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ABSTRACT:  

One of the fundamental processes in ecology is the interaction between predator and prey. 

Predator-prey interactions refer to the relative changes in population density of two species as 

they share the same environment and one species preys on the other. There are many studies 

global existence or blow-up of solutions on the predator-prey model. Our this paper related to 

the predator-prey model with nonlinear indirect chemotaxis mechanism under homogeneous 

Neumann boundary conditions. We establish the global existence and boundedness of classical 

solutions of our problem by using parabolic regularity theory. Namely, firstly we show that   

and   boundedness in    for some    , then  we obtain the   -bound of   and   by using 

Alikakos-Moser iteration. Thus, it is proved that the model has a unique global classical 

solution under suitable conditions on the parameters in a smooth bounded domain. 
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INTRODUCTION 

In our this paper, we deal with the following predator-prey chemotaxis model with nonlinear 

indirect chemotaxis mechanism 

{
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where      (   ) is a bounded domain with smooth boundary   ,   is the unit outward normal 

to   ,  (   ) and  (   ) denote the respectively densities of prey and predator populations.  (   ) 

and  (   ) represent the concentration of chemical attractants,  (   ) is produced by  (   ) and 

 (   ), and  (   ) is secreted by  (   ). The initial data       are nonnegative functions and the 

constants                      . The terms    (   ) and     (   ) describe that the prey 

moves away from the higher concentration of the chemical secreted by the predator (chemorepulsion), 

and the predator moves toward the higher concentration of the chemical secreted by the prey 

(chemoattraction) with chemotaxis sensitivity coefficients   and  . The kinetic terms describe mutual 

effect between predator and prey, where the population of the predator has a negative effect on the 

density of the prey, the population of the prey has an effect positively on the density of the predator,   

and   denote the growth rates of two species,   and   measure interaction between two species. 

System (1) is an extended version of the Keller-Segel system which is one of the most widely 

used models of chemotaxis introduced by Keller and Segel (1971). Chemotaxis is the movement of an 

organism in response to a chemical stimulus. One of the best-known examples of chemotaxis is the 

movement of the bacterium Escherichia Coli (E. Coli). With the development of modern cell biology 

and biochemistry in the 1960s and 1970s, many new techniques were developed and the decision-

making mechanism of bacteria was explained by Adler. Adler observed crawling band movement of 

bacteria by placing E. Coli on one side of the tube and food and oxygen on the other side (Adler, 

1966). The mathematical model of chemotaxis was expressed by Keller and Segel (1971), which 

successfully fitted the experimental studies by Adler. In past decades, the classical Keller-Segel and 

some modified Keller-Segel models have been extensively studied by different researchers (see: 

Horstmann, 2004 for detailed information). For example, some researchers examined the global 

existence or blow-up of solutions for the following Keller-Segel model with a logistic source 

{
 

 
           (   )    (   ) (   )    (   ) 

                                            (   )    (   ) 

                                                      (   )     (   ) 

 (   )    ( )     (   )    ( )                                    

                                                                       ( ) 

where      is a smooth bounded domain and   is the unit outward normal to   . The solutions of 

the problem (2) by describing in terms of spatial dimensions have been proven that if    , then the 

solutions are always globally bounded for     (Osaki & Yagi, 2001), and may blow-up in finite or 

infinite time for     (Horstmann & Wang, 2001; Nagai, 2001; Winkler, 2013). Some authors proved 

that if     , then the blow-up phenomena may be prevented. For instance, when    , Tello and 

Winkler (2007) proved the existence of global bounded classical solutions under the assumption that 

either the space dimension does not exceed two, or that the logistic damping effect is strong enough. 

For the fully parabolic case when    , Osaki et al. (2002) showed that any blow-up phenomenon can 
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be completely suppressed for arbitrarily small     for    . Winkler (2010) extended this result 

obtained by Osaki et al. (2002) for higher dimensional bounded convex domain, and showed that if   

is sufficiently large, then the problem (2) possesses a bounded unique global classical solution in 

  (   ). Also, many studies have considered the boundedness of the global solutions (Cao & 

Zheng, 2014; Yang et al., 2015; Li & Xiang, 2016; Xu & Zheng, 2018; Ayazoglu, 2022; Ayazoglu & 

Akkoyunlu 2022; Liu & Dai, 2022; Tian et al., 2022; Ayazoglu & Salmanova, 2024; Ayazoglu et al., 

2024). 

