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A composite method for the solution of first-order singular and nonlinear initial value
problems
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ABSTRACT. By using the geometric and algebraic properties of Bernstein polynomials, a composite
method for solving the initial value problems (IVP’s) with first-order, singular and nonlinear ordinary
differential equations (ODE’s) has been developed. The Newton’s method is incorporated into the
method to solve the resulting system of nonlinear equations. The algorithm of the problem solving is
reduced to the calculation of the unknown Bernstein coefficients of the approximate solution. The effec-
tiveness of the proposed method is verified by comparing the present numerical results by other existing
ones. The proposed method reduces the computation cost and gives a better approximation to the exact
solution even for small degrees of approximation. Another advantage of the present method is the ability
to calculate the approximate solution at each point of the solution interval in addition to the grid points.
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1. INTRODUCTION

A 2D (or 3D) parametric Bézier curve P(z) of degree n is defined by
P(z) = ZbiBf(l’; [a,b]), a<z<b,
=0

where BI(x; [a,b]) are Bernstein basis functions defined as

B™(x;]a, b)) = (?) (i‘j) <Z‘2)n_i, i=0,1,...n,

and (") is the binomial coefficient, see [14]. The points b; € R? (or b; € R?) , i = 0,1,...n, are called
control points since the control polygon formed by connecting the control points gives information about
the shape of the Bézier curve P(x). Basically, it can be said that Bézier curves mimic the shape of their
control polygons (see [9]). Thus, one may easily manipulate the shape of a Bézier curve by just changing
its control points. The usefulness of Bézier curves comes from the properties of the Bernstein basis
functions, B}*(x;[a,b]). For B (x;[0,1]), some of these properties are given as follows (see [14]):

e Partition of unity: Z BI(x;]0,1]) = 1.
i=0
e Non-negativity: B}'(x;[0,1]) >0, i =0,...,n.
e Symmetry: B;_,(z;[0,1]) = B} i
e Recursion: BP(x;[0,1]) = (1 — 2) B Y(x;[0,1]) + 2B ' (2;[0,1]), i =0,...,n,
where B"7*(x;[0,1]) = B"!(z;[0,1]) = 0.

n
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n .
i
e Linear Precision: —B!(x;[0,1]) = «.
; ~Bi(z;[0,1])

These bases are also useful in approximation theory. Using Bernstein bases, we can also construct
Bernstein polynomials which are firstly introduced by S. N. Bernstein in 1912 to give a simple, probabilistic
proof of Weierstrass Approximation theorem which was originally proved in 1885 (see [6]). One of the
most important results in the proof of S. N. Bernstein is given in the following theorem.

Theorem 1. (see [0]) If f(x) is a continuous real-valued function on [0, 1], the sequence of Bernstein
polynomials

By f(z:]0,1]) = gf (;) B™(x3]0,1]) = gf (;) (?)xi(l —)" i, n=1,2,....

converges uniformly to f(x).

Another important property of Bernstein polynomials is about their derivatives, which can be expressed
as follows:

Theorem 2. (see [6]) If f(z) is bounded in [0,1] and f%¥)(xq) exists at a point 0 < xo < 1, then
k

e i L)

=T

For the proofs of the above theorems and more details about Bernstein polynomials see [6] and [13].
The above properties and theorems are also valid for any arbitrary interval [a,b] and can be obtained

simply by the transformation x — F which maps the interval [0, 1] to the interval [a, b] (see |9]).

Bézier curves and Bernstein polynomials are used widely in the literature to approximate solutions of
differential equations, see |1H5,/7,/10,/15L[16L/18,/19]. In [3], Bernstein basis functions over the interval [0, R]
and matrix formulation is used to approximate solution of ordinary differential equations. [7] deals only
with even-order differential equations. Higher order linear differential equations with variable coefficients
are solved by using Bernstein collocation method in [4]. In 2] second-order linear differential equations
with polynomial coefficients subject to Dirichlet conditions are solved by using the orthonormal relation of
Bernstein basis functions with its dual basis to determine the expansion coefficients to construct a solution.
The common idea for solving differential equations by using Bézier curves or Bernstein polynomials is
either to use collocation method or operational matrices or least square solutions. The main problem in all
of these methods is the computational cost, that is, increasing the degree of approximation increases the
number of operations drastically. Conventional approximation methods utilizing the Bernstein polynomial
framework often require the construction of larger matrices as the number of nodes increases, which
presents significant computational challenges. The proposed method seeks to mitigate this problem by
keeping matrix dimensions smaller, even with an increasing number of nodes, thus improving efficiency. [1]
manages to overcome this challenge by developing a composite residual method that gives good results
even in a small degree of approximation. This new composite method approximates the solution of
differential equations under some constraints. These constraints are used to minimize the residual and
are obtained by forcing the first few terms (depending on the degree of the differential equation) of the
Taylor series of the residual to be zero. Our aim is to solve the first-order singular and nonlinear initial
value problems by using Bernstein polynomials and to develop a new composite method without imposing
any constraints. The proposed composite method uses only the geometric and algebraic properties of
Bernstein polynomials.

