and wind 
energy, build the necessary infrastructure, and establish 
equitable transformation plans encompassing all sectors 
[4]. Furthermore, the new climate policy should prohibit 
the construction of new coal plants, positioning Turkey as 
a frontrunner in the shift away from coal. The transition 
away from fossil fuels, alongside other measures aimed at 
combating climate change, holds promise for improved air 
quality and technological growth in social life. As a result, 
developing countries such as Turkey are investing consid-
erable efforts to upgrade their energy infrastructure and 
curtail environmental pollution, especially greenhouse gas 
emissions. It is clear that reducing fossil fuel consumption, 
curbing global warming, and achieving future decarboniza-
tion hinge on the utilization of renewable energy for green 
energy production [5]. Moreover, environmentally friendly 
and sustainable renewable energy sources (RES) should be 
tapped into to lessen dependence on other countries and 
reduce energy costs [6]. The deployment of hybrid renew-
able energy systems (HRES), which combine renewable 
energy technologies with energy storage devices, is criti-
cal to meeting load demands in remote areas lacking grid 
access and fostering wider adoption of sustainable energy 
technologies [7]. In addition, the stochastic characteristics 
of various RESs and their inherent uncertainties must be 
offset by each other. However, a storage and backup system 
is essential to manage the ongoing load demand. Storage 
options can serve as a buffer to redress the imbalance 
between supply and demand, thereby augmenting the reli-
ability of HRES. The optimal sizing of the HRES configura-
tion, following RES and load level considerations, is among 
the most critical decisions taken during the planning phase. 
The goal is to fulfill the load demand at the chosen location 
at the lowest possible cost. Therefore, an efficient method-
ology and model for optimization are indispensable [8].

Literature Review
A variety of configurations and applications are favored 

by researchers when designing the most efficient HRES. 
Cao and colleagues demonstrated that, for six major Iranian 
cities relying on solar-wind energy systems in diverse cli-
mates and off-grid homes, wind turbines (WT) and photo-
voltaic panels (PV) can generate power more consistently 
throughout the year, despite having similar rated power [9]. 
Zeljkovic et al. [10] employed Monte Carlo simulations to 
design an independent HRES for an intercom base station. 
Using the DIRECT optimization method, they managed to 
decrease the overall system costs and achieve stable conver-
gence. Mahmoudi et al. employed a fuzzy logic controller 
and gravity search algorithms to obtain an optimal HRES. 
In their study, they examined two scenarios: one with a bat-
tery coupled with PV and WT, and another that employed a 
diesel generator (DG) during power outages. Their reliabil-
ity analysis suggested that replacing the battery storage with 
a DG made PV/WT/DG the most cost-effective option 
[11]. Ma et al. researched a standalone renewable energy 
system for 200 homes on Persian Gulf islands. They applied 
two optimization methods: load following (LF)-controlled 
and cycle charging (CC) mode. The LF-controlled mode 
showed a slightly better cost profile than the CC mode [12]. 
In China, Xu and colleagues developed an off-grid microg-
rid system utilizing solar and battery energy for affordable 
green electricity in rural buildings. Through a year’s worth 
of real data, they derived an optimal size and proposed the 
taboo search algorithm for ideal sizing. Their experiments 
suggested reduced costs and fewer batteries and PV in a 
basic scenario [13]. Yi et al. highlighted the influence of 
battery storage (BS) types on sizing autonomous PV/BS 
systems [14]. Aziz et al. combined HOMERPro and 
MATLAB to optimize an HRES comprising batteries, die-
sel, and wind. They noted that slight changes in distribution 
strategies have a pronounced effect on system efficacy [15]. 
Dufo-López et al. introduced a wind-PV/BS/DG HRES 
with a thermoelectric generator. Using a genetic algorithm, 
they identified an economically viable design [16]. Yu et al. 
suggested a two-stage stochastic optimization approach for 
HRES design and operation [17]. Some researchers have 
delved into the combined optimization of system design 
and demand-side management, viewing it as a form of vir-
tual energy storage [18]. Fares et al. compared ten meta-
heuristic optimization methods for a standalone HRES. 
They found the firefly optimization algorithm to be the 
fastest, whereas simulated annealing was the most accurate 
and robust [19]. Jasim et al. optimized EMS sizing for an 
off-grid hybrid microgrid system. They confirmed the 
superiority of the hybrid gray wolf optimization cuckoo 
search (GWOCS) algorithm over others like particle swarm 
optimization (PSO), genetic algorithm (GA), GWO, and CS 
[20]. Afolabi and colleagues tailored their study to rural 
Nigerian settlements, proposing an optimal off-grid HRES. 
They devised a model using a metaheuristic PSO technique, 
complemented by a fuzzy logic-controlled EMS [21]. 
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Rangel et al. aimed to curtail fuel consumption, costs, and 
emissions in DG/PV/BS HRES for rural electrification. 
Their model considered the fuel consumption for die-
sel-hint oil blends and two primary pollutants. Sensitivity 
analysis revealed that varying fuel costs had minimal level-
ized cost of energy (LCOE) impact unless diesel prices 
surged by 100% [22]. Leandro et al. addressed multi-objec-
tive optimization for hybrid wind-PV generation and bat-
tery storage. They employed the normal boundary 
intersection for multi-objective optimization, examining 
indicators such as net present value, return on investment, 
and greenhouse gas emissions [23]. Hariri et al. experimen-
tally examined the impact of forced convective cooling on 
the performance of photovoltaic thermal (PV/T) collectors 
modified with paraffin and steel foam. The results obtained 
with two different finned heat sink attachments indicate 
that this cooling technique can significantly enhance the 
electrical and thermal efficiency of PV/T collectors [24]. In 
the work of Khalili and Sheikholeslami, the lack of effective 
cooling in PV cells was addressed using a numerical 
approach. They increased the electrical output by adding a 
thermoelectric layer beneath the Tedlar layer. For cooling 
the cells, they employed cooling channels of various shapes 
(circular, triangular, and 3-lobed) using a hybrid nanofluid. 
The highest performance was achieved with the finned tri-
angular duct, which exhibited a performance 9.97% supe-
rior to the circular duct [25]. Jasim and colleagues aimed to 
integrate demand-side management into residential energy, 
facilitating informed energy consumption decisions and 
enabling energy companies to manage peak demand. They 
employed algorithms such as the binary orientation search 
algorithm (BOSA), cockroach swarm optimization, and the 
sparrow search algorithm. Notably, BOSA stood out with 
its lower standard deviation and cost savings compared to 
other algorithms [26]. Akdamar et al. demonstrated how 
the efficiency of solar air heaters could be enhanced by har-
nessing the waste heat produced from cooling photovoltaic 
modules. In their experiment, two distinct solar air heaters 
were used: the first (hybrid) was equipped with a heat 
exchanger, and the second operated as a standard unit. 
Remarkably, the hybrid unit yielded an air temperature 
18.13% higher than the standard unit. This innovative 
approach enabled the recovery of 188.64 kWh of waste heat 
annually in the hybrid unit, resulting in an annual CO2 
emissions reduction of 144 kg [27]. Amuta et al. assessed an 
isolated solar/battery microgrid, focusing on optimizing 
energy resource integration for a remote Nigerian commu-
nity. Using the annualized system cost, a 25-year cost of 
energy (COE) was examined. Using MATLAB-based 
Particle Swarm Optimization, the optimal configuration 
was established. Their findings suggest that the proposed 
microgrid model offers valuable insights for economic 
microgrid design, confirming its viability in various global 
scenarios [28]. In a study by El-Khozondar and colleagues, 
the focus was on addressing the electricity crisis in Gaza, 
which was exacerbated by political tensions and the 

