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ÖZET:  

Yaprak Alan İndeksi (LAI) bitki gelişiminin temel göstergelerinden kabul edilmektedir. 

Doğrudan LAI tahmin yöntemleri yoğun emek ve zaman gerektirmektedir. Bu çalışma; LAI 

tahminini, hasarsız, daha kısa zamanda ve daha az yoğun emek harcayarak gerçekleştirebilmek 

amacıyla; Mardin ili Artuklu ve Kızıltepe ilçelerine bağlı 8 köyde, pamuk tarımı yapılan toplam 

27 adet parselde yapılmıştır. Çalışmada, yersel LAI gözlemi ile Sentinel-2 uydu verilerinden 

türetilen ARVI, GARI, EVI2, NDVI, WDRVI, MSI, NBR, NDMI, MTVI2, SIPI, OSAVI, SAVI 

indisleri arasındaki ilişkiler incelenmiştir.  Tüm indisler 0.01 düzeyinde önemli bulunmuştur. 

Atmosferik düzeltme etkisine sahip ARVI ve GARI (sırasıyla R2 =0.77-0.76), temel indislerden 

EVI2, NDVI ve WDRVI (sırasıyla R2 =0.74-0.74-0.75), bitki nem içeriği hassasiyetli MSI, NBR 

ve NDMI (sırasıyla R2=0.77-0.79-0.77) yüksek ilişki göstermişlerdir. Ayrıca pigment 

hassasiyetli MTVI2 ve SIPI (R2 =0.73-0.74), arka plan toprak etkisine karşı tasarlanan OSAVI 

ve SAVI (R2 =0.74-0.74) yüksek ilişki göstermişlerdir. İncelenen bu indislerin pamuk bitkisinde 

iyi bir LAI tahmin edicisi olarak kullanılması tavsiye edilmektedir. . 
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ABSTRACT:  

Leaf Area Index (LAI) is accepted as one of the basic indicators of plant development. Direct 

LAI estimation methods require intensive labor and time. This work; In order to realize the LAI 

estimation without damage, in a shorter time and with less labor-intensive effort, it was made on 

a total of 27 parcels where cotton cultivation is carried out in 8 villages in Artuklu and Kızıltepe 

districts of Mardin province. In the study, the relationships between terrestrial LAI observation 

and ARVI, GARI, EVI2, NDVI, WDRVI, MSI, NBR, NDMI, MTVI2, SIPI, OSAVI, SAVI 

indices derived from Sentinel-2 satellite data were examined. All indices were found significant 

at the 0.01 level. ARVI and GARI having atmospheric correction effect (R2 =0.77-0.76, 

respectively), basic indices EVI2, NDVI and WDRVI (R2 =0.74-0.74-0.75, respectively), MSI, 

NBR and NDMI with plant moisture content sensitivity (R2=0.77-0.79-0.77, respectively) 

showed high relationships. In addition, pigment sensitivity MTVI2 and SIPI (R2 =0.73-0.74), 

OSAVI and SAVI designed against background soil effect (R2 =0.74-0.74) showed high relation. 

It is recommended that these indices be used as a good LAI estimator in cotton plant. 
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INTRODUCTION 

Cotton is an important industrial raw material worldwide and is used in many industrial sectors 

such as textiles, oil, feed and chemicals. It is used in many industrial sectors. While the demand for 

cotton products increases with rapid population growth, it is observed that cotton production has not 

increased sufficiently (Anonymous 2012; Johnson et al., 2020). Trade has decreased and stocking has 

increased due to reasons such as the Covid-19 crisis, climate change, excessive and irregular rainfall, as 

well as regional drought disasters that have become more frequent in recent years. According to the 

2021/2022 data of the International Cotton Advisory Board (ICAC), the cotton cultivation area in the 

world is 33.18 million ha, production amount is 25.73 million tons, consumption is 25.62 million tons, 

stock amount is 20.45 million tons has been observed. In Turkey, the cotton cultivation area was 480000 

ha, production was 833,000 tons, consumption was 1.61 million tons, and the stock amount was 1.54 

million tons (Anonymous 2022). 

