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Low-Dose Hydrogen Sulfide Ameliorates 
Cisplatin-Induced Hepatotoxicity in Rats 

 ABSTRACT 
 

Objective: Cisplatin (CIS) is non-specific to the cell cycle, has a cytotoxic effect, and is 
used in many cancers. The side effects of CIS, such as hepatotoxicity, seriously limit its 
clinical use. This experimental study aims to prevent hepatotoxicity, one of the clinical 
side effects that cisplatin may cause. At the same time, Hydrogen sulfide (H2S) will be 
applied prophylactically and therapeutically and its effect levels will be compared. This 
study aims to contribute to the literature by preventing dose restriction due to the 
hepatotoxicity side effect of cisplatin, which plays an important role in cancer treatment, 
by prophylactic application of H2S. Our study investigated the protective and 
therapeutic efficacy of sodium hydrosulfide (NaHS, a donor of H2S), which activates the 
antioxidant system on CIS-induced hepatotoxicity.  

Method: Control (Vehicle), CIS (7.5 mg/kg CIS), H2S+CIS (10 µmol/kg NaHS+7.5 mg/kg 
CIS), CIS+H2S (7.5 mg/kg CIS+10 µmol/kg NaHS) groups were formed by using 35 rats in 
the study. At the end of the study, blood and liver tissue was taken, and histopathological 
and biochemical analyzes were performed.  

Results: It was determined that sinusoidal dilatation and congestion increased 
significantly in the CIS group and decreased in the H2S+CIS and CIS+H2S groups. 
Likewise, glycogen loss occurred in the CIS group, and a significant improvement was 
observed in the H2S+CIS group. In addition, significant deterioration was detected in 
malondialdehyde, catalase, glutathione, aspartate aminotransferase, alanine 
aminotransferase, and lactate dehydrogenase values in the CIS group compared to the 
control group. In contrast, significant improvements were observed in both the H2S+CIS 
and CIS+H2S groups compared to the CIS group.  
Conclusion: Both protective and therapeutic beneficial effects of H2S in CIS-induced 
hepatotoxicity were demonstrated by histopathological and biochemical analyses. 

Keywords: Cisplatin, Hepatotoxicity, Hydrogen Sulfide, Oxidative Stress, Rat 
 

Introduction 

The liver has many essential roles, including the metabolism of nutrients, the synthesis of 
glucose and lipids, immunity, vitamin storage, and the detoxification of drugs and xenobiotics 
(Trefts et al., 2017; Koroglu et al., 2021). Drug-induced liver injury (DILI) is still known as the 
most common cause of acute liver failure in the West. The prevalence of DILI varies 
depending on geographic location, but the estimated annual incidence worldwide is between 
1.3 and 19.1 per 100.000 exposed person (Garcia-Cortes et al., 2020). DILI can be severe and 
life-threatening in humans, resulting in significant morbidity/mortality and high healthcare 
costs (Amirana & Babby, 2015). 

Cisplatin (CIS) is a widely used antineoplastic drug and is still used in the treatment of 
breast, cervical, esophageal, bladder, small cell lung, osteosarcoma, squamous cell 
carcinoma, and testicular cancer and has an important place in treatment protocols (Gao et
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al., 2021; Man et al., 2020). Although CIS is widely used, it 
has significant side effects. Its important side effects 
include nephrotoxicity, hepatotoxicity, cardiotoxicity, and 
its clinical use is limited due to these side effects 
(Neamatallah et al., 2018; Hassan et al., 2020; Darwish et 
al., 2017; Hwang et al., 2020). There are not many known 
pathways for CIS-induced hepatotoxicity, which began with 
an overabundance of reactive oxygen species (ROS) that 
caused oxidative stress, inflammation, DNA damage, and 
liver death (Abd Rashid et al., 2021). CIS causes 
oxidative/nitrosative stress-mediated damage and 
disruption of cellular function in many subcellular 
structures, especially lipids, proteins, and DNA in the 
cellular structure (Peres & da Cunha, 2013). In many 
experimental models, it has been suggested that CIS causes 
toxicity by disrupting the oxidative stress balance and 
increasing inflammation and apoptosis (Bentli et al., 2013; 
Lu & Cederbaum, 2006; Omar et al., 2016). As a result of the 
studies, it was determined that free radicals and (ROS) 
increased in the toxicity models induced by CIS, and it was 
shown that lipid peroxidation increased and glutathione 
levels decreased (Pratibha et al., 2006). However, the 
mechanisms of CIS-induced hepatotoxicity are not fully 
understood (Fathy et al., 2022). 