COVID-19 pandemic. To this end, a off-grid HRES was 
proposed as a viable solution for powering quarantine cen-
ters. Utilizing the HOMER-Pro program for simulation and 
optimization, it was determined that a combination of PV, 
wind, and diesel generators in the HRES configuration pre-
sented the most cost-effective solution compared to tradi-
tional systems. The recommended HRES comprised of a 
150 kW PV, a 200 kW wind turbine, and two diesel genera-
tors of capacities 500 kW and 250 kW, respectively. 
Impressively, the system promises a payback period as short 
as 1.8 years. The findings of this research offer a practical 
and sustainable approach for powering critical facilities 
such as quarantine centers [29]. In a study conducted by 
Kely and colleagues, it was highlighted that Chad’s energy 
production relies entirely on thermal plants utilizing fossil 
fuels, which are not environmentally friendly. Moreover, 
the electrification rate in Chad is less than 11%. The 
research aimed to propose reliable electrification alterna-
tives for Chad through hybrid energy systems. To realize 
this objective, the feasibility of autonomous hybrid PV/
WT/DG/BS systems to meet the electrical demand in 
Chad’s isolated regions was evaluated using the HOMER 
software. Three types of daily load profiles in each of the 16 
unelectrified regions in Chad were considered: low, 
medium, and high community load profiles. The simula-
tions revealed optimal configurations of PV/BS, PV/DG/
BS, and PV/WT/DG/BS for various consumers and sites. 
The COE ranged from 0.367 to 0.529 US$/kWh. This sug-
gests that the COE for some sites is below Chad’s produc-
tion cost of 0.400 US$/kWh, rendering them economically 
viable. Implementing these hybrid systems, in comparison 
to a single diesel generator, would lead to a reduction in 
CO2 emissions per year, ranging from 0 to 15,670 kg/
year[30]. Therefore, advanced optimization methods must 
be employed in clean microgrid systems to generate low-
cost and sustainable green electricity.

Research Gap 
The literature review highlights optimization techniques 

for power management and sizing of HRES. Researchers 
use specific software tools for performance analysis during 
this optimization. These tools fall into two main categories: 
traditional and metaheuristic optimization techniques. 
However, such software often demands more computa-
tional time compared to traditional methods [31]. Many 
scholars recommend both traditional and evolutionary 
algorithms for identifying the optimal HRES component 
size. Evolutionary algorithms have effectively addressed 
issues of becoming trapped in local minimums during opti-
mization. Regardless of the approach used, determining the 
optimal size for HRES always necessitates the use of optimi-
zation techniques [32].

This study’s distribution strategies prioritize the use of 
RES over diesel generators to meet load demand. In line with 
the energy management system’s guidelines, batteries were 
charged without resorting to diesel generators first. Using 
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the optimization techniques we developed, we assessed the 
HRES operating conditions. The model’s input parameters 
guided the optimization of the best PV-WT system. Our 
preliminary simulations employed HOMERPro software, 
which is the global standard for microgrid design optimiza-
tion. This software validated our study’s sizing method. The 
simulation results indicate that the leveled unit energy cost 
from HOMERPro outperforms four different meta-heuris-
tic algorithms. A key distinction between our method and 
the HOMERPro model is the distribution strategy: the latter 
allows a diesel generator unit to charge the battery bank with-
out always prioritizing RES. This difference underscores the 
need for meticulous strategy selection, given the profound 
influence of HRES on both economic and reliability assess-
ments. Our analysis of the meta-heuristic algorithms used in 
this study highlights the benefits of hybrid algorithms. They 
strike a balance between discovery and application. Every 
optimization algorithm can predict tendencies toward opti-
mal solutions. Notably, the Genetic Algorithm Particle Swarm 
Optimization (GAPSO) excels in speed when pitted against 
other popular algorithms and the HOMERPro software.

Paper Organization 
The article is structured into several sections. Section 

II introduces a mathematical model of the HRES compo-
nents. Section III delves into the objective function, the 
method, deployment strategies for energy management 
systems, and metaheuristic algorithms. Optimization out-
comes, discussions, and sensitivity analyses are detailed in 
Section IV. Section V concludes the article.

MATERIALS AND METHODS

This section delves into the measurement data. It also 
covers the mathematical expressions of energy source 
power and the formulae for economic analysis. Specific 
constraints and an objective function were established to 
address the optimization challenge. The optimization pro-
cess is comprehensively described at the end. The process 
graph for the research methodology is illustrated in Figure 
1. Each HRES component slated for installation is docu-
mented. Their techno-economic parameters, meteorologi-
cal data, and load demand data are archived in a database. 
We employed metaheuristic optimization algorithms in the 
MATLAB environment. Using these algorithms, the opti-
mal size of the HRES is determined. This is done by taking 
into account the objective function and constraints. The 
sizing process yields detailed insights. It provides the sys-
tem’s energy profile for each second over a year. This profile 
is based on comprehensive energy data and graphs.

Hybrid Renewable Energy System Modeling
This study examines six essential components of the 

HRES. Three of these components are related to DC elec-
tricity: the PV plant, battery pack, and dump load. The 
other three, the domestic load, diesel generator, and wind 
farm, are associated with AC electricity. IGBT-based high-
power converters handle both AC to DC and DC to AC 
conversions. However, the optimization formulation doesn 
not account for the dynamics of the transducers because of 
their relation to high frequencies. An energy management 

Figure 1. Block diagram of the research methodology.
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system (EMS) oversees the power distribution among the 
HRES components. As illustrated in Figure 2, the microgrid 
configuration features a single DC/AC inverter for power 
conversion, and the HRES is structured with distinct AC 
and DC busses. All production elements, loads, and DC/
AC converters maintain bi-directional communication 
with the EMS, continuously updating it with their compo-
nent statuses. For optimal HRES functioning, the EMS dis-
patches control signals to each device. Before finalizing the 
optimal microgrid size, it is essential to model the system 
components. Because the characteristics of the hybrid sys-
tem components significantly influence the system’s cost of 
energy (COE) and reliability, a detailed model of these parts 
is provided in the subsequent section[33].

Photovoltaic Energy System Modeling
The combined power generated by the solar panels in a 

PV system equals the total power produced by the system. 
Equation (1), often referred to as the simplified PV model, 
uses ambient temperature and solar radiation to calculate 
the power produced by each panel per hour.[34].

  (1)

Here, Ppvout(t)  the PV module’s output power (W), G 
solar radiation value (W/m2), and P(PVrated) PV nominal 
power value (W) in standard test conditions, The tem-
perature coefficient defined by αc(−3.7x10-3 (1/°C)),  Tref  
denotes the standard test conditions temperature of the PV 
cell(°C), and Tamb ambient temperature (°C).

Modeling of Wind Energy System
The most accurate model is essential for estimating 

the power output from a WT. The determining factor for a 
wind turbine’s power output in any given locale is the wind 
speed. The power produced by the wind turbine is com-
puted using Equation (2).

  
(2)

Pr represents the WT nominal power (kW), v(t) rep-
resents the wind speed (m/s), vcut-out represents the low 
shear speed of WT (m/s), vr represents the WT nominal 
speed (m/s), and vcut-in represents the high shear speed val-
ues of WT (m/s).

  (3)

In Equation (3), establishes a relationship between 
the wind speed at the reference hub height (v(t)) and the 
wind speed at the anemometer height (vref), along with the 
heights of the anemometer (Href) and wind turbine hub (H), 
as well as the exponential power law values (ah).

The coefficient ah  is influenced by surface roughness and 
environmental stability, typically ranging from 0.05 to 0.5. 
For the selected sites in this study, ah  is taken as 0.14 [35].

Battery Storage System Modeling
A storage system is necessary to regulate fluctuations in 

renewable energy generation and ensure that it aligns with the 
load demand. When the energy generated by RES surpasses 
the total load demand, the batteries are charged. On the other 
hand, if the power generated falls short of the load demand, 
the batteries are depleted to compensate for the energy gap. 
The processes of battery discharging and charging are assessed 
using Equations (4) and (5), respectively [36].

  (4)

   (5)

In the described equation, several components related 
to the battery storage system (BSS) and energy production 

Figure 2. Schematic drawing of the off-grid PV/WT/DG/BS components.