The interaction between predator and prey is one of the most fundamental processes in ecology 

and this interaction is critical in community dynamics for the management of renewable resources.  

For this reason, many mathematicians, ecologists, and biologists have researched this topic and 

examined the dynamic behavior that defines the interaction between predator and prey. In predator-

prey models, the interaction between prey and predator populations is reviewed over time. For 

example, assuming that the predator population’s only food source is prey, a high predator population 

will lead to a decrease in the prey population. A decrease in the prey population will lead to a 

reduction of the predator population, whose main food source is prey. The prey population will 

increase because the prey population will find a suitable environment for reproduction in the face of a 

decreasing predator population. Therefore, the increasing prey population creates a suitable feeding 

area for the predator population and contributes to the increase in the predator population. Thus, the 

interaction between the prey and predator populations cyclically continues in this way. Most previous 

theoretical analyses of predator-prey systems have taken as their starting point Volterra’s equations 

(Volterra, 1926). If the prey and the predator target the same living creature as a food source, they 

become rivals. In contrast, if the predator chooses the prey as a food source, a hostile relationship 

begins between them. The competition and hostility relationship between the prey and predator 

populations is deal with in the Volterra’s equations. Recently, studies on mathematical modeling of 

predator-prey systems have increased. 

Tello and Winkler (2012) studied the following two-competing-species and one-stimuli 

chemotaxis model 

{
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                                           ( ) 

when     . The authors proved that the system (3) has a unique stationary solution that is globally 

asymptotically stable under suitable assumptions on the parameters. For           and    

being replaced by a positive constant (    ), Espejo et al. (2009) investigated simultaneous finite-

time blow-up of (3) when   is a circle in    . For          , Biler et al. (2013) obtained the 

blow-up properties of (3) with      (   ). Similar blow-up mechanisms, in particular related to 

the initial data size, have been studied by Conca et al. (2011) and Espejo et al. (2013) for     . 

In case    , for the fully parabolic chemotaxis system (3), many authors extensively studied 

the global existence and large time behavior of solutions (Lin et al., 2015; Bai & Winkler, 2016; Lin & 

Mu, 2017; Mizukami, 2017; Wang et al., 2017; Zhang & Li, 2018; Li & Wang, 2019).  

Wang and Ke (2024) considered the following predator-prey system involving nonlinear indirect 

signal production 
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{
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under homogeneous Neumann boundary conditions in a bounded and smooth domain      (  

 ), where the parameters                         . It has been shown that if     ,      and 

 (   )  
 

 
, then there exist some suitable initial data such that the system (4) has a global classical 

solution (       ), which is bounded in   (   ). Wang and Ke (2024) determined the 

boundedness criteria only by the power exponents             and spatial dimension   instead of the 

coefficients of the system and the sizes of initial data.   

In this study, we deal with the global boundedness of the solution of problem (1), such that the 

exponents are          . Also, compared to the above studies, we remove the restrictions on the 

coefficients of the system, and our conclusions depend only on the power exponents        . The 

model considered in this study is more general than the models discussed so far and the conditions are 

optimal in some sense. 

The main result of this paper can be stated as follows. 

Theorem 1. Let      (   ) be a bounded domain with smooth boundary and the parameters 

satisfy                . If   
   

 
                    *      + for any nonnegative 

initial data        
 ( ̅), with   (   ) and     

   ( ) are nonnegative, then the system (1) 

has a nonnegative global classical solution 

(       )  (  ( ̅  ,   ))      ( ̅  ,   )))
 
     ( ̅  ,   ))                                                        

which is bounded in   (   ), namely, there exists a constant     such that 

‖ (   )‖  ‖ (   )‖  ‖ (   )‖    ‖ (   )‖      for all                                                         

MATERIALS AND METHODS  

Preliminaries 

Standard parabolic regularity theory in a suitable fixed point framework can be used to obtain the 

local solution of the problem (1) for sufficiently smooth initial data. In fact, one can thereby also 

derive a sufficient condition for extensibility of a given local-in-time solution. Details of the proof can 

be found in (Ladyzhenskaia et al., 1968; Tello & Winkler, 2007; Winkler, 2013; Ding & Wang, 2019).  