Hepatotoxicity caused by CIS, which has widespread 
clinical use, necessitates discovering preventive and 
therapeutic agents (Al-Malki & Sayed, 2014). Hydrogen 
sulfide (H2S) is an endogenous gasotransmitter that can 
add a hydropersulfide moiety (-SSH) to the cysteine residue 
in target proteins and stimulate catalytic activity (Paul & 
Snyder, 2018). H2S, previously known as toxic, is a gas that 
acts as a regulator in many physiological processes as a 
result of recent studies (Feng et al., 2020; Yuan et al., 2017). 
It is known that H2S, in particular, plays a vital role in 
regulating hepatic physiology and pathology. Studies have 
shown that H2S has many protective and therapeutic 
(antioxidant, anti-inflammatory, antiapoptotic, 
cytoprotective) effects (Calvert et al., 2010).  H2S, widely 
recognized and known as an antioxidant, has been shown 
to scavenge ROS directly (Yi et al., 2019). Although there are 
many sources of intracellular ROS, the most important 
source is the NADPH oxidase 4 (Nox4) based NADH/NADPH 
oxidase system (Crosas-Molist & Fabregat, 2015). Studies 
have also shown that it regulates signalling pathways in 
physiological functions such as kinase regulation and 
maintenance of mitochondrial ATP production (Cohen et 
al., 2013; Yan et al., 2013; Ye et al., 2020; Fu et al., 2012). 
Several studies have demonstrated the beneficial effects of 
H2S on endotoxemia, acetaminophen, microplastics, and 
nickel-induced liver damage (Fu et al., 2012; Li et al., 2021). 

NaHS (a donor of H2S) has been extensively applied in 
clinical trials to predict the biological effects of H2S (Li et al., 
2015; Kimura, 2014). 

Although many studies are showing the efficacy of H2S, 
its preventive and therapeutic efficacy in CIS-induced 
hepatotoxicity is unknown, yet (Azarbarz et al., 2020; 
Karimi et al., 2017; Ibrahim et al., 2022; Kwon et al., 2019; 
Tu et al., 2016). 

This study aims to create a hepatotoxicity model in rats 
with cisplatin, a widely used antineoplastic drug, and to 
reveal the prophylactic and therapeutic effects of H2S, 
which has antioxidant, anti-inflammatory, antiapoptotic, 
cytoprotective, etc. effects. 

Methods 

Animals  

Thirty-five Sprague Dawley rats (3–4 months, 200–250 
g) were purchased from Inonu University Laboratory 
Animal Research Center. Rats were housed on a light and 
dark (12:12) cycle in a room with controlled temperature 
(21±3◦C) and humidity (60±3%). Rats were fed standard 
chow and normal water, and rats were given ad libitum 
access. During the experiment, animal care and all 
experimental procedures were performed following the 
National Institutes of Health Animal Research Guidelines 
and ARRIVE guideline 2.0 (Percie du Sert et al., 2020). 

The protocol of the study was approved by the Animal 
Research Ethics Committee, Inonu University, Malatya, 
Faculty of Medicine (Protocol: 2015/A-84- 22.10.2015). The 
simple randomization technique formed the experimental 
groups. Also, all procedures performed during the 
experiment and evaluating the results obtained were 
studied blindly. 

Chemicals 

The main component, CIS (Cisplatin DBL 100 mg/100 ml, 
Orna, Istanbul, Turkey) and NaHS (CAS number: 16721-80-
5, Sigma-Aldrich, St Louis, MO) was purchased. Ketamine 
hydrochloride (Ketalar®) and Xylazine HCl (Alfamine®) were 
purchased from erse Medikal, Istanbul, Turkey. 

