
Turk. J. Math. Comput. Sci.
16(2)(2024) 463–470
©MatDer
DOI : 10.47000/tjmcs.1550305

Modification of DTM for Solving Multi-Interval Boundary Value Problems
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Received: 15-09-2024 • Accepted: 08-11-2024

Abstract. Although the well-known differential transform method (DTM) is one of the effective methods for
solving single-interval boundary value problems (SIBVPs), this method cannot be directly applied to multi-interval
boundary value transmission problems (MIBVTPs). In this study, we generalized the classical DTM so that it can
be applied to solving not only SIBVPs but also MIBVTPs. To justify the effectiveness of the presented generaliza-
tion of DTM, we solved two MIBVTPs for the three-interval differential equations and graphically compared the
obtained approximate solutions with the corresponding exact solutions.
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1. Introduction

A semi-analytical method called the differential transform method (DTM) was first proposed by Pukhov [9] in 1986
to solve problems arising in the mathematical modeling of some physical processes. In the same year Zhou [11] also
applied DTM to solve initial value problems for differential equations arising in the study of electrical circuits. Using
DTM, one can obtain approximate, in some cases even analytical solutions to various ordinary and partial differential
equations (PDEs) in the form of polynomials or Taylor series expansions. Although DTM is based on the Taylor
expansion, it differs from the Taylor series expansion method in that DTM does not require extensive calculation of the
highest derivatives of the given functions Chen and Ho [5] modified this method to solve certain types of PDEs and
obtained series solutions for initial value problems for such PDEs. Ayaz [4] solved a system of differential equations by
applying a new modification of the DTM. In [10] a new generalization of DTM (called random differential transform)
is developed to solve random differential equations. In [12], Zou et al. for the first time have applied the differential
transform technique to solve differential-difference equations. In [3], this technique is extended to solve difference
equations of any type and order. In [1], Al-Amr presents a new version of DTM and calls it the reduced differential
transform method (RDTM) for solving certain nonlinear differential equations of mathematical physics, as well as
the generalized Drinfeld-Sokolov equation and Kaup-Kupershmidt equation. In [8], by combining the DTM and the
Adomian Decomposition Method have been devoted a new method to solve inhomogeneous Dirichlet type boundary
value problems (BVPs) for PDEs. In [2], Al-Rozbayani and Qasim have been applied the modified α-parameterized
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differential transform method and the genetic algorithm to solve the general Gardner equation. In [7], Mukhtarov et
al. propose a new transformation method that includes an auxiliary parameter α, and call it the α-parameterized DTM
(α-P DTM), to obtain approximate eigenvalues of the differential operators generated by the initial and/or boundary
value problems(BVPs). In [6], the transformed equation is studied using α -PDTM.

In this work, we present a new generalization of the standard DTM to solve not only single-interval BVPs but also
multi-interval BVPs with additional transmission conditions. To illustrate the proposed generalization of the DTM, we
solved two multi-interval boundary value transmission problems (MIBVTPs).

2. The Definition and Basic Properties of the TransformMethod

Let p = p(t) be any analytic function defined on some neighborhood of the point t = t0 and let

p(t) =
∞∑

l=0

Pt0 (l)(t − t0)l

be a Taylor expansion of the function p(t), where

Pt0 (l) :=
1
l!

[
dl

dtl p(t)
]

t=t0

, l = 0, 1, 2, ...

are the Taylor coefficients.

Definition 2.1 ( [11]). The sequence (Pt0 (0), Pt0 (1), ...) is called differential transform of the analytic function p(t) at
the point t = t0 and is denoted by Kt0 (p).

Definition 2.2 ( [11]). The differential inverse transform of the sequence Kt0 (p) = (Pt0 (0), Pt0 (1), ...) is said to be the
series

∑∞
l=0 Pt0 (l)(t − t0)l and is denoted by K−1

t0 (Kt0 (p)).

It is clear that K−1
t0 (Kt0 (p)) = p(t). Here, p(t) is called the original function and the sequence Kt0 (p) is called the

K-transform of p(t). From the definition of the K-transform it follows easily the following properties:
i. Kt0 (a1 + a2) = Kt0 (a1) + Kt0 (a2)

ii. Kt0 (γb) = γKt0 (b), for any γ ∈ R
iii. If Kt0 (p) = (Pt0 (l)), then Kt0 ( dp

dt ) = ((l + 1)Pt0 (l + 1))
iv. If Kt0 (a) = (At0 (l)), Kt0 (b) = (Bt0 (l)) and Kt0 (ab) = (Ct0 (l)), then Ct0 (l) = (At0 (l)) ∗ (Bt0 (l)),

where (At0 (l)) ∗ (Bt0 (l)) is denoted the convolution of the sequences (At0 (l)) and (Bt0 (l)).
In a real application, the differential inverse transform K−1

t0 (Kt0 (p)) is defined by a finite sum

K−1
t0 (Kt0 (p)) =

s∑
l=0

Pl(t0)(t − t0)l

for sufficiently large s.

