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Abstract 

The aim of this paper is to research and develop the model-based nonlinear control strategies (joint space position, Cartesian space 
position and hybrid position/force) of a 4 DoF SCARA robotic arm. To support these strategies, mathematical kinematics and 
dynamic equations are formulated using a dynamic model for prediction purposes. The joint space controller focuses on joint angles 
tracking while the end effector’s position is controlled with the Cartesian space controller. The hybrid controller allows interaction 
with the surface and control of the interaction force while maintaining a given Cartesian position. The motion trajectories are 
planned considering the kinematic model of the robotic arm. The study is employed in MATLAB Simulink where kinematic and 
dynamics models, trajectory generation and control blocks are integrated into a simulation environment. Results indicate that the 

torque limits of the robotic arm are sufficient for effective trajectory tracking within the imposed constraints. This research is of 
particular significance as it aims to conduct appreciable kinematic and dynamics studies of one of the most common types of 4 
DoF SCARA robotic arm and develops precise model-based nonlinear controllers for the industrial robots. 

© 2023 DPU All rights reserved. 
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1. Introduction 

In recent years, robotic arms have been extensively used and this has been facilitated by the fact that they are 

accurate, efficient, and can work in a wide range of environments [1, 2]. Robotic arms have been increasingly used to 

extend productivity, safety and cost effectiveness from manufacturing assembly line to medical operations [3, 4]. With 

the increasing market for automation, there also seems to be an increasing market for sophisticated robotic arms that 

do not only perform their duties in the traditional manner but can also be more flexible and agile [5, 6]. One such 

robotic arm which drew considerable attention is the 4 Degree-of-Freedom (DoF) SCARA (Selective Compliance 

Assembly Robot Arm) robotic arm [7]. In the contemporary enterprises SCARA robotic arms are rather used in 
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carrying out different work including assembler operations, pick and place operations, and material handling 

operations [8]. Unlike traditional ones that consist of several joints, the SCARA design has only 4 DoF. This simplifies 

the overall architecture, improved stiffness and speed without having a heavy profile [9]. 

In a 4 DoF SCARA arm, which in three revolute joints can perform motion in a horizontal plane (typically the x-y 

plane) and in one prismatic joint vertical movement, it is referred as either RRPR or RRRP (three revolute and one 

prismatic joints) arm provides great benefits. These various kinematic structures complete the arm with a wide range 

of possible functions, together with sufficient precision of movement and the ability to adapt to a wide variety of 

workpieces. This makes it ideal for applications that require both flexibility and accuracy in the performance of work 

[10, 11]. For digital twin studies, which are among the most important research topics of recent years, a digital twin 

successfully developed using a Scara robot in [12]. The study in [13] demonstrated the use of artificial neural networks 

in obtaining forward kinematics of the SCARA robot arm. In [14], the research investigated the motion behaviour and 

distance error of the SCARA robot along the X and Y axes at the end point via MATLAB. In the study [15], 

experimental tests were conducted to evaluate the tracking capabilities of a SCARA robot with different commanded 

trajectories and speeds via a PLC-based controller. In [16], a SCARA robot used for horizontal and vertical drilling in 

industries such as manufacturing and construction was modelled and simulated. As mentioned above, the SCARA 

robot arm is one of the most widely used robot arms in the industry today, as it has been for many years, and is still 

one of the most widely used and modelled and simulated robot arms in academic studies. There are very few studies 

in the literature that present simulation studies of nonlinear control methods together with both dynamic and kinematic 

analysis of such robot arms. 

In this article, three different model-based nonlinear control methods are studied, namely position control in joint 

space, position control in Cartesian space and hybrid position/force control in Cartesian space of 4 DoF SCARA 

robotic arm. First, kinematic and dynamic motion equations of the robotic arm are defined mathematically. These 

mathematical equations are used to predict the motions of the robotic arm in the workspace for model-based control 

methods. In joint space, the aim is to reach the desired joint angles of the robotic arm with the position controller. In 