Sigma J Eng Nat Sci, Vol. 42, No. 5, pp. 1410−1438, October, 2024 1415

play pivotal roles. The capacity of the BS at a specific time t 
is signified by EBS(t) in kWh, while its capacity from the pre-
ceding hour, (t-1), is expressed as EBS(t-1). During the hour 
t, the energy demand is captured by EL(t). Concurrently, 
EWT  quantifies the energy produced by the wind turbine. 
The BSS’s self-discharge rate, a critical factor, is denoted 
by σ and lies between 0 and 1. Additionally, the PV pan-
el’s contribution to energy at time t is indicated by EPV. 
The efficiencies associated with charging and discharging 
the BSS are represented respectively by ηBC and ηBD . While 
these efficiencies can fluctuate based on the current at dis-
tinct charging stages, this study assumes a consistent 90% 
charging efficiency. Lastly, the inverter’s operational effi-
ciency in the system is encapsulated by ηInv .

 In order to limit battery capacity, excess power gener-
ated RES is stored in BS. However, it is important to note 
that BSs have a limited capacity for storing energy. If a BS is 
fully charged and cannot store any more excess power from 
RES, that excess power must either be discharged or wasted. 
Overcharging the BS can damage the batteries and shorten 
their lifespan. Therefore, it is crucial to discharge excess 
power in a controlled manner to prevent this issue. A critical 
parameter to consider in this context is the maximum allow-
able depth of discharge (DOD), expressed as a percentage. 
For this study, the DOD was assumed to be 80%. The min-
imum BS capacity was determined using Equation (6) [37]. 

  (6)

In addition, the BS capacity restriction at any hour was 
expressed by Equation (7).

  (7)

Here, the DOD maximum permissible depth of BS dis-
charge (%), EBSmax and EBSmin are the BS’s maximum and 
minimum capacities, respectively.

Modeling of Diesel Generator 
While generators are not viewed as a renewable energy 

source due to their substantial operational emissions, they 
can be reliable in circumstances where RES are insufficient 
or energy storage is exhausted. Diesel generators’ fuel con-
sumption and efficiency are crucial in HRES design, as 
depicted in Equation (8) [38]. 

  (8)

In the equation, PDG(t) represents the power output of 
DG at hour t (kW), q(t) represents consumption of fuel (L/h), 
Pr represents average DG power, while adg and bdg (L/kW) 
are constants that represent the parameters of standard fuel 
consumption, which were 0.246 and 0.08415, respectively. 

Modeling of Inverter
An inverter is a piece of electronic equipment that con-

verts the DC power generated by RES into AC. Equation (9) 
can be used to calculate the inverter’s input power (Pinv) [39].

  (9)

Here, PL(t) and ηinv are load power and inverter effi-
ciency respectively.

Data on the Economic Parameters of the Energy System
For a comprehensive financial analysis, it is essential to 

consider the impact of sensitive variables influencing the 

Table 1. Economic and technical Specifications of Microg-
rid Components

Definition Parameters Values Units
A. PV Rated capacity 0.345 kW

Temperature coefficient -0.390
Operating temperature 44 °C
Efficiency 17.8 %
Lifespan 20 Years
Capital cost 650 $/kW
Replacement cost 650 $/kW
Maintenance and Operation cost 50 $/year

B. WT Rated power 1 kW
Hub height 17 m
Installation cost 2000 $/kW
Replacement cost 2000 $/kW
Maintenance and Operation cost 200 $/year
lifespan 20 Years

C. BSS Rated voltage 600 V
Rated capacity 100 kWh
Capacity(max) 167 Ah
Round-trip efficiency 90 %
Charging current (max) 167 A
Charge status (min) 20 %
Discharge current (max) 500 A
Dept of discharge 80 %
Lifespan 10 Years
Capital cost 550.00 $/kW
Replacement cost 550.00 $/kW

D. DG Capacity 1500 kW
Replacement cost 250 $/kW
Maintenance and Operation cost 30 $/kWh
Capital cost 175 $/kW
Fuel price 1 $/L
Lifespan 10 Years

E. Inverter Capacity 1 kW
Maintenance and Operation cost 50 $/year
Capital cost 300 $/kW
Replacement cost 300 $/kW
Efficiency 95 %
Lifespan 15 Years

F. Economic 
Parameters

Interest rate 20 %
Inflation rate 17 %
Discount rate 9 %
lifespan 20 Years
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feasibility of the HRES. The economic parameters adopted in 
this study include a 19% real interest rate, a 17% inflation rate, 
and a 9% discount rate, with the HRES having an anticipated 
lifespan of 20 years. Manufacturers provided the actual costs 
or pricing details of the HRES components used in the sim-
ulations. Table 1 presents both the technical and economic 
specifications of the components that make up the HRES.

Analysis of Campus Energy Consumption 
The investigation targeted a university campus, with 

Figure 3 showcasing the spatial coordinates of the study 
area. Meteorological data for 2022 were sourced from 
the State Meteorology General Directorate specific to the 
research site. These data include hourly wind speed, solar 
radiation, ambient temperature, and annual load curves. 
The university’s peak hourly load reached approximately 
1,281.23 kW, with the lowest demand recorded at 425.84 
kW. The average daily electricity consumption amounted 

to 10,220.26 kWh. Figure 4 illustrates the load profile span-
ning a year, encompassing 8,760 hours, for the chosen case 
study. This profile was derived from actual data collected 
from the research area.

Meteorological Data 
For accurate sizing of an HRES, we harnessed the 

capabilities of both HOMERPro and MATLAB platforms. 
MATLAB is particularly recognized for its proficiency in 
multi-objective optimization related to HRES. This soft-
ware can deploy numerous algorithms to identify optimal 
system configurations tailored to specific geographic areas. 
Before initiating computational processes in MATLAB, 
the consumption patterns or load profile of the designated 
area must be considered. Moreover, MATLAB requires a 
comprehensive set of data on the technical and economic 
specifications of the system elements, alongside hourly 
meteorological data. These data should cover aspects such 

Figure 4. Yearly electricity demand curve of the campus.

Figure 3. Location of the case study (Turkey).
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(a)

(b) 

(c) 

Figure 5. Weather patterns of the study area. (a) solar radiation (W/m2), (b) wind speed (m/s), and (c) ambient tempera-
ture (°C).
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as solar irradiance, surrounding temperature, and wind 
velocities. The annual hourly distributions of wind veloc-
ity, solar irradiance, and surrounding temperatures are 
depicted in Figures 5(a), 5(b), and 5(c) in sequence.

METHODOLOGY

HRES combine various renewable sources to ensure 
stable power production. However, their design is influ-
enced by meteorological data because the power profiles 
of renewables can differ greatly. The optimization of HRES 
should account for both power generation demands and 
renewable energy outputs. This demands precise compo-
nent sizing that is reliant on meteorological parameters. 
Proper sizing and selection of the right components are 
essential. They are pivotal in enhancing efficiency and sys-
tem stability, paving the way for a shift toward sustainable 
energy. The subsequent chapter delves into the methodol-
ogy used in this study. This section covers the HRES sizing 
process, energy management strategy, objective function, 
and optimization algorithms.

Energy Management System (EMS)
The energy management strategy is designed to effec-

tively manage the power produced by RES, with the key 
goal of minimizing energy waste. In this study, we focus on 
optimizing HRES usage. This involves regulating the power 
produced by the RES and overseeing the charge and dis-
charge cycles of the battery storage system. In addition, a 
diesel generator acts as a backup power source, supplement-
ing the campus’s energy needs when the RES falls short of 
demand [40]. Depending on the loop charging strategy, the 
EMS controller operates under various scenarios.

Case 1: Wind and solar energy sources provide enough 
energy to meet the load demand, and excess energy from 
these sources will charge the BS (EBS(t) < EBSmax(t)).

Case 2: The surplus energy generated by wind and 
solar sources is effectively harnessed and used to its fullest 
potential by storing it for future use or by employing it in 
alternative ways rather than letting it go to waste (EBS(t) = 
EBSmax(t)).

Case 3: if the energy produced by the wind and solar 
sources falls short of the required load demand, the energy 
stored in the battery banks will be utilized to ensure that the 
demand is met (EBS(t) > EBSmin(t)). 