We denote ‖ ‖  ( )  ‖ ‖ , ‖ ‖    ( )  ‖ ‖    ‖ ‖  ‖  ‖ , 

‖ ‖    ( )  ‖ ‖    ‖ ‖  ‖  ‖  (     ).  

Lemma 1. Let      (   ) be a bounded domain with smooth boundary and the parameters 

satisfy                      . Assume that initial data        
 ( ̅), with   (   ) and  

    
   ( ) are nonnegative. Then there exists      (   - such that the system (1) has a 

nonnegative classical solution (       ) satisfying 

(       )  (  ( ̅  ,      ))   
   ( ̅  ,      )))

 
     ( ̅  ,      ))                                        

Furthermore, if       , then 

‖ (   )‖  ‖ (   )‖  ‖ (   )‖    ‖ (   )‖                                                                       

The following lemmas are essential to prove Theorem 1. We need the well-known Gagliardo-

Nirenberg interpolation inequality (Nirenberg, 1966). 
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Lemma 2. Let   and   be two integers satisfying      . Suppose        ,    , and 
 

 
      with 

 

 
 
 

 
  (

 

 
 
 

 
)  (   )

 

 
                                                                                                                        ( )  

Then, for any       ( )    ( ), there exist two positive constants    and    depending only on 

        and   such that 

‖   ‖    ‖ 
  ‖ 

 ‖ ‖ 
      ‖ ‖  

holds with the following exception: the condition (5) is assumed only for   0
 

 
  ) if      

 

 
 is a 

non-negative integer with      . 

Lemma 3. Assume that      (   ) is a bounded and smooth domain and the parameters 

satisfy                   and      . Let (       ) be a solution of system (3). Then there exist 

the constants         such that 

‖ (   )‖     ‖ (   )‖               (      )                                                                                   ( ) 

Lemma 4. Under the assumptions of Lemma 1 the solution of (1) satisfies 

∫  (   ) 

 

 ∫  (   ) 

 

 ∫  (   ) 

 

   ̅           (      )                                                                          

where   ̅          0  
 

(   ) 
/. 

A detailed proof of Lemma 4 is available in Tang et al. (2023). 

We establish the global existence and boundedness of classical solutions of the system (1) by 

using well-known Alikakos-Moser iteration. Namely, if   and   boundedness in    for some    , 

then    -bound of   and   can be obtained by using Alikakos-Moser iteration (Alikakos, 1979).   

RESULTS AND DISCUSSION  

Global Existence and Boundedness 

This section deal with the global existence and boundedness of classical solutions to the system 

(1). Now, we establish the   -boundedness of   and   for some    . We should at first establish that 

for any    , there exists     such that 

‖ (   )‖   ‖ (   )‖              (      ). 

Lemma 5. Let the assumptions stated in Lemma 1 hold. Then there exist constants     and 

 ( )    such that 

∫    

 

 ∫ |  
 
 |
 

 

  ( )           (      )                                                                                ( ) 

Proof. The proof of the inequality (7) comes from an application of a general case of the 

Gagliardo-Nirenberg inequality (by Lemma 2): in particular, for any     and for some        we 

get 

∫    ‖ 
 
 ‖

 

 

    (‖  
 
 ‖

 

  

‖ 
 
 ‖ 

 

 (   )

 ‖ 
 
 ‖ 

 

 

)   ̃ (‖  
 
 ‖

 

  

  )
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where   
 

 
 
 

 
 

 
 
 

 
 
 

 

 
(   ) 

      
 (   ) and the fact of the boundedness to ‖ ‖  by using Lemma 3. Due 

to    , we conclude that 
 (   ) 

      
    Using Young inequality, the inequality (7) can be derived 

directly. This completes the proof of Lemma 5. 