Experimental Design 

For the experiment, 35 male Sprague Dawley rats were 
simply randomly divided into four groups and the 
experimental model is described in Figure 1. In our study, 
we used NaHS, the donor of H2S. 
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1. Control group (n=8): Rats were given 0.5 mL of NaCl 0.9 
% solution via per-oral (p.o.) for 14 days (Hashmi et al., 
2021). 

2. CIS group (n=9): A single dose of 7.5 mg/kg CIS was 
administered to the rats via intraperitoneal (i.p.) (Wang et 
al., 2022). 

3. H2S+CIS group (n=9): Rats were given a dose of 10 
μmol/kg NaHS for 12 days via p.o. and a single dose of 7.5 
mg/kg CIS intraperitoneally via i.p. on the 13th day 
(Otunctemur et al., 2014). 

4. CIS+H2S group (n=9): After a single of 7.5 mg/kg CIS to 
rats via i.p. administration and the next 12 days, 10 µmol/kg 
NaHS was administered via i.p (Pan et al., 2009). 

 

 Figure 1. Schematic representation of the experimental 
design. 

The body weights of the rats were weighed at the beginning 
and end of the study, as well as their liver weights at the 
end of the study. At the end of the experiment, all rats were 
sacrificed after ketamine and xylazine (75 mg/kg and 5 
mg/kg, intraperitoneally) mixture administration. 
Immediately before the scarification procedure, blood 
samples were collected from the inferior vena cava for 
biochemical analysis. Hepatectomy was carried out after 
blood collection, and part of the liver sample was fixated 
with formalin for histopathological examination. The 
remaining tissues were stored at ‑70 ◦C for biochemical 
analysis. In addition, blood samples were taken into tubes 
without anticoagulant for the determination of liver 
enzymes [aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), lactate dehydrogenase (LDH)]. 

Biochemical examinations [malonyldialdehyde (MDA), 
superoxide dismutase (SOD), catalase (CAT), glutathione 
(GSH), glutathione peroxidase (GSH-Px)] and 
histopathological (light microscopy) were performed on 
liver tissue at the end of the experiment.  

Biochemical Analysis 

Liver The liver samples were homogenized (IKA ultra turrax 
T 25 basic) in cold phosphate buffer (pH 7.4). The 
homogenates were centrifuged (10000xg for 20 min at 
+4˚C), and the enzyme (MDA, SOD, CAT, GSH, and GSH-Px) 
levels determination was made in the supernatant part. The 
blood samples taken from rats were centrifuged at 2000xg 
for 10 min at +4˚C, and the obtained serum samples were 
used to measure the levels of AST, ALT, and LDH. The serum 
samples were frozen at -70˚C until assayed. The samples 
were taken to +4˚C one day before the biochemical analysis 
for correct analysis and thawing. AST, ALT, and LDH 
parameters were studied at Turgut Ozal Medical Center 
Laboratories (Abbott Architect c16000), Inonu University, 
Malatya, Turkey. 

MDA, an indicator of lipid peroxidation, was studied 
according to the method of Uchiyama and Mihara (Mihara 
and Uchiyama, 1978). The rat liver sample was 
homogenized on ice for 1 minute at 15000 rpm to form 10% 
homogenate in 1.15% KCl solution. In the 
spectrophotometer, the absorbance of the supernatant 
was read at 535 nm. The result was shown as nmol/g tissue. 

Tissue SOD activity was measured according to the method 
of Sun et al. (Sun et al., 1988). After adding 3 to 5 
chloroform/ethanol mixture to the supernatants, all 
samples were centrifuged for 20 minutes at 5000 rpm at +4 
degrees. Subsequently spectrophotometric evaluation of 
the samples at 560 nm was performed. Enzyme activity was 
given as U/g protein. 