Cartesian space, the aim is to reach the desired point in the Cartesian coordinates of the robotic arm's end effector with 

the position controller. Finally, in Cartesian space, the hybrid position/force controller enables both the position of the 

robot arm's end effector in Cartesian coordinates and the interaction force with the moving surface to be followed. For 

model-based control methods designed according to the dynamic model of the SCARA robotic arm, position and force 

trajectory planning is made in both joint space and Cartesian space. Dynamic and kinematic model blocks, trajectory 

tracking model block and control blocks of the robotic arm were created in MATLAB Simulink simulation 

environment. According to the simulation results, these model-based control methods successfully followed the 

desired trajectories in joint space and Cartesian space according to the dynamic structure of the robotic arm. In this 

article, mathematical analysis of the kinematic and dynamic model, trajectory planning in joint space and Cartesian 

space, model-based nonlinear controller design and simulation studies for the 4 DoF SCARA robotic arm, which is 

one of the most widely used robot arms in industrial environments, are presented. 

2. Mathematical model of 4 DoF SCARA 

In this section, the kinematic and dynamic model equations of 4 DoF SCARA robotic arm are given in detail. As 

shown in Fig.1, the 4 DoF SCARA robotic arm’s trajectory generation, forward kinematic, Jacobian, and dynamic 

model blocks are created in the MATLAB Simulink. 
 



 Tirsi, H. & Çetin, K., (2025) / Journal of Scientific Reports-A, 60, 19-37  

21 

 

 

Fig.1. The 4 DoF SCARA robotic arm’s model blocks in MATLAB Simulink. 

2.1. Forward kinematics 

A kinematic model is a mathematical equation that geometrically describes the mechanical movements of a robot. 

This model defines the fixed and variable parameters of the robotic arm's joints and the relationships between the 

joints. The kinematic model is used to calculate and control the necessary movements between joints for a robot to 

reach a desired trajectory. It plays an important role in determining how robotic arms will move to reach their target 

positions [17]. The DH parameters, also known as the Denavit-Hartenberg representation, define the geometric 

relationship between each robot joint. These parameters define the position of joints, the orientation of axes, and the 

motion between them [18]. DH parameters provide a fundamental structure for the mathematical representation of 

kinematic chains, accurately modelling the robot's motion. An Epson model SCARA robotic arm is shown in Fig.2. 
 

 

Fig.2. EPSON SCARA robotic arm. 

Fig.3 shows the connections and variables of the SCARA arm. The joints of the SCARA arm are in RRPR 
configuration. 
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Fig.3. Schematic of SCARA arm with frame assignments [24], [25]. 

DH parameters of SCARA arm are given in Table 1. 

            Table 1. DH parameters. 

Link i ai αi di θi 

1 l1 0 l0 θ1 

2 l2 π 0 θ2 

3 0 0 d3 θ3 

4 0 0 l4 θ4 

 

Link-transformation matrices are calculated for each frame to define forward kinematics. In Table 1, ai is link-

length, αi is link-twist, di is link-offset, and θi is joint-angle. The link-transformation matrices from base to the end-

link are given in the equations (1-6). 

𝐴1 = [

𝑐1 −𝑠1 0 𝑙1
𝑠1 𝑐1 0 0
0 0 1 𝑙0
0 0 0 1

]   (1) 

𝐴2 = [

𝑐2 𝑠2 0 𝑙2
𝑠2 −𝑐2 0 0
0 0 −1 0
0 0 0 1

]   (2) 

𝐴3 = [

1 0 0 0
0 1 0 0
0 0 1 𝑑3

0 0 0 1

]   (3) 
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𝐴4 = [

𝑐4 −𝑠4 0 0
𝑠4 𝑐4 0 0
0 0 1 𝑙4
0 0 0 1

]   (4) 

𝑇4
0 = 𝐴1𝐴2𝐴3𝐴4   (5) 

𝑇4
0 = [

𝑐124 𝑠124 0 𝑙1𝑐1 + 𝑙2𝑐12

𝑠124 −𝑐124 0 𝑙1𝑠1 + 𝑙2𝑠12

0 0 −1 𝑙0 − 𝑙4 − 𝑑3

0 0 0 1

]   (6) 

where ci represent cosines(θi), si represent sinus(θi), c12 is cosines(θ1+θ2) and s12 is sinus(θ1+θ2). 𝑇4
0 is the product of 

link-transformation matrices 𝐴1, 𝐴2, 𝐴3, 𝐴4.  