Leaf Area Index (LAI) is an important biophysical parameter and is defined as the unilateral leaf 

area per unit ground area (Kaplan & Rozenstein, 2021). LAI is considered one of the basic indicators of 

plant development due to its significant relationship with leaf chlorophyll content and Photosynthetic 

Active Radiation Fraction (FAPAR). It is an indicator that can be constantly observed during growth 

stages and has been used to estimate plant development status in early periods and yield in later periods 

(Sharma et al., 2017).  

LAI can be estimated by two methods: direct and indirect. (Küßner & Mosandl, 2000). Although 

direct prediction methods are quite accurate, they are not very suitable for monitoring large areas as they 

require intensive labor, work force and time (Siegmann & Jarmer, 2015). One of the indirect ways is 

remote sensing methods (Biudes et al., 2014). Studies have been conducted on many different plant 

species using vegetation indices to estimate LAI with remote sensing data (Carlson & Ripley, 1997; Ray 

et al., 2006; Wang et al., 2007; Darvishzadeh et al., 2009; Vina et al., 2011; Delegido et al., 2013; Jin et 

al., 2013; Ali et al., 2017; Zhen-wang et al., 2017; Srivastava et al., 2019; Prananda et al., 2020; Solgi 

et al., 2023).  

It has been found that LAI is an important indicator of plant yield estimation (Dabrowska-Zielinska 

et al., 2018; Mokhtari et al., 2018; Ji et al., 2021; Zhu et al., 2021), cotton population growth and canopy 

surface energy exchange (Peng et al., 2022), canopy spectral characteristics are closely related to LAI 

(Liang FengChao, 2014) and distinctly reflect changes in LAI (Thenkabail et al., 2000). Especially in 

recent years, various indices have been tried to be created in order to monitor LAI changes in cotton 

plants more accurately (Li et al., 2021; Li et al., 2022; Huang et al., 2023;) and it has been shown that 

many models can be used in this regard, and as a result, spectral data are used to monitor LAI values in 

cotton. It has been reported that it is appropriate to use the indices such as NDVI, TVI, RVI, EVI2, 

SAVI, WEVI, DVI (Kaplan & Rozenstein, 2021; Ma et al., 2022; Fan et al., 2023). 

This study was conducted to estimate LAI without damage, in a shorter time and with less intensive 

effort. For this purpose, LAI values obtained from ground measurements were compared with 12 

multispectral indices in the literature and the LAI estimation power of the indices was evaluated. 

Additionally, the study aims to contribute to the widespread use of remote sensing in agriculture by 

utilizing technological development tools in remote sensing, such as open-access satellite imagery and 

cloud platforms, thereby providing ease of access and application in predicting LAI and similar plant 

biophysical parameters. 
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MATERIALS AND METHODS  

Study Area 

The research was conducted in 27 different plots of cotton crops in 8 villages of Artuklu and 

Kızıltepe districts of Mardin. Information about the parcels is given in Figure 1 and Table 1. 

Figure 1. Working area 

Table 1. Information and coordinates of the parcels 

NO X Y NO X Y 

S01 40.856 37.139 S15 40.611 37.100 

S02 40.860 37.138 S16 40.596 37.101 

S03 40.878 37.142 S17 40.583 37.094 

S04 40.866 37.136 S18 40.578 37.097 

S05 40.865 37.134 S19 40.597 37.109 

S06 40.853 37.129 S20 40.591 37.067 

S07 40.877 37.157 S21 40.590 37.075 

S08 40.843 37.152 S22 40.531 37.108 

S09 40.846 37.157 S23 40.538 37.113 

S10 40.836 37.128 S24 40.565 37.112 

S11 40.834 37.128 S25 40.549 37.114 

S12 40.598 37.119 S26 40.531 37.072 

S13 40.593 37.124 S27 40.528 37.073 

S14 40.600 37.114    

In the study areas, cotton was planted in 2021 and in-field cultural operations, care-feeding and 

irrigation were carried out under farm conditions and no additional practices were applied. There was 

no rainfall in the region during the June-September period when the study was conducted.  

Leaf Area Index (LAI) 

Delta-T brand SS1 Sunscan Canopy Analysis System device was used to measure leaf area index. 