Lemma 6. Assume that      (   ) is a bounded domain with smooth boundary and the 

parameters satisfy                . If   
   

 
,        and      *      +, then there 

exists a constant     such that 

∫   

 

(   )  ∫   (   )

 

                                                                                                                                  ( )  

 for all   (      ) and any      {   (   )  (   ) 
(   )(   )

   
}. 

Proof. Multiply the first equation in the system (1) by      for any 

      {   (   )  (   ) 
(   )(   )

   
}, then integrate over   by parts and taking into account 

the inequality (6), we have 
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                                                                                                                                                                    ( ) 

for all   (      ). We estimate the terms         . 

    (   ) ∫  
   

 

|  |   
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 |
 

 

                                                                               (  ) 

Using the third equation of the system (1), we get 

   
 (   )
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 (   )

 
∫   

 

(    )   
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For all    . by using young inequality, we can obtain 

    
 (   )

 
∫   

 

    ∫  
     

 

  ∫  
    
                                                                                  (  )

 

  

where    
 (   )

    
   and    

   (   )

 (    )
  . Next, we estimate the integral ∫  

    

  
 

 according to a 

procedure similar to that employed by Tao and Wang (2013). In the following, we provide a brief 

outline for the sake of completeness. Noting that   solves the following linear elliptic equations 

{
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for   (      ). Thus applying the Agmon-Douglis-Nirenberg    estimates on linear elliptic 

equations with the homogeneous Neumann boundary condition, we conclude that there exists     

depending only on   and   such that 

‖ (   )‖     ‖ 
 (   )‖       

 (   )    ( )                                                                                  (  ) 

for all   (      ) (Agmon et al., 1964). For any    , we can find   0  
 

(   ) 
/. Then we can 

use the Gagliardo-Nirenberg inequality (Lemma 2) and the inequality (12) the estimate of   (Lemma 

4) to obtain some positive constants    and    such that 
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 (   ). Due to   
   

 
, we conclude 

    

 
 

   
  

  
    

  
 

    

                                                                                                                       (  ) 

Therefore, by using (13), (14) and Young inequality, we obtain 

  ∫  
    
  

 

   ∫  
    

 

                                                                                                                         (  ) 

for all   (      ). Substituting (15) into (11), we derive 

     ∫  
    

 

                                                                                                                                            (  ) 

where         . Recall the following inequality 

   
     

    (
  
  
)

 
   
                                                                                                                       (  ) 

where     ,      and      .  We can rewrite    as following 
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∫   

 

 
 

 
∫   

 

 
 

 
∫        

 

 
∫       

 

 

  

                               (  ) 

By inequality (17), we have 

 

 
∫   

 

 
 

 
∫           

 

                                                                                                                              (  ) 

where    
 

 
| |   . So, substituting (19) into (18), we get 

    
 

 
∫   

 

 
 

 
∫           

 

                                                                                                                    (  ) 

Substituting (10), (16), (20) into (9), and by using (7), we have 
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where          and    
 

 
 ( )    . Taking   

 (   )

   
  we have 
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∫                                                                                                         (  )

 

 

for all   (      ). Next, similarly multiplying the second equation in system (1) by      for any 

     {   (   )  (   ) 
(   )(   )

   
}, we can deduce from integration by parts that 
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Using the third equation of the system (1), we can write the equation (22) as following 
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for all    . Further, from inequality (17), we see  

 ∫   
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                                                                                                                                  (  ) 

where     
 

    | |   . Since    , from Young inequality, we conclude 

  ∫    

 

 
 

 
∫           ∫  
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for some      . Similarly by using Young inequality, one may obtain 

 (   )

 
∫     

 

    ∫  
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                                                                                       (  ) 

where     
 (   )

    
,     

   (   )

 (    )
.  Substituting the inequalities (24), (25) and (26) into (23), we get 
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∫       

 

    ∫  
     
   

 

                                   (  ) 

We estimate the integral ∫  
    

 
 

. Noting that   solves the following linear elliptic equations 

{
             

    
  