Tissue CAT activity was measured according to Luck's (De 
Bruijn, 1981) method. The rat liver sample was 
homogenized on ice for 1 min at 15000 rpm to form 10% 
homogenate. The absorbance at 240 nm was read 
immediately after the supernatant was added to the 
sample tubes. Enzyme activity was given as K/mg protein. 

GSH was determined according to the method of Ellman 
(Ellman, 1959). The rat kidney sample was homogenized on 
ice to form 10% homogenate at 15000 rpm for 1-2 min. 
Then, the homogenate was centrifuged at 3000 rpm at +4 
degrees for 15 min. Then, after adding TCA solution to the 
supernatant, it was mixed homogeneously and 
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centrifugation was repeated. After the protocol was 
completed, the samples were read at 410 nm in the 
spectrophotometer. GSH levels were presented as nmol/g 
tissue. 

The GSH-Px activity was also determined according to the 
method of Paglia and Valentine (Paglia and Valentine, 1967) 
and measured by monitoring its oxidation at 340 nm. GSH-
Px levels were presented as U/g protein). 

Histopathological Analysis 

At the end of the experiment, the liver tissue was fixed in 
10% formaldehyde. After the tissue follow-up procedures, 
4-5 μm thick sections were taken from the paraffin blocks 
prepared. Hematoxylin-eosin (H-E) staining methods were 
applied to the areas for general histological evaluations, 
and periodic acid schiff (PAS) staining methods were 
applied to determine glycogen loss. Sections using the H-E 
staining method, sinusoidal dilatation, sinusoidal 
congestion, and necrosis were examined. Damage 
according to its severity, ten randomly selected areas were 
evaluated by scoring 0 (no injury), 1 (light injury), 2 
(moderate injury), and 3 (serious injury). In the PAS staining 
method, ten randomly selected areas were examined, and 
according to the prevalence of glycogen loss, 0; normal, 1; 
less than 25% change, 2; the difference between 25-50%, 3; 
It was evaluated by scoring with more than 50% change 
(Bilgic et al., 2018). Leica DFC-280 microscope was used for 
histopathological analysis and Leica Q Win Image Analysis 
System (Leica Micros Imaging Solutions Ltd., Cambridge, 
UK) was used for imaging analysis. 

Data Analysis 

Statistical power analysis was performed to determine the 
required power and sample sizes. Considering type I error 
(alpha) 0.05, power (1-beta) 0.8 and effect size 0.92 for AST 
levels, it was determined that the minimum sample size 
required to detect a significant difference should be at least 
8 in each group (Arslan et al., 2018). The normality of the 
distribution was verified using the Kolmogorov-Smirnov 
test. Mann-Whitney U test was used for intergroup 
comparisons in histopathological analyzes. Post-hoc 
Tukey’s test was applied after ANOVA to compare groups in 
biochemical analyses. Statistical evaluation of 
histopathological and biochemical analyzes was performed 
using SPSS (IBM SPSS Corp., Armonk, NY, USA) for Windows 
version 25. p < .05 was accepted as the significance level. 

Results 

Mortality, Weight, and Liver-Body Weight Gain Ratio 

Two rats in the CIS group and one rat in the CIS+ H2S 
group died due to toxicity caused by CIS during the drug 
administration period. At the end of the experiment, there 
was a statistically significant decrease in rat and liver 
weights in the CIS, H2S+CIS, and CIS+H2S groups compared 
to the control group (p < .05). Although there was no 
statistically significant difference in rat and liver weights in 
the H2S+CIS and CIS+H2S groups compared to the CIS 
group, an improvement tendency was detected. In 
contrast, no statistically significant difference was observed 
between the groups in terms of liver/rat weight (p > .05). 
Mortality, weight, and rate of increase in organ-body 
weight are presented in the Table 1.