The measurement was carried out in the middle of the field and in the parts with homogenous vegetation 

cover during cloudless hours when the sun was clearly visible and between 9-15 hours of the day. The 

dome sensor is positioned to receive direct sunlight, the measurement probe has been placed on the 

ground under the vegetation and 10 measurements were taken from each plot and the average was 
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determined (Figure 2). Taking into account plant growth and satellite image acquisition dates, a total of 

5 measurements were taken in the field (Figure 3). 

  

  
Figure 2. LAI measurement device and use case 

 
Figure 3. Satellite image acquisition and observations dates 

Sentinel-2 

Sentinel-2 satellite imagery is provided by the European Space Agency (ESA) and images with 

2A surface reflectance processing level were used in this study. At level 2A, images are presented with 

geometric, radiometric and atmospheric correction processes as pre-processing. The band pixel values 

of these images were obtained in the Google Earth Engine (GEE) environment. The band pixel values 

obtained according to the dates of observation were processed into MS Office Excel program, indices 

were calculated and LAI values were subjected to analysis of variance in JMP 5.0.1 (Copyright © 1989-

2002 SAS Institute Inc.) statistical program. 

Satellite Indices 

Various indices derived from the Sentinel-2 satellite were used in the study. These indices values 

were compared with LAI values and subjected to regression analysis. Information on the indices used in 

the study is given in Table 2. 



Serkan KILIÇASLAN et al. 15(3), 1133-1148, 2025 

Investigation of the Use of Some Satellite Indices in Monitoring Leaf Area Index in Cotton Plants 

 

1137 

Table 2. Information on the indices used in the study 

Indice Feature Formula Reference 

ARVI (Atmospherically 

Resistant Vegetation Index) 
Atmospheric 

(NIR - Red - 1*(Red-Blue)) / (NIR + Red - 1 

* (Red-Blue)) 

(Kaufman & Tanre, 

1992)  

GARI (Green atmospherically 

resistant vegetation index) 
Atmospheric 

(NIR - (Green - (Blue - Red))) / (NIR - 

(Green + (Blue - Red))) 

(Gitelson et al., 

1996) 

EVI 2 (Enhanced Vegetation 

Index 2) 
Basic 2.4*((NIR - Red)/ (NIR + Red + 1)) (Miura vd., 2008) 

NDVI (Normalized 

Difference Vegetation Index) 
Basic (NIR - Red) / (NIR + Red) 

(Rouse Jr et al., 

1973) 

WDRVI (Wide Dynamic 

Range Vegetation Index) 
Basic (0.1 * (NIR - Red)) / (0.1 *(NIR + Red)) (Gitelson, 2004) 

MSI (Moisture Stress Index) Moisture SWIR/NIR 
(Hunt Jr & Rock, 

1989) 

NBR (Normalized Burn 

Ratio) 
Moisture (NIR - SWIR2) / (NIR + SWIR2) (Key et al., 2002) 

NDMI (Normalized 

Difference Moisture Index) 
Moisture (NIR - SWIR1) / (NIR + SWIR1) (Cibula et al., 1992) 

MTVI2 (Modified Triangular 

Vegetation Index 2) 
Pigment/Color 

(1.5 * ((1.2 * (NIR - Green) - 2.5 * (Red - 

Green)) / (Sqrt (((2 * NIR + 1) **2) - (6 * 

NIR - 5 * Sqrt (Red)) - 0.5)))) 

(Haboudane, 2004) 

SIPI (Structure Intensive 

Pigment Index) 
Pigment/Color (NIR - Blue) / (NIR - Red) 

(Penuelas et al., 

1995) 

OSAVI (Optimized Soil 

Adjusted Vegetation Index) 
Soil 

(1 + 0.16) * ((NIR - Red) / (NIR + Red + 

0.16)) 

(Rondeaux et al., 

1996) 

SAVI (Soil Adjusted 

Vegetation Index) 
Soil ((NIR - Red) / (NIR + Red + L)) * (1 + L) (Huete, 1988) 

References can be consulted for detailed information about the indices. 

RESULTS AND DISCUSSION  

LAI values obtained as a result of observations made in the field on dates determined according 

to plant development and phenological periods are given in Figure 4. 