The first three columns and rows of the 4x4 transformation matrix represent a 3x3 rotation matrix. This matrix 

expresses the rotation in three-dimensional space by determining the amount and direction of rotation of the object. 

The fourth column with three rows represents a 3x1 position vector, indicating where the object is in three-dimensional 

space. The rotation matrix and the position vector are given in the equations (7-8). 

𝑅4
0(𝜃) = [

𝑐124 𝑐124 0
𝑠124 −𝑐124 0
0 0 −1

]   (7) 

𝑃4
0(𝜃) = [

𝑙1𝑐1 + 𝑙2𝑐12

𝑙1𝑠1 + 𝑙2𝑠12

𝑙0 − 𝑙4 − 𝑑3

]   (8) 

2.2. Velocity kinematics 

Velocity kinematics in the equation (9) relates the joint velocities 𝜃i
̇  and end-effector velocities 𝑣 of a robot with 

linear 𝑝̇ and angular velocities 𝜔. The Jacobian matrix 𝐽(𝜃) is used for velocity kinematics. This matrix is used to 

predict and control how an end-effector of the robotic arm will move at given joint velocities. The relationship is used 

to calculate the joint velocities needed for a robot’s end-effector to move at an intended speed. Thus, it enables a robot 

to reach desired positions and velocities [19]. 

𝑣4
0 = [

𝑃̇4
0

𝜔4
0
] =

[
 
 
 
 
 
 −𝑙2(𝜃1̇ + 𝜃2̇)𝑠𝑖𝑛(𝜃1 + 𝜃2) − 𝑙1𝜃1̇𝑠𝑖𝑛(𝜃1)

𝑙2(𝜃1̇ + 𝜃2̇)𝑐𝑜𝑠(𝜃1 + 𝜃2) + 𝑙1𝜃1̇𝑐𝑜𝑠(𝜃1)

−𝑑3̇

0
0

𝜃1̇ + 𝜃2̇ − 𝜃4̇ ]
 
 
 
 
 
 

 (9) 

The Jacobian matrix of the robotic arm basically defines the mapping between the joint velocities 𝜃̇ and the end 

effector velocities 𝑋̇ 

𝑋̇ = 𝐽(𝜃)𝜃̇   (10) 
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As a result of the equations provided above, the Jacobian matrix for the 4 DoF SCARA arm has been determined 

to be of size 6x4 in the equation (11). 

𝐽(𝜃) =

[
 
 
 
 
 
−𝑙2𝑠12 − 𝑙1𝑠1 −𝑙2𝑠12 0 0
𝑙2𝑐12 + 𝑙1𝑐1 𝑙2𝑐12 0 0

0 0 −1 0
0 0 0 0
0 0 0 0
1 1 0 −1]

 
 
 
 
 

   (11) 

As given in the equations (12-14), the Jacobian matrix can be divided into two components: translational Jacobian 

(𝐽𝑃) and rotational Jacobian(𝐽𝑂), allowing for singularity analysis. 

𝐽 = [
𝐽𝑃
𝐽𝑂

]   (12) 

𝐽𝑃 = [
−𝑙1𝑠1 − 𝑙2𝑠12 −𝑙2𝑠12 0 0
𝑙1𝑐1 − 𝑙2𝑐12 𝑙2𝑐12 0 0

0 0 −1 0

]   (13) 

𝐽𝑂 = [
0 0 0 0
0 0 0 0
1 1 0 −1

]   (14) 

In robotics, if 𝐽12 becomes rank-deficient, it signifies that the end effector has restricted maneuverability in the x-

y Cartesian space. This leads to kinematic singularities were achieving finite speed in one direction requires infinite 

joint speed. Detecting these involves setting the determinant of 𝐽12 to zero. 

𝐽12 = [
−𝑙1𝑠1 − 𝑙2𝑠12 −𝑙2𝑠12

𝑙1𝑐1 − 𝑙2𝑐12 𝑙2𝑐12
]   (15) 

𝑑𝑒𝑡(𝐽12) = 0 = 𝑠𝑖𝑛(𝜃2)   (16) 

When 𝜃2 assumes values of 0 or 180 degrees, it signifies the presence of a singularity issue. 