Table 1. Descriptive statistics for liver, rat weight, and liver/rat weight ratios  

Groups Rat weight-Before (g) Rat weight-After (g) Liver weight (g) Liver/rat weight ratio 

Control (n=8) 308 (202-342) 316 (276-343) 10.57 (9.72-12.46) .037 (.03-.043) 

CIS (n=7) 255 (219-330) 207a (172-289) 7.49a (7.08-11) .038 (.025-.051) 

H2S+CIS (n=9) 300 (268-355) 250a (190-300) 9.485a (6.17-11.3) .039 (.025-.05) 

CIS+H2S (n=8) 325 (280-360) 253a (210-332) 8.605a (7.1-11.57) .034 (.025-.055) 

p .05479 .00332 .01409 .913 

g: Gram. 
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Biochemical Finding 

Liver function tests 

There was a significant increase in AST, ALT, and LDH 
levels in the CIS group when compared to the control group, 
and a significant decrease in the H2S+CIS group and 
CIS+H2S group compared to the CIS group (p < .05). Serum 
biochemistry results are presented in the Table 2. 

 

 

Tissue biochemical findings 

There was a significant increase in MDA level in the CIS 
group compared to the control group, and a significant 
decrease in the H2S+CIS group and the CIS+H2S group 
compared to the CIS group (p < .05). There was a significant 
decrease in CAT and GSH levels in the CIS group compared 
to the control group, and a significant increase in the 
H2S+CIS group and CIS+H2S group compared to the CIS 
group (p < .05). No significant difference was found 
between the groups in terms of SOD and GSH-Px levels (p > 
.05). Liver tissue biochemistry results are presented in the 
Table 3.

Table 2. Serum biochemical parameters.  

Parameters 
Groups 

Control (n=8) CIS (n=7) H2S+CIS (n=9) CIS+H2S (n=8) 

AST (U/L) 163.38 ± 32.40 342.75 ± 96.65a 155.13 ± 68.98b 158.88 ± 52.83b 

ALT (U/L) 78.00 ± 12.39 215.63 ± 160.17a 61.38 ± 24.10b 72.13 ± 20.38b 

LDH (U/L) 730.38 ± 224.00 1560.63 ± 613.58a 737.13 ± 403.10b 657.88 ± 251.43b 

ap < .05: Significant compared to the control group. 

bp < .05: Significant compared to CIS group. 

AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; LDH: Lactate dehydrogenase. 

Table 3. Biochemical parameters of liver tissue.  

Groups 

Parameters 

MDA (nmol/g tissue) SOD (U/g protein) CAT (K/mg protein) GSH (nmol/g tissue) 
GSH-Px (U/g 

protein) 

Control (n=8) 141.75 ± 21.33 325.50 ± 206.20 2.77 ± 1.13 1226.75 ± 214.33 
212.25 ± 

111.58 

CIS (n=7) 233.13 ± 40.90a 344.13 ± 62.77 0.89 ± 0.54a 788.88 ± 271.01a 
241.38 ± 

118.01 

H2S+CIS (n=9) 155.75 ± 30.51b 313.63 ± 101.36 2.66 ± 1.07b 1263.00 ± 287.6b 
196.00 ± 

97.98 

CIS+H2S (n=8) 145.50 ± 35.92b 341.63 ± 137.60 2.60 ± 1.24b 1267.88 ± 379.6b 
219.38 ± 

136.69 

ap < .05: Significant compared to the control group. 

bp < .05: Significant compared to CIS group. 

MDA: Malonyldialdehyde; SOD: Superoxide dismutase; CAT: Catalase; GSH: Glutathione; GSH-Px: Glutathione peroxidase. 
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Histopathological Findings 