 

Figure 4. LAI observation values 

LAI values remained low from planting and throughout the vegetative development period, 

increased during the flowering and boll formation periods with the growth and branching of the plant's 
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height, and although there was a slight decrease until the middle of the maturation period, they were still 

observed at high values. Regression analyses were performed between these data and Sentinel-2 indices 

(Table 3). 

Table 3. LAI values and Sentinel-2 indices regression analysis results 

INDICES R2 RMSE REGRESSION FORMULA 

ARVI 0.74** 0.70 LAI = 3.19*ARVI2 + 1.84*ARVI + 0.31 

GARI 0.76** 0.75 LAI = 6.74*GARI2 - 3.51*GARI + 1.09 

EVI2 0.74** 0.71 LAI = 0.25*EVI22 + 2.06*EVI2 - 1.10 

NDVI 0.74** 0.71 LAI = 1.46*NDVI2 + 4.93*NDVI - 1.10 

WDRVI 0.75** 0.70 LAI = -3.18*WDRVI2 + 4.14*WDRVI + 2.94 

MSI 0.77** 0.65 LAI = 4.27*MSI2 - 11.91*MSI + 8.11 

NBR 0.79** 0.63 LAI = 1.97*NBR2 + 4.55*NBR - 0.01 

NDMI 0.77** 0.66 LAI = -1.56*NDMI2 + 9.31*NDMI + 0.31 

MTVI2 0.73** 0.72 LAI = 6.76*MTVI22 - 2.05*MTVI2 + 0.70 

SIPI 0.74** 0.70 LAI = 10.93*SIPI2 - 34.92*SIPI + 28.15 

OSAVI 0.74** 0.71 LAI = 1.08*OSAVI2 + 4.25*OSAVI - 1.10 

SAVI 0.74** 0.71 LAI = 0.65*SAVI2 + 3.29*SAVI - 1.10 

R2: Regression Coefficient, RMSE: Root Mean Square Error, **Significant at 0.01 level 

  
(a) (b) 

  
(c) (d) 

Figure 5. (a) LAI-ARVI regression analysis results, (b) LAI-GARI regression analysis results, (c) LAI-EVI2 

regression analysis results, (d) LAI-NDVI regression analysis results 
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(e) (f) 

  
(g) (h) 

  
(i) (j) 

  
(k) (l) 

Figure 5. (g) LAI-NBR regression analysis results, (h) LAI-NDMI regression analysis results, (i) LAI-MTVI2 

regression analysis results, (j) LAI-SIPI regression analysis results, (k) LAI-OSAVI regression analysis results, 

(l) LAI-SAVI regression analysis results 

A significant (0.01) and high relationship (R2=0.73-0.79) was found between the twelve indices 

used in the study and LAI values (Table 3) (Figure 5). These results indicate that these indices can be 

used to estimate LAI. 
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The ARVI2, derived as a version of NDVI, includes correction factors for atmospheric effects such 

as absorption and scattering and is 4 times less sensitive to atmospheric effects than NDVI (Kaufman & 

Tanre, 1992). ARVI2 is an indice related to vegetation greenness and there is a relationship between 

vegetation greenness and leaf area. Vegetation greenness rises with increasing leaf area, and the ARVI2 

displays high values. Thus, a direct relation exists between ARVI2 and LAI. The plant becomes greener 

as the leaf area grows, and the ARVI2 displays high values. Our findings; who used Landsat imagery 

for LAI estimation with the Random Forest (RF) algorithm on lands under meadow-pasture cover and 

reported that ARVI, OSAVI and WDRVI are the 3 most important variables in the algorithm (Zhen-

wang et al., 2017); it is compatible with, (Hassan et al., 2023) who analyzed the relation between LAI 

and Photosynthetically Active Radiation Fraction (FAPAR) and seven VIs, in green onion plantations 

and found a relationship between LAI and ARVI, NDVI and SAVI with R2= 0.75, 0.78 and 0.66 in the 

first season and R2= 0.77, 0.82 and 0.68 in the second season, respectively. 