2.3. Dynamic model 

The dynamic model encapsulates the mathematical framework elucidating the mechanics of motion within a robot 

or robotic system, defining how forces and moments affecting its motion evolve through differential equations or 

matrices. This model not only facilitates understanding and controlling the dynamic behaviour of the robot, enabling 

predictions of its velocity, acceleration, position, and other motion characteristics crucial for design, control, and 

simulation but also signifies a critical transition between kinematic and dynamic models. The transition integrates data 

on the masses and moments of inertia of each link. This integrated data enables the analysis of the forces acting on 

the robot arm and the forces (or torques) required by the motor of each link. The analyzed force-torque values enable 

the effective regulation of the robotic arm’s motion. [20].  

The rigid-body dynamic model equation that describes the robotic arm’s motion is given in (17) 

𝜏 = 𝑀(𝜃)𝜃̈ + 𝑉(𝜃, 𝜃̇) + 𝐺(𝜃)   (17) 
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where 𝜃̈ is the joint acceleration, 𝜏 represents the outward forces or moments acting on the arm, 𝑀(𝜃) is the inertia-

mass matrix, 𝑉(𝜃, 𝜃̇) captures the Coriolis and centrifugal effects, and 𝐺(𝜃) signifies the gravitational effects. 

The calculations for the mass matrices to be used in the dynamic model are given in the equations (18-29) 

specifically for the SCARA robotic arm. 

𝑀(𝜃) = [

𝑀11 𝑀12 0 𝑀14

𝑀21 𝑀22 0 𝑀24

𝑀31 0 𝑀33 0
𝑀41 𝑀42 0 𝑀44

]   (18) 

 
 

              𝑀11 = 𝐼𝑧𝑧1 + 𝐼𝑧𝑧2 + 𝐼𝑧𝑧3 + 𝐼𝑧𝑧4 + 𝑚1((𝑙1 + 𝑙𝑐1𝑥)
2 + 𝑙𝑐1𝑦

2) + 𝑚2(𝑙1
2 + (𝑙2 + 𝑙𝑐2𝑥)

2 + 𝑙𝑐2𝑦
2) + 𝑚3(𝑙1

2 +

(𝑙2 + 𝑙𝑐3𝑥)
2 + 𝑙𝑐3𝑦

2) + 𝑚4(𝑙1
2 + 𝑙2

2 + 𝑙𝑐4𝑥
2 + 𝑙𝑐4𝑦

2) + (𝑚2 + 𝑚3 + 𝑚4)𝑙1𝑙2𝑐2 + 𝑚2𝑙1(𝑙𝑐2𝑥𝑐2 + 𝑙𝑐2𝑦𝑠2) +

𝑚3𝑙1(𝑙𝑐3𝑥𝑐2 + 𝑙𝑐3𝑦𝑠2) + 𝑚4 (𝑙𝑐4𝑥(𝑙1𝑐24̅ + 2𝑙2𝑐4) + 𝑙𝑐4𝑦(𝑙1𝑠24̅ − 2𝑙2𝑠4))                                                                        

                   (19) 
 

              𝑀12 = 𝑀21 = 𝐼𝑧𝑧2
+ 𝐼𝑧𝑧3

+ 𝐼𝑧𝑧4
+ 𝑚2((𝑙2 + 𝑙𝑐2𝑥)

2 + 𝑙𝑐2𝑦
2) + 𝑚3((𝑙2 + 𝑙𝑐3𝑥)

2 + 𝑙𝑐3𝑦
2) + 𝑚4 (𝑙2

2 +

𝑙𝑐4𝑥
2 + 𝑙𝑐4𝑦

2) + (𝑚2 + 𝑚3 + 𝑚4)𝑙1𝑙2𝑐2 + 𝑚2𝑙1(𝑙𝑐2𝑥𝑐2 + 𝑙𝑐2𝑦𝑠2) + 𝑚3𝑙1(𝑙𝑐3𝑥𝑐2 + 𝑙𝑐3𝑦𝑠2) + 𝑚4 (𝑙𝑐4𝑥(𝑙1𝑐24̅ +

2𝑙2𝑐4) + 𝑙𝑐4𝑦(𝑙1𝑠24̅ − 2𝑙2𝑠4))                                                                                            (20) 

 

              𝑀22 = 𝐼𝑧𝑧2
+ 𝐼𝑧𝑧3

+ 𝐼𝑧𝑧4
+ 𝑚2((𝑙2 + 𝑙𝑐2𝑥)