Case 4: In situations where the wind and solar sources 
fail to generate enough energy to meet the load demand 
and the battery banks are depleted, the diesel generator is 
activated to provide the needed energy and simultaneously 
recharge the batteries. As soon as the RES resumes generat-
ing power, the diesel generator ceases operation automati-
cally (EBS(t) < EBSmin(t)). 

 Figure 6 illustrates the power-flow algorithm strat-
egy for the EMS intended for the university campus. This 
algorithm operates continuously to optimize energy con-
sumption and minimize wastage. To guarantee a consistent 

power supply in an HRES, a management strategy that 
draws upon backup energy sources, such as battery banks 
and a diesel generator, is implemented. The strategy begins 
by collecting input data, including load demand, climatic 
conditions, wind power, and solar power. The manage-
ment procedure then evaluates the total energy produced 
by renewable sources against the energy demand, activating 
backup sources when required.

Hybrid energy system objective function
The central objective in analyzing the HRES is to deter-

mine the average system cost. The goal is to configure the 
system to supply dependable power at the most economi-
cal rate. The ideal setup is established by considering three 
primary decision factors: the number of batteries, WT 
power, and PV power. The lowest annual cost of the sys-
tem (ACS) emerges as the optimal outcome, considering all 
other parameters and constraints in the techno-economic 
analysis [41]. The objective function encompasses the total 
initial and replacement expenditures, in addition to the 
operation and maintenance costs. Costs tied to installation 
and construction are incorporated within the capital costs 
of the components. Relevant decision factors include ACS, 
LCOE, TNPC, PV, WT, DG, BS, and inverter capacities.

Total Net Present Cost (TNPC)
The total net present cost (TNPC) quantifies the overall 

cost associated with the components of an energy system. 
This cost considers both the expenses and profits generated 
throughout the system’s lifespan. Specifically, it covers the 
capital , replacement , and operation and maintenance costs 
for each component. Equation 10 provides the mathemati-
cal representation of the TNPC [42].

  (10)

Here, Cann_total represents the total annual cost in ($), i 
represents the actual discount rate as a percentage (%), and 
n represents the lifespan of the project in years.

One way to represent the capital recovery factor (CRF) 
is as follows:

  (11)

The real discount rate, i, can be expressed as follows:

  (12)

Here, i' is the nominal interest rate and r is the annual 
inflation rate. In this study, a discount rate of 9 % and an 
inflation rate of 17% are assumed.

Levelized cost of energy (LCOE)
The LCOE is a metric used to measure the cost of energy 

per unit from a specific source, allowing for the comparison 
of economic performance across various energy sources. 
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This calculation considers the comprehensive costs asso-
ciated with HRES components, which include installation, 
operation, maintenance, and decommissioning expenses. 
The LCOE is determined by dividing these combined costs 
by the total energy produced, as illustrated in Equation 13 
[43]. 

  (13)

The variable Cann_total denotes the total annual cost in 
dollars, while Ep represents the total energy production for 
a year. The Cann_total variable includes the cost of installing 
photovoltaic panels and a wind turbine, as well as the cost of 
a diesel generator, battery storage units, and converters [44].

 Cann_total = Cann
PV + Cann

WT + Cann
BSS + Cann

DG + Cann
Inv (14)

Cann
PV, Cann

WT, Cann
BSS, Cann

DG and Cann
Inv are the annual 

costs of PV panels, wind turbines, battery storage units, die-
sel generators, and bidirectional inverters, respectively.

 Cann
PV = Cann,cap

PV + Cann,rep
PV + Cann,O&M

PV - Cann,SV
PV (15)

 Cann
WT = Cann,cap

WT + Cann,rep
WT + Cann,O&M

WT - Cann,SV
WT (16)

 Cann
BSS= Cann,cap

BSS + Cann,rep
BSS + Cann,O&M

BSS - Cann,SV
BSS (17)

 Cann
DG = Cann,cap

DG + Cann,rep
DG + Cann,O&M

DG - Cann,SV
DG (18)

Figure 6. Power management of the PV/WT/DG/BS hybrid energy system.
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 Cann
Inv = Cann,cap

Inv  + Cann,rep
Inv  + Cann,O&M

Inv  - Cann,SV
Inv  (19)

Cann,cap
PV, Cann,cap

WT, Cann,cap
BSS, Cann,cap

DG and Cann,cap
Inv 

represent the annualized capital costs of PV, WT, BS, 
DG, and bidirectional inverters, respectively. Cann,rep

PV, 
Cann,rep

WT, Cann,rep
BSS, Cann,rep

DGand Cann,rep
Inv are the annual 

replacement costs of PV, WT, BS, DG, and bidirectional 
inverters, respectively. Cann,O&M

PV, Cann,O&M
WT, Cann,O&M

BSS, 
Cann,O&M

DG and Cann,O&M
Inv are the annual operation and 

maintenance costs of PV, WT, BS, DG, and bidirectional 
inverters, respectively. Cann,SV

PV, Cann,SV
WT, Cann,SV

BSS, 
Cann,SV

DG and Cann,SV
Inv are the salvage value of PV, WT, BS, 

DG, and bidirectional inverters, respectively.

Loss power supply probability (LPSP) 
To ensure the reliability of an HRES, the probability of 

power supply loss (LPSP) must be considered. LPSP arises 
when the generated energy cannot satisfy the load demand, 
leading to a power outage. The value of LPSP ranges from 0 
to 1. A value of 0 implies a guaranteed load supply, whereas 
1 suggests a complete failure to meet the load. Equation 
(20) calculates the LPSP over a specific timeframe, T, which 
is 8760 h [45].

  (20)

In this context, PWT(t) denotes the energy produced 
by the wind turbine at time t. Meanwhile, PPV(t) signifies 
the power generated by the PV system during that same 
moment, and PDG(t) illustrates the energy emanating from 
the diesel generator at time t. Pload(t) highlights the electri-
cal consumption at that interval, while EBSmin(t) designates 
the lowest allowable energy storage level in the battery sys-
tem. The situation outlined in Equation (21) is also factored 
into the reliability considerations. In this scenario, the LPSP 
metric is initialized to zero before running the simulation.

  (21)

Renewable energy factor (REF)
Several metrics were used to assess the integration of 

RES within an HRES. Equation (22) is used to calculate 
the REF value when the HRES system incorporates a diesel 
generator. REF was chosen specifically to minimize the reli-
ance on non-RES components.

  (22)

In the given formula, PDG(t) signifies the energy out-
put from the diesel generator. Conversely, PPV(t) + PWT(t) 
depicts the energy provided to the load at the specific time 
interval t. To amplify the REF, it is essential to minimize the 
latter part of this formula. It is worth noting that the REF 
has an upper limit set at 100%. Thus, during optimization 

efforts, the REF should consistently stay below the bench-
mark value (εREF), as highlighted in Equation (23) [46]

  (23)

Greenhouse Gas Emission Optimization Model
In the design of an HRES, accounting for greenhouse 

gas emissions (GHG) is paramount. Systems that emit sub-
stantial numbers of GHGs can pose significant environ-
mental risks. The diesel generator within this system is the 
chief contributor to gas emissions, producing three distinct 
gasses: CO2, SO2, and NOx. Equation (24) is employed to 
determine the total gas emissions (TGE) of the system [47]:

  (24)

In this study, emission factors of 697, 0.5, and 0.22 were 
used for CO2, SO2, and NOx, respectively.

Dump Energy Evaluation
In the optimization process, the algorithms reduce the 

energy spent during discharge. Energy discharge is typically 
undesirable because it represents energy consumption, 
especially when there is an overproduction of renewable 
energy and the battery is at full capacity. To counteract this 
discharge, energy can be channeled to discharge loads such 
as campus irrigation, pumping systems, or three-phase 
resistors. This study leverages an optimal system design to 
reduce the amount of discharged energy. To compute the 
cumulative discharge load energy over the system’s lifespan, 
Equation (25) is invoked [48]:

  (25)

Design Variables
Equation (26) delineates the upper and lower con-

straints of the decision variables, including the power from 
wind turbines, solar panels, and battery count.