  
                

 

for   (      ). Similarly to (12), we get 
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‖ (   )‖     ̃‖ 
 (   )‖       

 (   )    ( )                                                                                   (  ) 

for all   (      ) with  ̃   . For any    , we can find    0  
 

(   ) 
/. Then we can use the 

Gagliardo-Nirenberg inequality (Lemma 2) and (28) the estimate of   (Lemma 4) to obtain some 

positive constants   ̅,   ̅ such that 
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 (   ). Then we conclude 
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Therefore, by combining the inequality (29) with (30) and applying Young inequality, we obtain 

   ∫  
    
 

 

   ̅ ∫  
    

 

   ̅                                                                                                                      (  ) 

Substituting inequality (31) into (27), it is easy to see 
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    ∫  
    

 

   ̅ ∫  
    

 

 
 

 
∫       

 

    ∫  
     
   

 

                                     (  ) 

with       ̅    . By virtue of (21) and (32), we conclude 
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   ∫  
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∫       

 

 
 

 
∫       

 

                                                                                (  ) 

where       ̅    ,           . Due to    , we see 

      
     

   
   

 (   )  (   )(   )

   
   

 (   )

   
       

for all      {   (   )  (   ) 
(   )(   )

   
}. On the one hand, since       

     

   
,             

       and      *      +, from inequality (17), we can deduce 

   ∫  
     
   

 

 
 

 
∫       
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   | |                                  (  ) 
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∫       
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| |                                              (  )
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∫                        (
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From (33)-(36), we have 

 

 

 

  
∫(     )  

 

 
∫       

 

 
 

 
∫       

 

 

 

                                                                                   (  ) 

for all   (      ), where                      . Next, adding ∫ (     )
 

 to both 

sides of the inequality (37) let’s write the inequality as following 

 

 

 

  
∫(     )  ∫(     )  ∫    ∫   

 

 
 

 
∫       

   

 
 

 
∫       

 

 

 

                        (  ) 

From the inequality (17), we obtain 

∫   

 

 
 

 
∫        

 

             (
 

 
)

 
   

| |                                                                                 (  ) 

∫   

 

 
 

 
∫                    (

 

 
)

 
   

| |                                                                                      (  )

 

 

Finally, by combining (38)-(40), we infer 

 

 

 

  
∫(     )  ∫(     )     

  

 

with                 for all   (      ). By taking  ( )   ∫ (     )
 

, the absorptive 

differential inequality 
  ( )

  
      ( ) concludes the proof through comparison reasoning for 

ordinary differential inequalities. Thus, one derives the inequality (8) directly. 

Proof of Theorem 1. By Lemma 6, we know that ‖ (   )‖  ‖ (   )‖    for all   

(      ) and      {   (   )  (   ) 
(   )(   )

   
}. We deal with the fourth equation in system 

(1) by elliptic   -estimate, thus there exists  ̂    such that ‖ (   )‖   
 
   ̂  for all   (      ). 

From Sobolev imbedding theorem, we get ‖ (   )‖     ̂  for all   (      ), for some  ̂   . By 

using parabolic regularity for the third equation in system (1), we conclude ‖ (   )‖     ̂  for all 

  (      ), for some  ̂   . By the standard Alikakos-Moser iteration (see: Lemma A.1 in 

Alikakos, 1979), it is entailed from the inequality (8) of Lemma 6 that there exists  ̂ ,  ̂    such that 

‖ (   )‖   ̂      ‖ (   )‖   ̂  

for all   (   ), where  ̂ ,  ̂    is independent of   (      ). Thus, from Lemma 1, we obtain 

that       . Thanks to the Neumann heat semigroup estimate the solution (       ) is global in 

time and bounded (Winkler, 2013). The proof of Theorem 1 is complete. 

CONCLUSION 

We considered a predator-prey model with nonlinear indirect chemotaxis mechanism under 

homogeneous Neumann boundary conditions. In the conclusion, we proved that for all appropriate 

regular nonnegative initial data the system (1) has a nonnegative global classical solution under 

suitable conditions on the parameters. 
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