The outline of the paper is as follows: In Section 2, Bernstein polynomial approximation is combined
with the Newton’s method to solve the initial value problems for the first-order ordinary differential
equations. A test problem is used to serve numerical comparisons of the present method with others.
A theorem is proved to show that the Bernstein polynomial approximation converges to the solution of
the IVP. In Section 3, the proposed method of Section 2 is used to construct a composite method. The
effectiveness of the proposed method is shown by using test examples and comparing present results by
others. The conclusions are summarized in Section 4. The notation list used in this paper is presented
in the Appendix.
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2. FORMULATION OF THE NUMERICAL ALGORITHM

The initial value problems for the first-order ordinary differential equations that are singular at the
initial point in the form

y/(.’b) = w + fQ(x,y(w)), T € [(L,b], { ﬁg; zgz; z g: y/(a) = B, 3;8 ’ (1)

where A is a constant and the functions fi(x,y) and f2(x,y) are continuous and Lipschitz in the dependent
Afi(z,y(x))

T—a
hence the IVP with IC7 has a unique solution for A = 0. On the other hand, if A # 0, the right hand
side of the IVP does not satisfy the conditions of the existence and uniqueness theorem of first order
IVPs. This is, for A # 0, the IVP (1) with the IC; may have a family of solutions (see Example 3.) To
obtain the desired solution, one need to impose two initial conditions.

For the proposed algorithm, the interval [a, b] is divided into n subintervals of the same length, h = b_T“,
where x; = a+1ih, i =0,1,...,n, are the grid points. Then, the exact solution of IVP is approximated
over the interval [a,b] with its Bernstein polynomial of degree n, that is,

variable y, are considered. Note that when A = 0, the term is considered to be zero and

n

y(a) = u(z) = Buy(; [a,0]) = Y y; Bl (a3 [a, b)), (2)
=0
where
h—
yi = y(x;) —y(aJri na>7 i=0,1,...,n.
Since
n n—1
W' (@) = 5> (yier — i) B (s [a, b)), (3)
=0
(see 9]), substituting u(x) instead of y(z) in the differential equation of IVP gives
Afi(z,u) nooe= .
/ ) _ . o n .
v . fa(z,u) = b—_a ; (Y1 —yi) B (3 [a, b])
AN (@ 3 i B (w3 [a, B]))
r—a
—f (:c > B} (= [a,b])) =0. (4)
i=0
(b
Equation is well-defined at the grid points z; = a + u, j=1,2... n,since the only singularity

n
is at the initial point xy = a. Hence, evaluating Equation at the grid points gives a system of n
equations with n unknowns, 41, ..., yn:

n—1
9i (Y1, Yn) == (bﬁa > Wirr — i) BY (a5 [a7b})>

=0
. Afl (xjv Z?:O lezn(mJa [(Z, b]))

117]‘7(1

- f2 (Ij,Z%Bf(Iﬁ[Q,b])) =0, j=1...n (5)
i=0

If fi(z,y) and fa(z,y) are linear functions in the variable y, then the above system of equations is
linear and can be easily solved. Otherwise, the system of equations is nonlinear. In that case, an

(» , () . ,yé”)

approximate solution [yl JYs } of will be computed by an iterative process, the Newton’s

method for system of equations. The upper index p denotes the number of iterations. The Newton’s
method is chosen because it is an iterative procedure capable of approximating the solution of system of
nonlinear equations with remarkable accuracy.
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Remark 1. Suppose that a nonlinear system of equations satisfies the following assumptions:

(i) The nonlinear system of equations has a solution y*.
(ii) The Jacobian is Lipschitz continuous near y*.
(iii) The Jacobian is nonsingular at y*.

It is well known that, under these assumptions, if the starting point is sufficiently near to the solution, the
Newton method applied to the nonlinear system of equations converges to the solution y* (see [11,12,17]).