The GARI is 4 times more resistant to atmospheric effects than NDVI, shows higher sensitivity to 

chlorophyll concentrations than NDVI and can be used to estimate leaf chlorophyll content with high 

accuracy (Gitelson et al., 1996). The relationship between GARI and LAI stems from the direct 

relationship between the photosynthetic capacity of plants and leaf area. As leaf area increases, the 

photosynthetic capacity of plants also increases, leading to higher GARI values. Therefore, GARI and 

LAI are closely related and can be used together to determine plant health, growth potential and 

productivity. Our findings; who conducted a study to evaluate vegetation indices for the estimation of 

LAI in different leaf structures and plant species (wheat, oats, soybean and maize) and recommended 

the use of NDVI and GARI in areas <2m2/m2 (Vina et al., 2011); it is compatible with (Prananda et al., 

2020) who tried to create a model for LAI prediction with vegetation indices. 

The EVI2 was designed to minimize soil and atmospheric effects and to increase sensitivity in 

areas with high LAI, but it has limitations in creating long-term time series due to its use of red, near 

infrared and blue bands. The use of 2 bands (red and near infrared) with a correction factor (EVI2) has 

been found to be successful when atmospheric effects are insignificant and data quality is sufficient 

(Jiang et al., 2008). EVI2 is an indice that measures the photosynthetic activity of vegetation. The 

relationship between EVI2 and LAI is based on the direct relationship between the photosynthetic 

activity of vegetation and the density of leaf cover. So, high LAI values mean that the photosynthetic 

activity of vegetation will be high, while high EVI2 values indicate that vegetation is greener and 

healthier. Our findings; (Rocha & Shaver, 2009), who reported that EVI2 gave better results than NDVI 

under different background soil reflection conditions in burnt areas the arctic tundra for LAI 

measurement purposes; (Feng et al., 2019), who studied to increase prediction accuracy in high LAI 

conditions where prediction saturation weakens in wheat plants; evaluated various VIs for LAI 

prediction at different growth stages in winter wheat (Zhao et al., 2012); who investigated the suitability 

of using LAI to develop landscape maps using vegetation indices in in forest, woodlands, swamps and 

agricultural areas East Africa (Pfeifer et al., 2012); who conducted a study to evaluate the saturation 

effects of vegetation indices on soil background reflection and chlorophyll concentration (Fu et 

al.,2013); which evaluated the overall accuracy of vegetation indices with LAI (Kang et al., 2016); it is 

compatible with (Prananda et al., 2020) who tried to create a model for LAI prediction with vegetation 

indices. 

The relation between plant growth and health is the natural source of the link between NDVI and 

LAI. Higher LAI values and thus higher NDVI values are a result of denser and healthier vegetation. 

Lower NDVI and LAI readings are related with reduced vegetation density or plant stress. Our findings; 

Explaining that NDVI, LAI and fractional vegetation cover are dependent on each other using the simple 
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radiative transfer method (Carlson & Ripley, 1997); who reported a strong correlation between specific 

leaf area and NDVI and SARVI2 indices in their study conducted in cereal, forest and marsh 

areas.(Lymburner et al., 2000); which evaluated spectral vegetation indices for LAI estimation in maize, 

sorghum cotton and soya bean fields (Gowda et al., 2015); who evaluated the relationship between 

NDVI-LAI in their studies aimed at evaluating the biomass of afforestation areas (Wei et al., 2020); 

which evaluated the relationship between LAI and NDVI for various optical satellite bands in cultivated 

fields such as wheat, onion, mustard, potato and cabbage  (Gupta et al., 2000); which investigated the 

relationship between NDVI and LAI in grassland areas (Fan et al., 2009); who reported that the indices 

showed good relation in studies aimed at estimating plant leaf nitrogen content (Singh et al., 2012); 

Reporting that VENμS and Sentinel-2 images are suitable for vegetation indices and LAI values and that 

these two satellite images help to determine LAI values accurately (Herrmann et al., 2011); which uses 

NDVI, NDWI, SCRI and MSI indices for wheat plant irrigation management (Solgi et al., 2023);  it is 

compatible with (Prada et al., 2020) who conducted a study to determine the most appropriate vegetation 

indices to measure the response of vegetation in forest areas after thinning. 