  
(25)

The power generated by a wind turbine is represented 
as RWT . RPV  denotes the power generated by solar panels, 
while RBS signifies the number of batteries. Given the multi-
tude of variables and the intricate nature of the search space, 
setting boundary values for decision variables in the opti-
mization process is challenging. Typically, these values are 
determined through trial and error. However, in this study, 
the HOMERPro software was used to determine the lower 
and upper boundary values for the algorithms. To ensure 
swift convergence of the algorithms to the optimal solution, 
the values from Equation (26) were employed.
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Simulation and Optimization Techniques
Optimization encompasses the refinement or structur-

ing of a system or procedure to ensure the attainment of 
optimal outcomes. These procedures primarily maximize 
or minimize specific objectives such as efficiency, perfor-
mance, or cost. Nonetheless, during the intricate process 
of HRES sizing optimization, numerous constraints can 
materialize, posing challenges to achieving the paramount 
objective. These impediments can arise from various 
sources. Budgetary considerations, intricate design require-
ments, and judicious material selection are the primary 
concerns. In addition, spatial confines, limitations in pro-
duction capacity, and time constraints further complicate 
the process. It is imperative to introduce these constraints 
to delineate the permissible boundaries of the system or 
process undergoing optimization. In this study, specific 
constraints were set for the HRES design. These include a 
minimum renewable energy ratio of 10%, a discharge depth 
not exceeding 80%, and an annual cost limit of 109. The 
sophisticated optimization algorithm continually adjusts 
the design parameters. This ensures compliance with the 
predetermined constraints, leading to an optimal design 
blueprint.

The proposed HRES was sized using HOMERPro soft-
ware, identifying the best configurations for the selected 
location. In addition, the MATLAB software package was 
used because of its versatility and computational strength. 
MATLAB software is particularly effective in handling 
multi-objective optimization challenges related to HRES. 
In this study, various algorithms such as GA, PSO, GSA, 
GSAPSO, and GAPSO were used to influence the perfor-
mance of the optimization process

HOMER simulation of the HRES
HOMER Pro is a renowned software tool designed for 

the sizing and optimization of HRESs that leverage multiple 
energy sources. It is a hybrid optimization program capa-
ble of evaluating the feasibility of various renewable energy 
configurations of differing sizes. The software also facili-
tates evaluations concerning the sensitivity of preferred 
energy system designs. Originating from the US National 
Renewable Energy Laboratory (NREL), this utility is com-
patible with both grid-tied and standalone energy scenar-
ios. It is designed to function on the Windows operating 
system and has been developed using C++ [49].

Designing and configuring a microgrid requires critical 
decisions regarding component sizing, design, and loca-
tion. To assess the cost of HRES, one must consider fac-
tors such as the inflation rate, interest rate, and technical 
specifications of the chosen components. Given the vari-
ety of technology options and the availability of different 
energy sources, the decision-making process can be intri-
cate. HOMER Pro offers optimization and sensitivity algo-
rithms to assist in this evaluation. It produces an optimal 
solution that adheres to all user-defined constraints, aim-
ing for a minimal NPC value. Furthermore, HOMER Pro 

employs energy balance calculations to determine the sys-
tem’s feasibility. It discards designs deemed unfeasible and 
showcases potential configurations, guiding users toward 
the most suitable system setup. HOMER Pro’s evaluation of 
the HRES’s technical feasibility ensures that it meets both 
electrical and thermal load requirements within specified 
constraints. The software also calculates the system’s NPC, 
factoring in both installation and maintenance costs. When 
simulating the HRES, HOMER Pro considers a full year, or 
8760 hours, and delivers results in a structured format. This 
includes various graphs and tables outlining the system’s 
technical and economic attributes, which users can export 
for deeper analysis. Key decision variables in the optimi-
zation process include PV size, number of wind turbines, 
batteries, and converter size. It also includes the presence 
of RES elements, such as PV panels and wind turbines, the 
size of the generator, and a dispatch strategy defining the 
system’s operational approach.

In this study, we employed year-long climate and load 
datasets within both HOMER Pro and MATLAB 2022b 
to optimize the HRES setup. Both scenarios used identi-
cal decision variables. The same decision variables were 
applied in both scenarios. Figure 7 shows a single-line 
diagram of the HRES. Figure 8 illustrates the simulation 
process in detail. The results are presented in Table 2. They 
highlight the suitability of Scenario 1 PV/BS HRES for 
meeting the yearly load demand. This system comprises a 
5,785 kW solar panel, 936 kWh battery storage, and a 1,384 
kW converter. The LCOE stands at $0.185, with an NPC of 
$11.2M, and the REF value is 100%.

Partical Swarm Optimization (PSO) 
PSO is a population-based optimization method for 

global optimization introduced by Eberhardt and Kennedy 
in 1995. Drawing inspiration from the social behavior of 
flocking birds, PSO simulates how birds adapt to their 

Figure 7. Schematic of the HRES configuration as designed 
on HOMERPro.
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Figure 8. HOMER Pro optimization flow diagram.

Table 2. Optimal sizing results obtained using HOMER Pro under Scenarios 1, 2, 3, and 4 of the proposed HRES

Scenarios Structure Cost

PV
(kW)

WT 
(kW)

DG
(kW)

BS
(Quantity)

Converter 
(kW)

TNPC
($)

LCOE
($/kWh)

O&M
($/Year)

Initial
Capital
($)

REF 
(%)

Scenario2
(PV+WT+BS)

6,243 15 - 755 1,279 11.6M 0.191 411,642 4.88M 100

Scenario 3 
(PV+DG+BS)

15,672 - 1,500 384 1,602 28.3M 0.467 1.06M 11.2M 99.9

Scenario 4 
(PV+WT+DG+BS)

10,635 1,583 1,500 384 1,465 26.2M 0.432 933,437 11M 99.99
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surroundings, forage for food, and protect themselves from 
threats. This behavior is emulated through the principles 
of information sharing and social cognitive intelligence. In 
essence, PSO combines individual experiences with group 
lessons to effectively model complex problems. In the algo-
rithm, a ‘swarm’ is composed of multiple particles. Each of 
these particles adjusts its position on the basis of both its 
individual experiences and the collective experiences of its 
peers. Each particle tracks of its coordinates in the solution 
space, which correspond to the highest fitness value it has 
ever attained. This is termed its “personal best” or “pBest.” 
Moreover, the algorithm acknowledges the best fitness 
value attained by any particle in the swarm, which is desig-
nated as the “global best” or “gBest” [50]. The pseudocode 
for the PSO algorithm is shown in Figure 9.

Genetic algorithm (GA)
Genetic algorithms (GA) employ heuristic techniques 

to address intricate problems, making them versatile tools 
across a wide array of disciplines. The GA approach excels 
at optimization and is capable of deriving insights from 
any dataset. It constructs a population of potential solu-
tions using genetic operators such as crossover and muta-
tion on each solution space point, each represented by a 
genetic parameter termed a chromosome. With each repro-
ductive cycle, the population evolves to include members 
superior to their predecessors. John Holland, a psycholo-
gist and computer scientist at the University of Michigan, 
pioneered the foundational concepts of genetic algorithms. 
The core philosophy of genetic algorithms echoes the 
principle of natural selection: superior generations prevail 

while weaker generations fade away. This philosophy is 
inherently inspired by the evolutionary processes observed 
in living organisms. Holland articulated his research 
insights in his 1975 publication, “Adaptation in Natural 
and Artificial Systems.” Consequently, the algorithm he 
described became widely recognized as a GA [51]. Genetic 
algorithms are conceptualized based on the tenet of natu-
ral selection, emphasizing the survival and evolution of the 
fittest solutions. They harness operators such as recombina-
tion and mutation to spawn new solutions, while a fitness 
function gauges the efficacy of these solutions. A hallmark 
of genetic algorithms is their ability to concurrently evalu-
ate a plethora of solutions, permitting the curation of the 
most optimal ones from an expansive selection and sidelin-
ing the subpar candidates. Consequently, the quality of the 
solutions procured via genetic algorithms demonstrates a 
progressive enhancement over iterations.