The histological structure of the liver had a normal 
appearance in the control group. In sections stained with H-
E, hepatocyte cords anastomoses around central veins and 
sinusoids between these cords were clearly observed 
(Figure 2-A). PAS (+) staining was observed in the cytoplasm 
of hepatocytes due to glycogen accumulation (Figure 3-A). 
It was observed that sinusoidal dilatation and congestion 
increased significantly in the CIS group (Figure 2-B and C). 
In addition, necrotic areas were observed around the 
central vein in some sections in the CIS group (Figure 2-B). 
In the sections where the PAS staining method was applied, 
it was observed that PAS (+) areas decreased due to 
glycogen loss, especially around the portal area in the CIS 
group (Figure 3-B). Sinusoidal dilatation and congestion 
were observed to be statistically significantly decreased in 
the H2S+CIS and CIS+H2S groups compared to the CIS group 
(p < .05) (Figure 2-D and E). On the other hand, it was 
observed that glycogen loss decreased statistically 
significantly in the H2S+CIS group compared to the CIS 
group (p < .05) (Figure 3-C), but it was observed that it 
continued in the CIS+H2S group similarly to the CIS group (p 
> .05) (Figure 3-D). There was no statistical difference 
between the CIS+H2S group and the H2S+CIS group in terms 
of sinusoidal dilatation, congestion and necrosis (p > .05). 
However, it was observed that glycogen loss was higher in 
the CIS+H2S group than in the H2S+CIS group (p < .05). Also, 
histopathological analysis scores on liver tissue are given in 
Table 4. 

 

Figure 2. Liver tissue in the control group (A) has a normal 
histological appearance. Necrotic areas (arrowheads), 
sinusoidal congestion (arrows) and dilatation (dashed 
arrows) are observed around the central vein in the CIS 
group (B and C). It is observed that histological changes in 
the H2S+CIS (D) and CIS+H2S (E) groups are milder than the 
CIS group. 

Table 4. Descriptive statistics for histopathological scores. 

Parameters 
Groups 

Control (n=8) CIS (n=7) H2S+CIS (n=9) CIS+H2S (n=8) 

Sinusoidal Dilation 0.0 (0.0-1.0) 1.0 (0.0-3.0)a 1.0 (0.0-3.0)b 0.0 (0.0-2.0)b 

Sinusoidal Congestion 0.0 (0.0-2.0) 1.0 (0.0-3.0)a 0.0 (0.0-2.0)b 0.0 (0.0-2.0)b 

Necrosis 0.0 (0.0-0.0) 0.0 (0.0-3.0)a 0.0 (0.0-0.0)b 0.0 (0.0-0.0)b 

Glycogen Loss 1.0 (0.0-1.0) 1.0 (0.0-3.0)a 0.0 (0.0-3.0)b 1.0 (0.0-3.0)c 

ap < .05: Significant compared to the control group. 

bp < .05: Significant compared to CIS group. 

cp < .05: Significant compared to the H2S+CIS 
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Figure 3. PAS (+) staining in hepatocytes in control group (A) 
indicates the presence of glycogen. In the CIS group (B), a 
decrease in PAS (+) staining is observed due to glycogen 
loss. In the H2S+CIS group (C), PAS (+) staining increased, 
but glycogen loss was similar to the CIS group in the 
CIS+H2S group (D). 

Discussion 

This study aims to reveal both the therapeutic and 
prophylactic effects of low-dose H2S in the CIS-induced 
hepatotoxicity and evaluate it biochemically and 
histopathologically. 

CIS, an antineoplastic drug, is widely used in the 
treatment of breast, cervical, esophageal, bladder, small 
cell lung, osteosarcoma, squamous cell carcinoma and 
testicular cancer (Gao et al., 2021; Man et al., 2020). 
However, the clinical application of CIS is limited due to its 
serious side effects such as hepatotoxicity (El-Gizawy et al., 
2020). Furthermore, because of the harmful effects of ROS 
by exhausted GSH, antioxidant enzymes like glutathione 
GPx, SOD, CAT, GSH, and an increase in hepatic MDA, 
oxidative stress is a major factor in CIS-induced 
hepatotoxicity (Abd Rashid et al., 2021). In this current 
study, we focused on the improvement properties of H2S 
administration in hepatotoxicity caused by CIS. 