2 + 𝑙𝑐2𝑦
2) + 𝑚3((𝑙2 + 𝑙𝑐3𝑥)

2 + 𝑙𝑐3𝑦
2) + 𝑚4 (𝑙2

2 + 𝑙𝑐4𝑥

2
+

𝑙𝑐4𝑦
2 + 2𝑙2(𝑙𝑐4𝑥𝑐4 + 𝑙𝑐4𝑦𝑠4))                                                                                                          (21) 

 

             𝑀14 = 𝑀41 = −𝑚4 (𝑙𝑐4𝑥(𝑙𝑐4𝑥 + 𝑙2𝑐4 + 𝑙1𝑐24̅) + 𝑙𝑐4𝑦(𝑙𝑐4𝑦 − 𝑙2𝑠4 + 𝑙1𝑠24̅)) − 𝐼𝑧𝑧4                                         (22) 

 

𝑀24 = 𝑀42 = −𝑚4 (𝑙𝑐4𝑥
2 + 𝑙𝑐4𝑦

2 + 𝑙2(𝑙𝑐4𝑥𝑐4 + 𝑙𝑐4𝑦𝑠4)) − 𝐼𝑧𝑧4
 (23) 

The following equations illustrate the Coriolis matrix and the gravitational force matrix, both of which are essential 

components in the dynamic model. 

𝑉(𝜃, 𝜃̇) = [

𝑉1

𝑉2

𝑉3

𝑉4

]   (24) 

𝑉1 = 0   (25) 

            𝑉2 = 𝑙1𝜃̇1 ((𝜃̇1 + 𝜃̇2)((𝑚2 + 𝑚3 + 𝑚4)𝑙1𝑠2 + (𝑚2𝑙𝑐2𝑥 + 𝑚3𝑙𝑐3𝑥)𝑠2) − 𝑙1𝜃̇1 ((𝜃̇1 + 𝜃̇2)(𝑚2𝑙𝑐2𝑦 +

𝑚3𝑙𝑐3𝑦)𝑐2 + (𝜃̇1 + 𝜃̇2 − 𝜃̇4)(𝑚4𝑙𝑐2𝑥𝑠24̅ − 𝑚4𝑙𝑐4𝑦𝑐24̅)))                                                                                              (26) 
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𝑉3 = 0   (27) 

𝑉4 = 𝑚4(𝜃̇1 + 𝜃̇2 − 𝜃̇4) (𝑙2(𝜃̇1 + 𝜃̇2)(𝑙𝑐4𝑦𝑐4 + 𝑙𝑐4𝑥𝑠4) + 𝑚4(𝜃̇1 + 𝜃̇2 − 𝜃̇4)𝑙1𝜃̇1(𝑙𝑐4𝑦𝑐24̅ − 𝑙𝑐4𝑥𝑠24̅)) (28) 

𝐺(𝜃) = [

0
0

𝑔(𝑚3 + 𝑚4)
0

]   (29) 

All these dynamic model terms are employed to analyse the motion and force balance within the SCARA robotic 

arm. The table below presents all inertial parameters utilized in the simulation. 

              Table 2. Inertia parameters for four links. 

Link Link 1 Link 2 Link 3 Link 4 

Length (m) 0.4 0.4 𝑑3 0.15 

Mass (kg) 6.01 5.37 4.03 0.91 

𝑙𝑐𝑖𝑥  (𝑚) -0.185 -0224 0 0 

𝑙𝑐𝑖𝑦  (𝑚) 0 0 0 0 

𝑙𝑐𝑖𝑧  (𝑚) 0 0 -0.201 -0.122 

𝑙𝑥𝑥𝑖
(𝑘𝑔.𝑚2) 0.0132 0.0234 0.0802 0.0016 

𝑙𝑦𝑦𝑖
(𝑘𝑔.𝑚2) 0.1810 0.1261 0.0802 0.0016 

𝑙𝑧𝑧𝑖
(𝑘𝑔. 𝑚2) 0.1807 0.1558 0.064 0.0025 

3. Model-based nonlinear controllers 

Model-based control is an approach used to design control strategies for a system by utilizing its mathematical 

model. This method employs the model to predict the system's behaviour and achieve the desired performance. To 

reach predefined objectives, it computes appropriate control signals using the system's model and current state. While 

this approach can be effective in controlling complex systems, it may encounter challenges such as the accuracy of 

the model and managing uncertainties within the system [21].  