A strength of genetic algorithms lies in their compat-
ibility with multi-objective optimization techniques. This 
trait renders them particularly adept at tackling intricate 
challenges, allowing for the swift identification of optimal 
solutions. Nonetheless, the intricacies of genetic algorithms 
might prove challenging for many end users to grasp. 
Moreover, problem-solving with these algorithms and dis-
cerning the most suitable crossover strategies can present 
difficulties. The pseudocode for GA is shown in Figure 10.

In this pseudocode, P represents the population of indi-
viduals and N represents the population size. The algorithm 
begins by generating an initial population of N individuals 

Figure 9. PSO algorithm pseudocode.
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and then evaluates the fitness of each individual in the 
population.

The algorithm then enters a loop that continues until 
some termination criteria are met (e.g., a maximum num-
ber of generations is reached, or the fitness of the best indi-
vidual in the population exceeds a certain threshold). In 
each iteration of the loop, a new population P’ is created 
by selecting two parents from the current population P, 
generating an offspring by applying crossover and muta-
tion operators to the parents, and evaluating the fitness of 
the offspring. This process continues until P contains N 
individuals.

Finally, the current population P is replaced with the 
new population P’, and the loop continues. The algorithm 
returns the best individual in the final population P.

Gravity Search Algorithm (GSA)
The gravitational search algorithm (GSA) is a heuris-

tic search method influenced by both population dynamics 
and the principles of physics, specifically mass interactions. 
Proposed by E. Rashedi and colleagues in 2009 [52], the 
GSA draws its inspiration from Newton’s law of gravity—a 
cornerstone of physical theories.

According to Newton’s law, every particle in the uni-
verse exerts an attractive force on every other particle. This 
force is directly proportional to the product of their masses 
and inversely proportional to the square of the distance 
separating them. In the GSA framework, this concept is 
translated to agents, each having a mass that corresponds 
to fitness function values. As the algorithm progresses over 
iterations, these masses attract each other because of their 
inherent gravitational forces. The heavier a mass—indica-
tive of its proximity to the global optimum—the stronger 
its gravitational pull. As a result, these dominant masses 
attract other masses on the basis of their relative distances, 
guiding the algorithm’s masses to gravitate toward the 

heaviest, most optimal solution while exerting influence on 
their neighbors.

As a population-based method, GSA treats candidate 
solutions as individual masses. Each solution or mass func-
tions like a particle. These particles navigate the search 
space, influenced by gravitational dynamics shaped by 
fitness functions. GSA’s versatile nature has found applica-
tions across various optimization domains, including vehi-
cle routing, artificial neural networks, energy systems, and 
medical applications [53]. For a step-by-step breakdown of 
the algorithm, one can refer to Figure 11, which provides 
the GSA pseudocode.

Partical Swarm Optimization Gravity Search Algorithm 
(PSOGSA)

The particle swarm optimization gravity search algo-
rithm (PSOGSA) is a hybrid optimization algorithm that 
combines the strengths of PSO and GSA to address intri-
cate optimization challenges. While PSO mirrors the social 
behaviors of bird swarms, GSA emulates the gravitational 
interactions between celestial bodies. Together, they offer 
an effective approach to pinpointing the global optimum 
within a search space. In PSOGSA, a population of parti-
cles traverses the search space to identify the most suitable 
solution. Each particle receives a fitness score. This score 
steers the search toward the most promising solutions. 
Particles modify their trajectories on the basis of the PSO 
algorithm. They adjust their velocities and positions using 
both their personal experiences and the collective knowl-
edge of the swarm. Subsequently, GSA refines the solutions 
derived from PSO by emulating the gravitational interac-
tions among particles. This iterative process fine-tunes 
each solution, urging particles toward the global optimum. 
The combination of PSO and GSA fosters a more com-
prehensive and effective exploration of optimal outcomes. 
PSOGSA is a versatile algorithm. Its effectiveness has been 

Figure 10. GA algorithm pseudocode.
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demonstrated in diverse domains such as engineering, 
finance, and medicine. This highlights its ability to solve 
complex optimization problems [54].

PSO and GSA are both potent optimization techniques. 
This study introduces a unique approach by integrating 
them through what we term a “low-level co-evolution-
ary heterogeneous hybrid approach.” Unlike traditional 

methods, where algorithms operate sequentially, our hybrid 
strategy runs PSO and GSA simultaneously. This heteroge-
neous approach employs two separate algorithms to derive 
superior results. At the heart of PSOGSA is the blend of 
the social cognition attributes of PSO, as demonstrated by 
“gbest,” and the adept local search capabilities of GSA. The 
update mechanism in PSOGSA heavily weighs the quality 

Figure 11. GSA algorithm pseudocode.
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of the solutions. Thus, agents nearing the most promising 
solutions magnetically pull other agents operating in the 
same region. This attraction ensures that agents slow down 
as they close in on a potential solution, thereby prevent-
ing any oversight. Additionally, by integrating “gBest,” each 
agent can draw upon the most effective solution identified 
thus far [55].

A comprehensive outline of the PSOGSA process is 
shown in Figure 12.

Genetic Algorithm Partical Swarm Optimization 
(GAPSO) Approach

As illustrated in Figure 13, the GAPSO algorithm begins 
by determining a specific number of iterations for a random 
population and then generating a parameter. The GA algo-
rithm is subsequently applied to this initialized population 
for half of the determined iterations, creating multiple solu-
tions for the population scaling issue. For instance, if the total 
number of iterations is n, the GA algorithm would execute n/2 
times. This approach is supported by the findings of Alajmi 
and Wright [56]. To gage the efficiency of the algorithm, sev-
eral test runs were conducted, after which the parameter values 
were adjusted. These tests suggest that the GAPSO algorithm 
achieves its best performance when the iterations are evenly 
divided between the PSO and GA algorithms.

Numerous researchers have explored multi-objective 
optimization challenges in HRES applications using differ-
ent target metrics. Bates and Granger [57] pioneered the 
introduction of GAPSO, asserting that a combined forecast 
model of two distinct types surpassed individual mod-
els. Pesaran et al. [58] adopted GA and PSO metaheuris-
tic algorithms for forecasting in the electricity sector and 
determined that the PSO-driven exponential model was the 
most effective. Meanwhile, Unler [59] developed a PSO-
centric demand forecasting model for Turkey that incorpo-
rated gross domestic product and population projections. 
Younes M. et al. [60] used the GAPSO hybrid method to 
address economic distribution challenges.

Figure 12. Implementation steps of the PSOGSA algorithm.

Figure 13. Flow chart of the GAPSO algorithm.
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This study models the HRES sizing challenge using the 
GAPSO algorithm, factoring in available resources. When 
there is a high iteration count, GA-based algorithms gener-
ally outperform their counterparts. However, as the num-
ber of iterations increases, the GA algorithm takes longer to 
converge to an optimal solution. On the other hand, PSO-
based algorithms are lauded for their speed and efficiency. 
However, the swift convergence of PSO-based algorithms 
can sometimes lead them to settle at a local optimum, 
possibly skewing the results [61]. The proposed GAPSO 
method combines the strengths of both the PSO and GA 
algorithms. When compared with other similar algorithms, 
GAPSO is anticipated to be more efficient. Moreover, the 
integration of the GA mutation operator in GAPSO count-
ers the risk of settling at local optima, thus enhancing solu-
tion accuracy.

RESULTS AND DISCUSSION

With a focus on minimizing the ACS of the HRES, this 
study aims to optimize the HRES economically using GA, 
PSO, GSA, GAPSO, and PSOGSA algorithms. The PV/
WT/BS/DG system considers several constraints, including 
the battery state of charge (SOC), optimal system sizing, 
and ensuring reliable electricity demand fulfillment. The 

algorithms applied in the optimization process were devel-
oped in the MATLAB environment. Only an LPSP value 
of 0% was used for simulation, indicating that the energy 
requirement was fully met. All pertinent data and factors 
associated with hybrid systems and RES, including wind 
and solar energy, load values, temperature, battery size, 
depth of charge, and type, were integrated.