3. The Algoritm of the Generalized DTM for SolvingMulti-Interval Transmission Problems

A differential equation defined on two or more disjoint intervals with comman endpoints (i.e. on the domain of
definition which has the form [t0, t1) ∪ (t1, t2) ∪ ... ∪ (tn−1, tn] is called a multi-interval differential equation (MIDE).
Boundary value problems consisting of a MIDE together with the boundary and transmission conditions are called
multi-interval boundary value transmission problems (MIBVTPs). It is not clear how to apply the classical DTM
to MIBVTPs. Based on classical DTM we developed a new modification of DTM, which we called as generalized
differential transformation method (GDTM) to solve MIBVTPs. The algoritm of the GDTM consists of the following
steps. First we apply the differential transformation on the first interval [t0, t1). Then using the obtained approximate
solution defined on the first interval [t0, t1) and applying the tranmission conditions at the interaction point t = t1) we
construct the initial conditions for the second interval [t1, t2) to find approximate solution at the second interval, and so
on. As a results, we have an approximate solution defined on the whole multi-interval [t0, t1) ∪ (t1, t2) ∪ ... ∪ (tn−1, tn].
To demostrate the applicability and effectiveness of the proposed modification of DTM, we will solve two examples
for MIBVTPs using the GDTM.
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Example 3.1. (Application of the GDTM) Let us consider the differential equation, which is defined on three sepa-
rated intervals and given by

y′′(t) −
4(t − 1)
2t − 3

y′(t) +
4

2t − 3
y(t) = 0, t ∈ [0, 1) ∪ (1,

3
2

) ∪ (
3
2
, 2] ∪ (2, 3] (3.1)

subject to the initial conditions, given by

y(0) = −3, y′(0) = 3

and additional transmission conditions specified at the common end-points t = 1 and t = 2, given by

y(1 + 0) = y(1 − 0) + 5e3, y′(1 + 0) = y(1 − 0) + 2 + 10e3

and

y(2 + 0) =
4
5

y(2 − 0) −
8
5
, y′(2 + 0) =

8
5

y(2 − 0) −
16
5
,

respectively. Let K0(l), K1(l), and K2(l), be the differential transform of the original function y(t) at the points t = 0,
t = 1 and t = 2, respectively. If we apply differential transform to the equation (3.1) in the interval [0, 1) with t0 = 0,
then we find that

K0(y1, l + 2) =
1

3(l + 1)(l + 2)
[(2l + 4)(l + 1)K0(y1, l + 1) + 4(1 − l)K0(y1, l)] (3.2)

Now, applying the differential inverse transform we have

y1(t) = K0(y1, 0) + K0(y1, 1)t + K0(y1, 2)t2 + K0(y1, 3)t3 + ...,

where y1(t) denotes the restriction of y(t) on the left interval [0, 1). The initial conditions y(0) = −3 and y′(0) = 3 yields

K0(y1, 0) = −3

and

K0(y1, 1) = 3,

respectively. By using the recurrence formula (3.2), we can calculate the other terms of the sequence (K0(y1, l)) as
follows.

K0(y1, 2) =
2
3

(K0(y1, 1) − K0(y1, 0)), K0(y1, 3) =
2
3

K0(y1, 2), K0(y1, 4) =
1
3

K0(y1, 2),

K0(y1, 5) =
2
15

K0(y1, 2), K0(y1, 6) =
2
45

K0(y1, 2), K0(y1, 7) =
4

315
K0(y1, 2), ...

Thus, we have the following formula for the solution that is defined on the first interval [0, 1).

y1(t) = K0(y1, 0) + K0(y1, 1)t + K0(y1, 2)t2 + K0(y1, 3)t3 + ...

= −3 + 3t.

Secondly, let us get the solution defined on the second interval (1, 2). If the differential transform method is applied to
the differential equation (3.1) in the around of the point t0 = 1, we have

K1(y2, l + 2) =
1

(l + 1)(l + 2)
[2l(l + 1)K1(y2, l + 1) + 4(1 − l)K1(y2, l)], (3.3)

where y2(t) denotes the restriction of y(t) on the second interval (1, 2). By applying the differential inverse transform in
the second interval (1, 2) we have

y2(t) = K1(y2, 0) + K1(y2, 1)(t − 1) + K1(y2, 2)(t − 1)2 + K1(y2, 3)(t − 1)3 + ...