The solution procedure of the system of equations by using Newton’s method for the cases A =0
and A # 0 is explained in Table 1 and Table 2, respectively.

TABLE 1. The solution procedure of by using Newton’s method for the case A =0

For a given tolerance e,
T
e Step 1: Set yo = « and [ygo),...,y,(f))} = [yo,- .- ,yo]T.
e Step 2: Evaluate
1
y v a9
S I I A (SN : (6)
1
y Y y g, )
where J is the Jacobian matrix of the vector valued function
gl(yla s 7yn)
92(y1s- -+, Yn)
81, Yn) = :
gn(Y1s-- -, Yn)
which is constructed from ({5)).
e Step 3: If max{\ygpﬂ) — y%p)|, e \yﬁfﬂrl) — y%p)|} < €, then Stop,
else set p =p+ 1 and go to Step 2.

TABLE 2. The solution procedure of by using Newton’s method for the case A # 0

For a given tolerance e,
T
(0)

e Step 1: Set yo = a, y1 = yo + @ and {yéo),...,yn = [y1, .. )"
o Step 2: Evaluate
y Y y) 921,98y
o= | ) : (7)
y7(1p+1) ygp) gn(y1, yép)7 o 7y1(1p))

where J is the Jacobian matrix of the vector valued function
92(Y1, Y2, -+ > Yn)
g1, Yn) = :
9n(Y1,Y25 > Yn)

which is constructed from .
Yo ) l...,

e Step 3: If max{\ygpﬂ) —
else set p =p+ 1 and go to Step 2.

\yfq,pﬂ) - ygp)|} < ¢, then Stop,

Using the fact given in Remark [I] the initial guess in Table 1 is chosen as y; = yo, @ = 1,2,...n.
Similarly, since the point z; is closer to the points x;, i = 2,...n than the point zg, it is reasonable to
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B(b—a)

n
guarantees that the approximation obtained from Table 2 and the solution of IVP has the same tangent
at the initial point.

choose the initial guess in Table 2 as y; = y1, i = 2,3, ...n. On the other hand, setting y; = yo+

(m+1)

In Table 1, at the final step of Newton’s method, say m, the approximate values g; = y; of y(x)
at the grid points x; = a + @, i=1,2,...,n, are obtained, that is,
- . = B m-+1) 7 - -
7 "t y(z1)
N : ~ : (8)
L gn i L yr(Lerl) ] L y(-rn) J
Similarly, in Table 2 we obtain
Tl [ v 7 [yl ]
Y (1) y(z1)
U2 Ya y(z2)
N : ~ : : )
L Un | L yr(Lm+1) J L y(zn)

By construction, the values ;, ¢+ =1,2,...,n, in and in @D approximate the solution of the IVP (|1))
at the grid points. On the other hand, the function

a(w) =Y 5B} (x; [a,b]), (10)
=0

where gy = yo, approximates the solution of the IVP on the whole interval [a, b], which is an advantage
of the present method to obtain the approximate solution of IVP in addition to the grid points.

In the following test example, the present method is compared with the second-order Runge-Kutta
method and the fourth-order Runge-Kutta method.

Example 1. Consider the nonlinear test problem

1
y =—ylny, y(0) = 3 (11)

(see [8, Example 6.16]). The exact solution of IVP is y(r) = 27¢ . The maximum absolute error
between the values of the exact solution at the grid points, y(x), & = 1,2...,n, and the approximate
values gy obtained by the second-order Runge-Kutta method (RK2), fourth-order Runge-Kutta method
(RK4) and the present method is given in Table 3 for different values of the number of subintervals,
n. The value n also corresponds to the degree of the approximation (see (2))). In addition to that, the
maximum absolute error between y(zy) and u(xy), see , is also presented. In our calculations, all
values have been set to have precision 200, and Newton’s method applied with a tolerance e = 1073C,
Table 3 shows that the function @(xy) gives a better approximation at the grid points with respect to the
gk values. RK2 and RK4 approximate y(zy) better than g, but approximate much worse than @(zy) as
the number of the subintervals n increases. Furthermore, Runge-Kutta methods approximate the solution
of the IVP at the grid points only. But the present method approximates the solution on the whole
interval by using the function @(z) in (10).

Note in Table 3 that, although ¢ values are approximate solutions at the grid points, the function
@(xzy) provides a better approximation at the grid points. Because the exact solution of IVP is
approximated over the interval [a, b] with its Bernstein polynomial of degree n (see Equation (2)).