In addition to the proposed GAPSO algorithm, four 
other algorithms — PSOGSA, PSO, GSA, and GA — were 
developed and applied to address the microgrid system 
design challenge. This approach was used to verify the 
reliability and effectiveness of the hybrid algorithm in 
determining the optimal size of the stand-alone hybrid 
microgrid system. The results were juxtaposed with those 
generated by the GAPSO algorithm, and Figure 19 illus-
trates the convergence behavior of the algorithms for var-
ious off-grid microgrid control parameters. The ACS value 
consistently declined during the iteration process, which 
affirms that the optimization was directed toward the per-
fect system size. Therefore, any reduction in the objective 
function was deemed crucial because it further elucidated 
the optimal size. A meticulous analysis of the conver-
gence behavior of the different algorithms, targeting the 
ideal configuration of a hybrid microgrid system, demon-
strated that GAPSO streamlines the process efficiently, 

Table 2. Optimal sizing results obtained with PSO, GA, GSA, GSAPSO, and GAPSO

Outputs GA PSO GSA PSOGSA GAPSO
Execution time (sec) 334.71 21.57 528.73 658.14
Wind turbines (kW) 0 0 0 0 0
Solar power (kW) 3,743.62 3,559.11 3,600.36 4,475.55 3,640.86
Battery storage power (kW) 4,645.94 4,874.34 5,127.03 3,775.55 4,767.55
Total wind energy (kWh) 0 0 0 0 0
Total solar energy (kWh) 5,642,656.27 5,364,553.17 5,426,720.70 6,745,881.42 5,487,772.63
Total diesel generator 
Energy generation (kWh)

0 0 0 0 0

Wasted energy (kWh) 1,867,404.01 1,606,380.84 1,664,568.55 2,904,329.17 1,721,714.38
Total load demand (kWh) 3,730,393.65 3,730,393.65 3,730,393.65 3,730,393.65 3,730,393.65
Total gas emission (TGE) 0 0 0 0 0
Battery storage input energy (kWh) 2,053,235.75 2,053,235.75 2,051,539.83 2,071,692.96 2,052,141.97
Battery storage output energy (kWh) 2,204,197.12 2,204,197.12 2,215,601.32 2,156,354.34 2,212,297.34
LCOE ($/ kWh) 0.1801 0.1800 0.1859 0.1811 0.1800
TNPC ($) 10,907,327.57 1,0902,623.70 1,1256,179.50 10,967,366.70 10,898,221.74
REF (%) 100 100 100 100
Annual cost of system ($) 672,035.63 671,746.01 693,514.66 675,732.28 671,474.98
Wind cost ($) 0 0 0 0 0
Solar cost ($) 5,473,458.48 5,203,694.44 5,263,997.85 6,543,602.89 5,323,219.11
DG cost ($) 0 0 0 0
Battery cost ($) 5,391,721.42 5,656,781.58 5,950,033.98 4,381,616.13 5,532,854.96
Inverter cost ($) 42,147.66 42,147.66 42,147.66 42,147.66 42,147.66
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thus minimizing computational time and resource usage, 
while yielding superior outcomes. As delineated in Table 
3, GAPSO is the most economical solution compared with 
the other algorithms. The annual cost of the HRES via 
GAPSO is $671,474.98, accompanied by an LCOE value 
of $0.180. The optimized system encompasses 3,640.86 
kW of PV and 4,767.55 kW of BS, contributing an addi-
tional 1,743,197.2546 kWh of energy that could either be 
channeled toward campus irrigation or sold to the grid. 
In summary, the GAPSO algorithm-based optimization 
methodology provides an effective solution to the intricate 
microgrid design quandary.

The cost details for a project encompass various factors, 
including the total initial cost, ongoing maintenance and 
operating expenses, projected lifespan, and quantities and 
costs of each component of the hybrid power system. To 
offer precise solutions in the least amount of time, special-
ized algorithm designs have been developed. In the pro-
posed system, solar panels and batteries are the sole means 
that satisfy the overall energy demand. Table 3 presents the 
optimization results for the GA, PSO, GSA, PSOGSA, and 
GAPSO algorithms. For comparative purposes, we have 
posited a maximum count of 5,000 solar PV panels, 10,000 
wind turbines, and 10,000 batteries across all scenarios. The 
proposed system employs a cycle charging approach, yield-
ing optimal outcomes for the total number of PV panels, 
WT, and BS.

Figure 14 illustrates the average monthly energy bal-
ance over a year. Upon evaluating the HRES, it becomes 

clear that the outputs from wind and solar power align 
well with the available wind and solar resources. During 
months when PV panels produce less energy—specifically 
in January, February, November, and December—the bat-
teries step in to supply the necessary electricity. In contrast, 
the remaining months witnessed a surge in solar energy 
generation due to enhanced natural resources. Notably, 
battery bank usage declines during the summer months, 
leading to decreased power consumption. The chart also 
indicates that HRES produces surplus energy. The campus 
uses this additional 1,721,714.38 kWh of energy for irriga-
tion and other functions. Alternatively, it can be fed into the 
grid or allocated to other systems.

The optimal performance of the proposed HRES was 
verified over a span of two weeks throughout the year. 
Figure 15(a) illustrates the third week of June, during which 
the load is lower, whereas Figure 15(b) represents the sec-
ond week of January, a period with higher load demand. 
Both figures demonstrate the weekly power fluctuations 
among the various system components. In January, the 
battery’s SOC approaches its minimum charge status, and 
solar energy generation is diminished compared with other 
months. Conversely, June is characterized by elevated solar 
energy output and a battery SOC near its maximum charge 
status.

The measurement of the battery’s SOC is crucial because 
it serves as the primary energy storage source for the HRES. 
Figure 16 illustrates the average monthly changes in the 
battery’s SOC and the annual energy input and output. The 

Figure 14. Average monthly energy share to meet load requirements with the stand-alone PV/BS option.
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predefined initial SOC level and the lowest allowed SOC 
were 100% and 20%, respectively. Moreover, Figure 16(a) 
demonstrates that the battery SOC consistently remains 
within this predetermined range. Figure 16 highlights the 
typical SOC values during the resource-scarce months of 
January, February, March, April, and December. Figure 
16(b) can be referred to for tracking the energy input– 
output of the batteries throughout the year. As depicted in 
the graph, ‘Bat out’ represents the battery discharge. This 
discharge corresponds to the energy supplied to the load 
by the battery storage system. On the other hand, ‘Bat in’ 

indicates the battery charge or excess renewable energy 
produced once the battery storage system has met the load’s 
demand. This data is instrumental in monitoring the bat-
tery’s performance gaging the energy contributed to or 
drawn from the system, recognizing energy usage patterns, 
and making informed decisions on battery charging or dis-
charging to optimize its efficiency. Battery charge rates were 
as follows: 67.04% in January, 26.62% in February, 34.09% 
in March, 65.57% in April, 85.57% in November, 46.41% in 
December, and nearly 100% in the other months. 

(a)

(b)

Figure 15. Comparison analysis between the highest and lowest load profiles in 1 year.
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Figure 17 shows the weekly energy values for load, 
battery discharge, wind, and solar energy. The load is pri-
marily supported by energy sources, including solar, wind, 
and battery discharge. The operating strategy prioritizes 
the use of wind and solar energy to cover most of the 
load. When the renewable energy from the sun and wind 
is not sufficient to handle the load, the battery discharges. 
If both the battery bank and the RES are unable to meet 
the load requirement, the DG supplies the necessary power. 
Compared with Figure 17(a), Figure 17(b) introduces an 

additional line representing battery charging. This scenario 
depicts the battery being charged both when the RES are 
generating energy and during times of surplus energy avail-
ability, such as when ample solar energy is present. 

Figure 18 shows a comparison graph of renewable 
energy production and load demand. The graph indicates 
that RES is responsible for the majority of the energy sup-
plied to the load. RES meet the load demand in all months 
except for January, February, November, and December. 
The diesel generator is not used throughout the year.

(a) 

(b) 

Figure 16. Battery energy balance (a) Average monthly battery state of charge (%) (b) Annual battery energy balance 
(kWh).
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In Figure 19, the impact of changes in converter effi-
ciency on the LCOE and ACS values of the proposed micro-
grid is displayed, showing an inverse relationship between 
them. As the efficiency of the inverter increases, both the 
ACS and LCOE values decrease.