A single dose of 7.5 mg/kg CIS not only caused an 
increase in liver function enzymes but also caused 
histopathological changes in this study. The increase in the 
level of liver enzymes in the serum indicates that the 
enzymes pass from the cytosol to the systemic circulation 
due to the deterioration of the integrity of the liver cell. 
Similar to the literature, our study observed an increase in 
liver enzymes (AST, ALT, and LDH) after CIS application, 

indicating liver damage (Neamatallah et al., 2018; Ijaz et al., 
2020; Taghizadeh et al., 2021). In addition, as a result of 
histopathological evaluations in liver tissue, it was 
determined that CIS injection caused sinusoidal dilatation, 
congestion, necrosis, and glycogen loss. All these findings 
were in agreement with previous studies (El-Gizawy et al., 
2020; Wang et al., 2018; Sherif, 2021). The integrity of the 
sinusoidal structure is extremely important in that it plays 
an important role in the continuous physiological exchange 
of metabolites and fluids in the liver. Disruption of this 
structure reflects the impairment of liver function (Ahmed, 
2013). Also, similar to the literature, a decrease in body 
weight and liver tissue weight was detected in the CIS group 
compared to the control group (Ko et al., 2014; Maheshwari 
et al., 2015). 

According to previous studies, it has been revealed that 
the use of some natural compounds and products improves 
both biochemical and histopathological damage caused by 
liver toxicity (El-Gizawy et al., 2020; Wang et al., 2018; 
Sherif, 2021). Our present findings showed that H2S 
provides significant improvements in histopathological 
deterioration in the hepatotoxicity model induced by CIS. In 
addition, H2S has been shown to have hepatoprotective 
and therapeutic effects. Also, the use of NaHS, an H2S 
donor, caused a significant decrease in liver enzymes and 
statistically significantly improved the histopathological 
damage caused by CIS in the liver. By replenishing the 
amount of antioxidant enzymes and functioning as an anti-
inflammatory agent, a variety of natural products, plant 
extracts, and oil rich in flavonoids, terpenoids, polyphenols, 
and phenolic acids were able to reduce oxidative stress. 
Similarly, following CIS administration, honey and royal jelly 
therapy was shown to reduce serum transaminases and 
scavenge free radicals in the liver. These natural items' 
medicinal qualities show promise as a supplemental 
treatment to combat the hepatotoxicity caused by CIS (Abd 
Rashid et al., 2021). 

The liver plays a central role in preventing damage 
caused by ROS and eliminating ROS products due to its 
detoxification properties and antioxidant capacity (Koroglu 
et al., 2021). Although there are many mechanisms 
underlying the damage caused by CIS in the liver, oxidative 
stress and decreased antioxidant capacity are the most 
important mechanisms (Al-Malki & Sayed, 2014). ROS, 
which is produced much more than the antioxidant 
capacity, shows many effects in the cell. These effects 
include an increase in cell death, a decrease in proliferation 
as well as an increase in lipid peroxidation (Gunata & 
Parlakpinar, 2021). All these changes affect the signaling 
pathways in the cell and cause hepatocyte damage (El-
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Gizawy et al., 2020; Auten & Davis, 2009). It is known that 
CIS causes toxicity by increasing intracellular reactive 
oxygen and nitrogen species in the liver (Chirino et al., 
2008). Overproduced free radicals damage not only 
intracellular structures but also highly unsaturated fatty 
acids in the cell membrane and may increase lipid 
peroxidation levels. Data from this study are consistent 
with previous studies supporting oxidative stress and lipid 
peroxidation (Fathy et al., 2022; Gunata & Parlakpinar, 
2021; Chirino et al., 2008; Farooqui et al., 2016; Eisa et al., 
2021). 