3.1. Joint space position controller 

The joint space position controller aims that the joint positions θ of a robotic arm tracks the desired joint positions, 

denoted by θd. Fig.4 shows the model-based joint space position controller for the arm. 
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Fig.4. Model-based joint space control schematic [26]. 

Friction-added 𝐹𝑟(𝜃, 𝜃̇) rigid dynamic model of the arm is given in the equation (30) 

𝜏 = 𝑀(𝜃)𝜃̈ + 𝑉(𝜃, 𝜃̇) + 𝐺(𝜃) + 𝐹𝑟(𝜃, 𝜃̇)   (30) 

where the friction model consists of Coulomb friction 𝑓𝑐 and viscous friction 𝑓𝑣 formulas as given in the equations 

(31-32) 

𝑓𝑐 = 𝑐 𝑠𝑔𝑛(𝜃̇)   (31) 

𝑓𝑣 = 𝑣 𝜃̇   (32) 

where 𝑐 and 𝑣 are the Coulomb friction and viscous friction coefficients, and sgn(. ) means that the signum function. 

The total friction model is given in the equation (33) 

𝐹𝑟 = 𝑓𝑐 + 𝑓𝑣   (33) 

The position error term 𝑒 gives the difference between the intended position and the actual position, whereas the 

velocity error term 𝑒̇ is the difference between the intended velocity and actual velocity as defined in the equations 

(34-35) 

𝑒 = 𝜃𝑑 − 𝜃   (34) 

𝑒̇ = 𝜃𝑑̇ − 𝜃̇   (35) 

Applying the partitioned control approach, the model-based joint space position controller is defined in the equation 

(36) 

𝜏 = 𝑀 (𝜃̈𝑑 + 𝑘𝑣𝑒̇ + 𝑘𝑝𝑒) + 𝑉 + 𝐺 + 𝐹𝑟   (36) 

where 𝑘𝑣  and 𝑘𝑝 are the control gains. Fig.5 shows the model-based joint space position controller in MATLAB 

Simulink. 
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Fig.5. Model-based joint space control in Simulink. 

3.2. Cartesian space position controller 

Robot control in Cartesian space is an approach to control systems where the position, orientation, and velocity of 

the target point (usually considered the robot's end effector) at which the robot achieves its goal are defined in 6 DoF 

Cartesian coordinates. This approach defines the motion of the robot's end effector within a specific coordinate system 

(usually relative to the robot's fixed base) and is used to obtain a specific position and velocity along each axis of the 

robotic arm. The Cartesian coordinates represent the precise position of the robotic arm's base, joint frames, and end 

effector in a plane or space. This control approach allows the robotic arm's end effector to directly reach the intended 

position and facilitates the execution of complex joint movements [22]. In Cartesian space, the position and velocity 

error terms are defined in (37-38) 

𝑒 = 𝑋𝑑 − 𝑋   (37) 

𝑒̇ = 𝑋𝑑̇ − 𝑋̇   (38) 

where 𝑋 and 𝑋̇ are the actual end-effector position and velocity, respectively, and 𝑋𝑑 and 𝑋𝑑̇ are the intended end-

effector position and velocity, respectively. Fig.6 shows the application of the model-based Cartesian position control 

scheme. 

 

Fig.6. Model-based Cartesian space control schematic [26]. 
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The Cartesian-based rigid-body dynamics can be written in (39) 

𝐹 = 𝑀𝑥(𝜃) + 𝑉𝑥(𝜃, 𝜃̇) + 𝐺𝑥(𝜃)   (39) 

where F is a hypothetical force-moment applied to the end-effector of the robotic arm. The dynamic model terms in 

joint space are formulated in Cartesian space by using the Jacobian of the arm as given in (40-42) 

𝑀𝑥(𝜃) = 𝐽−𝑇(𝜃)𝑀(𝜃)𝐽−1(𝜃)   (40) 

𝑉𝑥(𝜃, 𝜃̇) = 𝐽−𝑇(𝜃)(𝑉(𝜃, 𝜃̇) − 𝑀(𝜃)𝐽−1(𝜃)𝐽(̇𝜃)𝜃̇) (41) 