Using transmission conditions y(1 + 0) = y(1 − 0)5e3 and y′(1 + 0) = y(1 − 0) + 2 + 10e3, we get

K1(y2, 0) = 5e3

and

K1(y2, 1) = 2 + 10e3,
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respectively. By using the recurrence formula (3.3) we have

K1(y2, 2) = 2K1(y2, 0), K1(y2, 3) =
2
3

K1(y2, 2), K1(y2, 4) =
1
3

K0(y2, 2),

K1(y2, 5) =
2
15

K0(y2, 2), K1(y2, 6) =
2
45

K1(y2, 2), K1(y2, 7) =
4

315
K1(y2, 2), ...

Consequently,

y2(t) = K1(y2, 0) + K1(y2, 1)(t − 1) + K1(y2, 2)(t − 1)2 + K1(y2, 3)(t − 1)3 + ...

= K1(y2, 0) + K1(y2, 1)(t − 1) + K1(y2, 2)(
1
2

e2t−2 − t +
1
2

)

= 5e3 + (2 + 10e3)(t − 1) + 10e3(
1
2

e2t−2 − t +
1
2

).

Finally, let us get the solution in the third interval (2, 3]. If the transform method is applied to the differential equation
(3.1) in the interval (2, 3] at the point t0 = 2, then we have the following recurrence formula

K2(y3, l + 2) =
−1

(l + 1)(l + 2)
[(2l − 4)(l + 1)K2(y3, l + 1) + 4(1 − l)K2(y3, l)], (3.4)

where y3(t) denotes the restriction of y(t) on the interval (2, 3]. Applying the differential inverse transform gives

y3(t) = K2(y3, 0) + K2(y3, 1)(t − 2) + K2(y3, 2)(t − 2)2 + K2(y3, 3)(t − 2)3 + ...

Using transmission conditions y(2 + 0) = 4
5 y(2 − 0) − 8

5 and y′(2 + 0) = 8
5 y(2 − 0) − 16

5 , we get

K2(y3, 0) = 4e5

and

K2(y3, 1) = 8e5,

respectively. By applying the recurrence formula (3.4) we have

K2(y3, 2) = 2K2(y3, 1) − 2K2(y3, 0), K2(y3, 3) =
2
3

K2(y3, 2), K2(y3, 4) =
1
3

K2(y3, 2),

K2(y3, 5) =
2
15

K2(y3, 2), K2(y3, 6) =
2
45

K2(y3, 2), K2(y3, 7) =
4

315
K2(y3, 2), ...

So,

y3(t) = K2(y3, 0) + K2(y3, 1)(t − 2) + K2(y3, 2)(
1
2

e2t−4 − t +
3
2

).

Figure 1. Graph of the approximate solution
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We can show that the exact solution of this MIBVTP is

y(t) =


3t − 3 f or t ∈ [0, 1)
2t + 5e2t+1 − 2 f or t ∈ (1, 2)
4e2t+1 f or t ∈ (2, 3].

Figure 2. Graph of the exact solution

Example 3.2. (Application of the DTM) Let us consider the differential equation, which is defined on three separated
intervals and given by

(t + 1)2y′′(t) − (t + 1)y′(t) + y(t) = 0, t ∈ [0, 1) ∪ (1, 2) ∪ (2, 3] (3.5)

subject to the initial conditions, given by

y(0) = 2, y′(0) = 2

and additional transmission conditions specified at the common end-points t = 1 and t = 2, given by

y(1 + 0) =
3
2

y(1 − 0), y′(1 + 0) =
5
4

y(1 − 0)

and

y(2 + 0) =
9
4

y(2 − 0), y′(2 + 0) =
3
2

y(2 − 0),

respectively. Let K0(l), K1(l), and K2(l), be the differential transform of the original function y(t) at the points t = 0,
t = 1 and t = 2, respectively. If we apply differential transform to the equation (3.5) in the interval [0, 1) with t0 = 0,
then we find that

K0(y1, l + 2) =
−1

(l + 2)(l + 1)
[(l2 − 2l + 1)K0(y1, l) + (2l − 1)(l + 1)K0(y1, l + 1)]. (3.6)

Now applying the differential inverse transform we have

y1(t) = K0(y1, 0) + K0(y1, 1)t + K0(y1, 2)t2 + K0(y1, 3)t3 + ...,

where y1(t) denotes the restriction of y(t) on the left interval [0, 1). The initial conditions y(0) = 2 and y′(0) = 2 yields

K0(y1, 0) = 2

and

K0(y1, 1) = 2,

respectively. By using the recurrence formula (3.6), we can calculate the other terms of the sequence (K0(y1, l)) as
follows.