In accordance with the results of the study in the 
literature, it was shown that CIS caused a significant 
decrease in the level of antioxidant enzymes such as CAT 
and non-enzymatic antioxidant GSH in the liver tissue. It 
caused a significant MDA value increase, indicating lipid 
peroxidation (Fathy et al., 2022; Taghizadeh et al., 2021; 
Sioud et al., 2020; Aboraya et al., 2022; Bilgic et al., 2018). 
MDA, which is accepted as a marker for oxidative stress, is 
a lipid peroxidation product and an increase in its level is an 
indicator of liver damage (Ko et al., 2014). In addition, the 
most important components of antioxidant defense in the 
intracellular structure include SOD, which catalyzes the 
conversion of superoxide anion radical to hydrogen 
peroxide and oxygen, and CAT, which hydrolyzes hydrogen 
peroxide to water and oxygen (Sherif, 2021). In addition, 
GSH has an antioxidant effect by interacting directly with 
ROS through its sulfhydryl group (Ko et al., 2014). In 
addition, reduced glutathione, known as an antioxidant, is 
an important endogenous antioxidant that acts by 
scavenging free radicals directly or through some 
antioxidant enzymes (Birk et al., 2013). Accordingly, the 
level of GSH in the CIS-administered group decreased as a 
result of its consumption in the scavenging of ROS and 
nitrogen species produced by CIS in this study. In addition, 
CIS causes a GSH-platinum complex to form upon entry into 
the cells (Chu, 1994). This causes a decrease in the level of 
GSH. The reason for the increase in the level of GSH in the 
liver may be the increase in the activity or expression of 
glutamylcysteine ligase, the rate-limiting enzyme in GSH 
synthesis (Dickinson et al., 2003). Activation of all these 
enzymes following CIS application leads to the formation of 
high levels of free radicals. Usually, ROS elimination occurs 
depending on the liver's antioxidant capacity (Koroglu et al., 
2021). However, excess oxidant products from CIS 
administration exceed the antioxidant capacity of the liver. 
The reason for the increase in the level of GSH in the liver 
may be the increase in the activity or expression of 
glutamylcysteine ligase, the rate-limiting enzyme in GSH 
synthesis (Dickinson et al., 2003). However, there was no 
significant difference in SOD and GSH-Px values between all 

groups. 

It has been shown that H2S improves the levels of 
antioxidant enzymes and non-enzyme CAT and GSH in the 
liver and reduces lipid peroxidation by causing a decrease 
in MDA value in CIS-induced hepatotoxicity. Previous 
studies have shown that H2S effectively scavenges ROS 
such as H2O2, O2•, and •OH and inhibits NADPH oxidase, 
which is the main source of ROS overproduction (Wang et 
al., 2019; Bitar et al., 2018). This may also explain the effect 
of H2S in current research, where it has been shown that 
H2S provides a significant decrease in hepatic MDA levels, 
the end product of lipid peroxidation, an increase in CAT, 
GSH levels, improvement in liver function enzymes (AST, 
ALT, LDH) and histopathological improvement. 

Light microscopy was used to detect morphological 
changes in the liver. Our histopathological results showed 
that CIS treatment caused sinusoidal dilatation, congestion 
and necrosis. In addition, PAS staining was also performed, 
and it was observed that PAS (+) areas decreased due to 
glycogen loss in the CIS group. These effects are similar to 
the results of previous studies in the literature (Fathy et al., 
2022; Eisa et al., 2021; Fatima et al., 2021; Coskun et al., 
2021; Cagin et al., 2015). All of these findings explain the 
hepatotoxicity pathophysiology of CIS. On the contrary, it 
was determined that H2S treatment caused a statistically 
significant improvement in histopathological damage and 
PAS staining in both the prophylactic and treatment groups. 
This finding supports that HS treatment may have potent 
antioxidant effects in CIS-induced hepatotoxicity in rats. In 
conclusion, histopathological evidence supports our 
biochemical findings. 

The normalization of these values in the prophylactic 
and therapeutic groups indicates that H2S has an 
antioxidant effect and has positive effects on liver damage 
caused by CIS. However, the protective and therapeutic 
efficacy of H2S was first reported in this study by 
histopathological and biochemical analyzes in the CIS-
induced hepatotoxicity model. 

Conclusion 

It has been shown that HS provides significant 
improvement in liver function enzymes (AST, ALT, and LDH), 
tissue antioxidant capacity (MDA, CAT, and GSH), and 
improvement in histopathological damage (sinusoidal 
dilatation, congestion, necrosis, and glycogen loss). The 
administration of H2S showed both prophylactic and 
therapeutic effects in the experimental model of 
hepatotoxicity induced by CIS. Therefore, the findings of 
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the study should be supported by further clinical studies. 
Our experimental study results need to be supported by 
further clinical studies. 
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