𝐺𝑥(𝜃) = 𝐽−𝑇(𝜃)𝐺(𝜃)   (42) 

Applying the partitioned control approach, the model-based Cartesian space position controller is defined in (43) 

𝐹 = 𝑀𝑥  (𝑋̈𝑑 + 𝑘𝑣𝑒̇ + 𝑘𝑝𝑒) + 𝑉𝑥 + 𝐺𝑥   (43) 

Then the torques that need to be applied to the joints are computed as (44) 

𝜏 = 𝐽𝑇  𝐹   (44) 

Fig.7 shows the blocks designed in the MATLAB Simulink for Cartesian space position control. 
 

 

Fig.7. Model-based Cartesian space control in Simulink. 

3.3. Cartesian space hybrid position/force control 

Hybrid position/force controller in Cartesian space is a control system approach used to improve the physical 

interactions of the robotic arm with its environment, especially the end effector. Fig.8, in the control approach, the 

end effector of the robotic arm is moved to a certain position in Cartesian space and at the same time the robot end 

effector maintains its position with a certain force when interacting with objects or surfaces. In other words, thanks to 

the hybrid position/force controller that combines these two control modes, robotic arms are generally used for 
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operations that require both position movement and a certain force movement, such as assembly, brushing, cutting, 

wiping [23].  

 

Fig.8. Model-based Cartesian space hybrid position/force control schematic [26]. 

Fig.9 shows the Hybrid Position/Force control block diagram in Simulink. 
 

 

Fig.9. Model-based Cartesian space hybrid position/force control in Simulink. 
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The switch matrices 𝑆𝑝 and 𝑆𝑓 determine in which directions position and/or force control, respectively, will be 

made in the Cartesian space. In this hybrid control study, a Cartesian space position control is applied to the arm’s 

end-effector in the x-y directions while a Cartesian space force control is applied to the arm’s end-effector in the z 

direction with the following switch matrices in (45-46) 

𝑆𝑝 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

   (45) 

𝑆𝑓 =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

   (46) 

In this simulation study, an environmental contact force is generated by applying a spring model for the end-effector 

movement as the equation (47) 

𝑓𝑒 = 𝑘𝑒𝑥   (47) 

where 𝑘𝑒 is the stiffness of the environment model. The force error between the intended force, 𝑓𝑑 , and the sensed 

force on the environment, 𝑓𝑒, as the equation (48) 

𝑒𝑓 = 𝑓𝑑 − 𝑓𝑒   (48) 

The force control approach is defined by using the partitioned-controller concept for one-DoF spring-mass model 

as the equation (49) 

𝐹𝑓 = 𝑚[𝑘𝑝𝑓𝑘𝑒
−1𝑒𝑓 − 𝑘𝑣𝑓 𝑥̇] + 𝑓𝑑   (49) 

where 𝑘𝑝𝑓  and 𝑘𝑣𝑓  are the force control gains. Cartesian space hybrid position/force controller is defined in the 

equation (50) 

𝐹 = 𝑆𝑝 𝐹𝑝 + 𝑆𝑓 𝐹𝑓   (50) 

where 𝐹𝑝 is Cartesian space position controller given in equation (43). 

4. Simulation studies 

This section presents the simulation results for all controllers. The simulation studies are performed for the 

kinematic and dynamic models of SCARA robotic arm given in previous sections using MATLAB Simulink. The 

simulations are run in 1kHz sampling frequency and for 10 seconds.  The SCARA robot arm is aimed at performing 

a wide axis of the average movement capacity of the joints in 10 seconds according to the workspace and a movement 
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of approximately 40 cm in diameter at the end effector. In addition, although control is provided by the nonlinear 

controller design based on the known equations of the model, the viscous and Coulomb friction effects in the joints 

and the situation where the robot carries a 1 kg load at the end effector are considered as disturbance effects for the 

controllers. 