The WDRVI formula uses a correction factor for the NIR band to remove the saturation of 

vegetation reflections. WDRVI is more accurate than NDVI in areas of high-density vegetation. WDRVI 

provides information on vegetation health and density. The relationship between WDRVI and LAI is 

that vegetation health depends on leaf density. As vegetation health improves, leaf density and leaf 

surface area increase, resulting in higher LAI and WDRVI values. Our findings; (Zhao et al., 2007), who 

conducted a study to investigate the relationships between cotton leaf yield, aboveground biomass and 

LAI of different N rates with the help of vegetation indices; (Hancock & Dougherty, 2007), who reported 

that vegetation indices can be used to estimate plant growth, LAI and yield; (Ahamed et al., 2011), who 

reported that remote sensing data can be used in resource planning in bioenergy production; (Prananda 

et al., 2020), who tried to create a model for LAI prediction with vegetation indices in mangrove areas;. 

it is compatible with (Vina et al., 2011) who conducted a study to evaluate vegetation indices for 

estimating LAI in different leaf structures and plant species such as maize and soybean. 

MSI is a parameter that measures plant water stress. This indice is determined by measuring the 

difference between the amount of water required by the plant and the amount of water available. LAI is 

a parameter that measures the capacity of plants to photosynthesize. Plant growth and yields depend on 

photosynthetic capacity. There is an inverse relationship between MSI and LAI; as water stress increases, 

the growth rate and yield of the plant decreases and the photosynthetic capacity decreases. Our findings; 

(Heiskanen, 2006); who studied biomass and LAI via ASTER satellite data and found a significant 

relationship in a mountain birch forest; (Quang et al.,2022), who conducted a study to estimate LAI with 

the help of satellite indices in monitoring deforested lands; (Solgi et al., 2023), which uses NDVI, 

NDWI, SCRI and MSI indices for wheat plant irrigation management; (Singh et al., 2012),  who reported 

that the indices showed good relation in studies aimed at estimating plant leaf nitrogen content in wheat 

cultivated areas; it is compatible with (Srinet, et al., 2019) who conducted a study to estimate the spatial 

distribution of LAI with the help of Landsat-8 images in a tropical areas. 

NBR is a measure used to determine the degree of damage to the plant. Low values indicate 

extensive damage and high values indicate minor damage. Accordingly, NBR and LAI values will 

increase as the density of healthy vegetation increases. Our findings; using LAI and NBR to identify 

burnt or fire-prone areas ( Boer et al., 2008; Filipponi, 2018); It is consistent with (Peppo et al., 2021) 

who conducted a study to evaluate the potential of non-parametric approaches in LAI estimation in a 

wheat, maize and alfalfa cultivates areas. 
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NDMI is related to the moisture content of the vegetation. The higher the moisture content of the 

vegetation, the higher the NDMI value, because the vegetation is greener and healthier. The relationship 

between NDMI and LAI varies depending on changes in the moisture content and density of the 

vegetation. As vegetation moisture increases, vegetation density and leaf surface area increase, and so 

do LAI and NDMI. When vegetation moisture decreases, vegetation density and leaf surface area 

decrease, and therefore LAI and NDMI values decrease. Our findings; (Solgi et al., 2023), which uses 

NDVI, NDWI, SCRI and MSI indices for wheat plant irrigation management; (Srinet et al., 2019); who 

conducted a study to estimate the spatial distribution of LAI with the help of Landsat-8 images; (Blinn 

et al., 2019); who work to eliminate or reduce errors in LAI estimation calculations with the help of 

Landsat images and multi-temporal measurements (Kinane et al., 2021); it is consistent with (Ochtyra 

et al., 2020), which compares Chlorophyll content, LAI, absorbed photosynthetic active radiation, and 

spectral signatures with vegetation indices to study disturbances in mountainous areas. 