K0(y1, 2) = 0, K0(y1, 3) = 0, K0(y1, 4) = 0, ...
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Thus, we have the following formula for the solution that is defined on the first interval [0, 1).

y1(t) = K0(y1, 0) + K0(y1, 1)t + K0(y1, 2)t2 + K0(y1, 3)t3 + ...

= 2t.

Secondly, let us get the solution defined on the second interval (1, 2). If the differential transform method is applied to
the differential equation (3.5) in the around of the point t0 = 1, then we have

K1(y2, l + 2) =
−(4l − 2)
5(l + 2)

K1(y2, l + 1) −
−(l − 1)2

5(l + 2)(l + 1)
K1(y2, l), (3.7)

where y2(t) denotes the restriction of y(t) on the second interval (1, 2). By applying the differential inverse transform in
the second interval (1, 2) we have

y2(t) = K1(y2, 0) + K1(y2, 1)(t − 1) + K1(y2, 2)(t − 1)2 + K1(y2, 3)(t − 1)3 + ...

Using transmission conditions y(1 + 0) = 3
2 y(1 − 0) and y′(1 + 0) = 5

4 y(1 − 0), we get

K1(y2, 0) = 6

and

K1(y2, 1) = 5,

respectively. By applying the recurrence formula (3.7) we have

K1(y2, 2) =
−8
5
, K1(y2, 3) =

16
75
, K1(y2, 4) =

−14
375
, ...

Consequently,

y2(t) = K1(y2, 0) + K1(y2, 1)(t − 1) + K1(y2, 2)(t − 1)2 + K1(y2, 3)(t − 1)3 + ...

= t2 + t.

Finally, let us get the solution in the third interval (2, 3]. If the transform method is applied to the differential equation,
(3.5) in the interval (2, 3] at the point t0 = 2, then we have the following recurrence formula

K2(y3, l + 2) =
−1

13(l + 1)(l + 2)
[(6l − 3)K2(y3, l + 1) + (l2 − 2l + 1)K2(y3, l)], (3.8)

where y3(t) denotes the restriction of y(t) on the interval (2, 3]. Applying the differential inverse transform gives

y3(t) = K2(y3, 0) + K2(y3, 1)(t − 2) + K2(y3, 2)(t − 2)2 + K2(y3, 3)(t − 2)3 + ...

Using transmission conditions y(2 + 0) = 9
4 y(2 − 0) and y′(2 + 0) = 3

2 y(2 − 0), we get

K2(y3, 0) =
21546
1000

and

K2(y3, 1) =
14364
1000

,

respectively. By applying the recurrence formula (3.8) we have

K2(y3, 2) =
21546
26000

, K2(y3, 3) =
−21546
676000

, K2(y3, 4) =
61047

17576000
, ...

So,

y3(t) = K2(y3, 0) + K2(y3, 1)(t − 2) + ...

= 3t2.

We can show that the exact solution of this MIBVTP is

y(t) =


2 + 2t f or t ∈ [0, 1)
t2 + 3t + 2 f or t ∈ (1, 2)
3(t + 1)2 f or t ∈ (2, 3].
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Figure 3. Graph of the approximate solution

Figure 4. Graph of the exact solution

Conclusion

The differential transformation method (DTM) is an efficient semi-analytical method for solving various kinds of
initial and/or boundary value problems for various kinds of differential equations. We know that this method can not
be directly applied to MIBVTPs. In this paper, we proposed a new generalization of the classical DTM such that it
can be applied not only to single-interval initial and/or boundary value problems but also to multi-interval problems
with additional transmission conditions at the points of interaction. The algoritm of the proposed generalization of
DTM consists of the following steps. First, we apply the differential transformation to the differential equation on the
first subinterval of the finite number of non-intersecting intervals under consideration. Using the approximate solution
defined on the first interval and applying the transmission conditions, we construct the initial conditions for the second
interval to find the approximate solution on the second interval, and so on. As a result, we have an approximate solution
defined on the whole multi-interval. To justify the presented generalization of DTM, we solved two multi-interval
problems with additional transmission conditions. Exact solutions are also presented for these multi-interval problems.
Then we compared the obtained approximate solutions with the exact solutions graphically. The obtained results show
that the proposed generalization of DTM is an efficient and robust method for solving multi-interval problems. The
accuracy of the obtained approximate solutions can be increased by calculating more terms of the recurrence formula.
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