4.1. Results for joint space position controller 

The arm's mathematical model was used by the model-based control method to forecast and accomplish desired 

performance. This method demonstrated precise control over the arm's movements, effectively managing the 

uncertainties in the system and the projected behaviour. The control precision was further improved by adding 

calculations for viscous and Coulomb friction. The quintic polynomial equation was used for the joints of the robot 

arm to reach the target angular positions [π/4; - π/3; 0.2; 3π/2] from the initial positions. For the control gain values, 

kp=diag([16 16 1000 64]) and kv=diag([8 8 100 16]) were selected. The joint position error values are shown in Fig.10. 

The desired and actual joint positions are depicted in Fig.11. According to these results, joint position errors are less 

than 0.001rad for joints 1, 2 and 4, and 0.1mm for joint 3. However, the settling time is also less than 2 seconds at a 

very acceptable level. 

 

Fig.10. Joint position errors for model-based joint space position controller. 
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Fig.11. Desired versus actual joint positions for model-based joint space position controller. 

4.2. Results for Cartesian space position controller 

The positions of the robotic arm’s end effector are calculated and controlled in x-y-z coordinates with the model-

based Cartesian space controller. This method provides precise motion control of the robot’s end effector in a 

coordinate system defined relative to the robot’s fixed base, and therefore the model-based control method is 

advantageous for tasks that require precise positioning of the end effector. A simulation study was performed for the 

movement of the robot arm at the end point with 3D sinusoidal motion equations for a spiral laser cutting or welding 

robot movement. The desired motion equations in the XYZ axes at the end point were selected as 

xd=[0.4+0.2sin(2π0.1t); 0.4+0.2cos(2π0.1t); 0.25+0.2sin(2π0.1t)]. For the control gain values, kp=diag([400 400 400]) 

and kv=diag([40 40 40]) were selected. 

According to the simulation results showing the end effector position errors are less than 0.1mm and the actual end 

effector positions perfectly tracks the intended ones, respectively, in Fig.12 and Fig.13, it can be seen that the robotic 

arm achieves high accuracy in reaching the intended positions with this nonlinear model-based control method. 
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Fig.12. End-effector position errors for model based cartesian space position controller. 

 

Fig.13. Desired versus actual end-effector positions for model based cartesian space position controller. 

4.3. Results for hybrid position/force controller 

The hybrid control method in Cartesian space combines both position and force control, allowing the robotic arm’s 

end effector to interact with its environment precisely. A sinusoidal motion equation was planned in the XY axes at 
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the end effector of the robot arm as follows; xd=[0.4+0.2sin(2π0.1t); 0.4+0.2cos(2π0.1t)]. On the other hand, in the Z 

axis, the desired force equation was aimed at being in contact with the surface up to 2N force with a classical mass-

spring-damper model. For control gain values, kp=diag([400 400 300]) and kv=diag([40 40 10]) were selected. 

Fig.14 shows the end effector position errors in x-y directions (less than 0.1mm) and the force error in z direction 

(less than 0.1mN) in Cartesian space. Fig.15 shows the intended and actual end effector positions in x-y directions and 

the intended and actual force in z direction. These simulation results show that the SCARA robotic arm can maintain 

positional accuracy despite force levels at its end effector with the hybrid position/force control method. 

 

Fig.14. End-effector position errors on X and Y for model-based hybrid position/force controller. 
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Fig.15. Desired versus actual end-effector positions on X and Y and force on Z for model-based hybrid position/force controller. 

With these simulation results as shown in Fig.14 and Fig.15, this model-based control approach has proven 

effective in tasks requiring accurate motions and force management, such as manufacturing operations for a SCARA 

robotic arm. 

5. Conclusion 

This study presents a comprehensive analysis of different control strategies applied to a 4 DoF SCARA arm. Model-

Based nonlinear controllers can provide precise control by predicting the behaviour of the robotic arm very well. In 

joint space, model-based controllers enabled the robotic arm to follow the trajectories of the joint positions very 

precisely. In Cartesian space, model-based controllers enabled the robotic arm to follow the end effector accurately 

along defined trajectories in the coordinate axis. In the Hybrid Position/Force controller, it has been shown that it can 

effectively manage both the position and the force at the end-effector of the robotic arm in Cartesian space, making it 

suitable for precise and accurate tasks. Simulation studies have shown that the 4 DoF SCARA robotic arm, one of the 

most used robots in industrial applications, can perform complex tasks precisely with model-based nonlinear 

controllers, and a significant contribution has been made to the high efficiency and adaptability of industrial 

operations. 
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