SIPI was designed to increase the sensitivity of carotenoids to chlorophyll content and decrease 

their sensitivity to changes in canopy structure (Penuelas et al.,1995b). Therefore, there is a relationship 

between LAI and SIPI based on plant development and maturity. Our study findings using multispectral 

data are similar to those of a study that used hyperspectral indices for the detection of bacterial wilt 

disease and reported that SIPI and other indices were highly related with LAI (R2 > 0.9) (Srivastava et 

al., 2019); (Routh et al., 2019) which used hyperspectral remote sensing to estimate biophysical 

parameters (especially LAI) in sunflower and reported that SIPI was more highly correlated with LAI 

than other indices, and  which investigated the ability of artificial neural network (ANN) and least 

squares regression (LSR) techniques to predict LAI using Landsat data in cotton, maize, sorghum and 

soybean crops and reported that SIPI and LAI were highly correlated (R2 > 0. 91 and 0.84) (Bajwa vd., 

2008). 

MTVI2 is more resistant to chlorophyll and background soil effects than MTVI (Haboudane, 

2004). Thus, it can better monitor plant growth and predict LAI better. Our findings; (Haboudane , 2004), 

who examined some vegetation indices using PROSPECT and SAILH models and reported that MTVI2 

and MCARI2 were the best LAI estimators in corn, wheat and soybean cultivated areas; it is consistent 

with (Feng et al., 2019), who conducted a study to increase prediction accuracy in high LAI conditions 

where prediction saturation in wheat plant weakens.  

OSAVI uses a constant value for soil effect and takes values according to vegetation density. In 

this respect, it can be used to estimate LAI in sparse, normal and densely vegetated areas. Our findings; 

(Lipovac et al., 2022), who evaluated the use of Unmanned Aerial Vehicle (UAV) multispectral images 

in bean plants under different planting periods and irrigation practices and reported that there were 

significant relationships between LAI and OSAVI; Wheat etc. (Gao et al., 2022), who reported that 

OSAVI and MCARI2 were the best LAI estimators among twelve vegetation indices in their studies 

aimed at predicting leaf chlorophyll content (Cab) and LAI under various background effects in the 

global spectrum of plants in wheat planting areas; (Rosso et al., 2022), who reported that all methods 

using vegetation indices, machine learning (ML) and radiative transfer models (RTM) were highly 

related (R2= 0.7-0.9) for LAI prediction in barley plants; (Marino & Alvino, 2019), which relates ground 

measurements with VIs for early detection of agronomic spatial change; it is consistent with (Das et al., 

2020) who reported that OSAVI is the best predictor in studies aimed at estimating LAI with plant 

indices in wheat plants. 

SAVI is an indice designed to reduce the background soil effect (Huete, 1988). In areas where 

vegetation density varies, reducing saturation effects is important to provide a better LAI estimate (Zhen 

et al., 2021). Our findings; (Huete, 1988), who developed a new indice by minimizing the background 
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soil effect in the red and NIR bands in cotton and grass areas; (Rondeaux et al., 1996; Prada et al., 2020), 

who conducted studies to determine the most suitable vegetation indices to measure the response of 

vegetation in forest areas after thinning; (Zhao et al., 2012), which evaluated various VIs for LAI 

prediction at different growth stages in winter wheat; it is consistent with (Zhen et al., 2021) which uses 

vegetation indices to estimate LAI in areas with high plant density. 

CONCLUSION 

This study was conducted to evaluate 12 spectral indices (ARVI, GARI, EVI2, NDVI, WDRVI, 

MSI, NBR, NDMI, MTVI2, SIPI, OSAVI, SAVI) recorded in the literature for LAI estimation in cotton 

plants. The indices were compared with the LAI values obtained from ground observations, and their 

LAI prediction status was analyzed. Accordingly, all indices were found significant at 0.01 level. ARVI 

and GARI with atmospheric correction effect (R2=0.74-0.76), the basic indices EVI2, NDVI and 

WDRVI (R2=0.74-0.74-0.75), plant moisture content sensitive MSI, NBR and NDMI (R2=0.77-0.79-

0.77), pigment sensitive MTVI2 and SIPI (R2=0.73-0.74), OSAVI and SAVI designed against 

background soil effect (R2=0.74-0.74) showed high relationship. As a result of these results, it is 

recommended that the indices be used as they are good LAI estimators in cotton plants and can provide 

information about plant development and health, pigment and moisture content, so that irregularities in 

plant health and development can be detected quickly and non-destructively and provide quick 

intervention. 
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