The fitness graphs in Figure 20, specifically parts (a) 
through (e), along with the PSO, GA, GSA, PSOGSA, 
and GAPSO algorithms, illustrate the final optimization 
process. The convergence comparison curve in Figure 21 
demonstrates how the algorithms used in the HRES size 
optimization process progress toward the highest quality 

(a)

(b)

Figure 17. HRES optimization balance: (a) load, battery discharge, and wind and solar power; (b) load, battery charge, 
wind power, battery discharge, and solar energy.
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solution. The shape and slope of the graphs in Figure 21 
indicate the speed at which the algorithm approaches the 
optimal outcome based on the number of optimization 
iterations. Among the algorithms, the GAPSO algorithm 

attains an ACS value of ($)671,474.98, whereas GSAPSO 
obtains ($)675,732.28, GA obtains ($)672,035.63, GSA 
obtains ($)693,514.66, and PSO obtains ($)671,746.01. 
Observations indicate that the GAPSO algorithm 

Figure 19. Effect of converter efficiency on the LCOE value.

Figure 18. Yearly overview of renewable energy production and consumption demand.



Sigma J Eng Nat Sci, Vol. 42, No. 5, pp. 1410−1438, October, 2024 1433

Figure 20. Convergence of GA, PSO, GSA, GSAPSO, and GAPSO algorithms in HRES optimization.
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approaches the optimal value quickly after the eighth itera-
tion and yields the solution.

CONCLUSION

In this study, a combination of optimization tech-
niques, including GAPSO, GSAPSO, GA, GSA, and PSO 
algorithms, was used to determine the optimal sizing of a 
stand-alone hybrid renewable energy system consisting of 
PV/WT/BS/DG components for a university campus. The 
study satisfied the campus’ energy needs while minimiz-
ing environmental damage and reducing overall annual 
costs. Hourly load data from the university and infor-
mation on ambient temperature, wind speed, and solar 
radiation were used to simulate the system’s energy flow 
with hourly resolution for a full year. Based on the opti-
mization results, the PV-BS components were found to be 
the most effective. The HOMERPro software was used to 
verify the sizing approach proposed in the study, which is 
the industry standard for optimizing microgrid designs. 
However, the findings of the algorithms produced results 
that were lower than the leveled energy cost achieved with 
the HOMERPro software. The optimization strategies of 
the two versions differed significantly, demonstrating the 
importance of making informed decisions on the optimiza-
tion method when evaluating the hybrid system’s economic 
performance and reliability. To balance the use of hybrid 
algorithms and assessment procedures, the strengths and 

benefits of each algorithm were evaluated. Although the 
algorithms used assessed trends leading to the optimal 
outcome, the fast-converging GAPSO algorithm produced 
superior outcomes. The suggested GAPSO technique is 
competitive regarding resolving the HRES sizing problem 
and is expected to be applied to more challenging issues in 
future research.

Using the GAPSO algorithm technique, the optimiza-
tion results in an ACS value of $671,474.98, LCOE value of 
$0.1800, TNPC value of $10,898,221.74, and REF value of 
100%. These outcomes show that the university campus’s 
load is completely fulfilled while maintaining reasonable 
costs and minimal environmental impact. The RES pro-
vides the required load, rendering the diesel generator, 
which was initially intended as a backup unit, unnecessary. 
The environmental benefits of the study are highlighted by 
the fact that the TGE value is zero. Any excess energy gen-
erated by renewable sources can be used for power on-cam-
pus energy needs, sold to the grid, or invested in irrigation 
systems. These findings provide a valuable reference for 
policymakers and investors in the renewable energy sector.

The developed sizing methodology’s key characteristics 
areas follows:
• The software allows for simulating HRESs that incorpo-

rate wind, solar-diesel, and energy storage technologies, 
enabling the evaluation of the system’s economic viabil-
ity and reliability.

Figure 21. Convergence process of algorithms in the optimal solution of the proposed HRES.
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• The dispatch strategy specifies every possible system 
state as a column in the time series output file, and the 
resulting delivery plan prioritizes the use of RES.

• It is clear from the designed model that an HRES using 
only solar panels and batteries can meet the load demand 
while complying with all restrictions. One could argue 
that solar energy makes the greatest contribution.

• Using energy graphics that accompany technical results, 
instant energy analysis results are always visible. The 
study findings lead us to conclude that the suggested 
algorithm greatly assists in resolving optimal design 
issues in HRES.

• The energy analysis graphs and data from the program 
will enable the evaluation of the specified region from a 
techno-economic and environmental viewpoint. 

• This statement highlights that the feasibility study is 
innovative and will have a direct impact on avoiding 
unnecessary investments and promoting the efficient 
use of public resources.

NOMENCLATURE

Acronyms
ABC Artificial bee colony
ACS Annual cost of the system
AEFA Artificial electric field algorithm
BG Biogas
BS Battery storage
BSS Battery storage system
COE Cost of energy($/kWh)
CRF Capital recovery factor
CC Cycle charging
DG Diesel generator
DOD Depth of discharge
EMS Energy management system
ESS Energy storage system
FLC Fuzzy logic controller
FPA Flower pollination algorithm
FC Fuel cell
GA Genetic algorithm
GAPSO Genetic algorithm Particle swarm optimization
GSAPSO Gravity search algorithm Particle swarm 

optimization
GSA Gravity search algorithm
HES Hydroelectric power plants
HRES Hybrid renewable energy systems
IGOA Improved grasshopper optimization algorithm
LCOE Levelized cost of energy ($/kWh)
LPSP Loss of power supply probability
LF Load following
TNPC Total net present cost ($)
PV Photovoltaics
RES Renewable energy sources
PSO Particle swarm optimization
RE Renewable energy
REF Renewable energy fraction

SOA Seagull optimization algorithm
SOC Battery state of charge value
SOCmax Battery state of charge (maximum value)
SOCmin State of charge (minimum value)
TS Tabu search algorithm
WOA Whale optimization algorithm
WPS Wind power plants
WT Wind turbine

Symbols
PWT (t) Output power of wind turbine at time t (kW)
PPV (t) Output power of photovoltaic panel at time t (kW)
PL (t) Load energy demand
ηInv The efficiency of an inverter
Pch  (t) Power allocated for charging the battery
Ech (t) Energy charged to the battery
Pdistch (t) Discharge battery power
Edistch (t) Energy is discharged from the battery
Ep (t) Total energy production in a year 
Cann,cap

PV Annual capital costs of photovoltaic panel
Cann,cap

WT Annual operation and maintenance costs of 
inverter

Cann,cap
BSS Annual capital costs of battery storage system

Cann,cap
DG Annual capital costs of diesel generator

Cann,cap
Inv Annual capital costs of inverter

Cann,rep
PV Annual replacement costs of photovoltaic 

panel
Cann,rep

WT Annual replacement costs of wind turbine
Cann,rep

BSS Annual replacement costs of battery storage 
system

Cann,rep
DG Annual replacement costs of diesel generator

Cann,rep
Inv Annual replacement costs of inverter

EBSmib Minimum battery energy
EBSmax Maximum battery energy
EBSS(t) Energy of battery
Edump(t) Energy dumped/wasted
DG_hr(t) Diesel generator is running at time t
DG_P The power produced by diesel generator
O&M Operation and maintenance
t Time
σ The self-discharge rate of the battery
Cann,O&M

PV Annual operation and maintenance costs of 
photovoltaic panel

Cann,O&M
WT Annual operation and maintenance costs of 

wind turbine
Cann,O&M

BSS Annual operation and maintenance costs of 
battery storage system

Cann,O&M
DG Annual operation and maintenance costs of 

diesel generator
Cann,O&M

Inv Annual operation and maintenance costs of 
inverter

Cann,SV
PV Salvage value of photovoltaic panel

Cann,SV
WT Salvage value of wind turbine

Cann,SV
BSS Salvage value of battery storage system

Cann,SV
DG Salvage value of diesel generator

Cann,SV
Inv Salvage value of inverter
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