The following theorem shows that the Bernstein polynomial approximation ([2)) converges to the solution
of IVP and a better approximation to the exact solution is obtained as the degree of approximation
n is increased.

Theorem 3. Suppose that fi(x,y) and fo(z,y) are continuous and Lipschitz in y. If u(x) is Bernstein
polynomial approzimation for the solution y(x) of the IVP , then u(x) — y(x) as n — oo for all
x € [a, b].

Proof. Let y(z) be the exact solution of IVP and let u(x) be the approximate solution obtained by
the present method. Clearly, u(a) = y(a). In order to show the convergence for = # a, fix & € (a,b] and
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TABLE 3. Comparison of the present method with the second-order Runge-Kutta

method (RK2) and the fourth-order Runge-Kutta method (RK4)

565

RK2 RK4 Present method

no| max fy(e) = gil || max fy(ee) =gl || max fy(ee) — gl | max [y(ze) — a(zp)]

7.67315 x 1074 2.69490 x 10~6 7.30587883 x 1073 | 1.28053836 x 10~ 4
8 1.80964 x 10~ % 1.62549 x 10—~ 2.91576912 x 10~3 | 1.90502179 x 10~3
16 | 4.39226 x 107° 9.97759 x 1079 1.34417364 x 10~2 | 3.33560386 x 1016
32 1.08187 x 10~° 6.17969 x 10~19 ][ 6.47590863 x 10~ % | 6.77032608 x 1032
64 | 2.68460 x 10~ 3.84481 x 10711 [ 3.18410240 x 102 | 4.24734846 x 1066

consider A (Gou(®)
~ - T, u\x - -
R(@) =/ ()~ LD,

We need to show that R(Z) tends to 0 as n tends to co. Since ' (%) = + fo(Z,y(2)), we have

r(@) =) - 2D a4 (AAEIED ) - v 2)
() ¥ ()~ = (@) ~ AEYED)) - (lEu(E) - (@)
hence
R@) < W @)~ g/ @)+ 22 @ 0@) ~ 1@ y@E)] + 12 (@) — @y @)

Since f1(z,y) and fa(x,y) are Lipschitz in y, we have
- _ . A|M - -
R@) < @) -y @]+ (S0 40 ul@) - @),

T—a
where M; and M, are the Lipschitz constants. By Theorem (1| and Theorem [2| we have u/(Z) — y'(Z)
and u(Z) = y(Z) as n — oo. Thus R(Z) — 0 as n — 0. O

Theorem [3|demonstrates that increasing the degree of the Bernstein polynomial approximation, n, im-
proves the approximation to the exact solution of IVP ([1)). However, considering the Jacobian matrix’s size
of n X n, it is not recommended to increase the approximation degree due to the computational cost. The
following table shows the CPU time of the proposed method in Example 1. Note that all of our calcula-
tions were carried out with Wolfram Mathematica® software, an Intel® Core™ i7-4790 CPU @ 3.60 GHz
processor and 16 GiB memory.

TABLE 4. Computational details for Example 1

n | # unknowns (?nl\‘zhgfﬁi}sl‘f iiizzti?) # iterations | CPU time (in seconds)
4 1.39 x 101 6 1.088 x 102

8 8 3.92 x 10? 6 7.917 x 1072

16 16 7.26 x 10° 6 1.237 x 10°

32 32 4.35 x 1012 6 2.799 x 10!

64 64 2.37 x 10%° 6 7.219 x 102

In Table 4, the number of unknowns, the condition number (C.N.) of the Jacobian matrix evaluated
at the first iteration of Newton’s method, the number of iterations used in Newton’s method, and the
corresponding CPU time for Example 1 are presented. Note that the size of the Jacobian matrix is n x n
and for the evaluation of the condition number of the Jacobian matrix, 2-norm is used. Table 4 shows
that as the degree of the approximation increases, the condition number of the corresponding Jacobian
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matrix also increases. Considering the condition number of the Jacobian matrix, computational cost, and
CPU time, it is reasonable to divide the given interval into subintervals and apply the proposed method
of Section 2 to each subinterval using a small degree of approximation, rather than increasing the degree
of approximation. This idea of the composite method will be explained in the next section.

3. A COMPOSITE METHOD FOR SINGULAR FIRST-ORDER DIFFERENTIAL EQUATIONS

The IVP is considered to be solved with a composite method, which is formed by dividing the
interval [a, b] into N subintervals [jn, Tjntn], 7 =0,1,..., N — 1 with equal length, b*T“, such that

N-1

[a)b] = [xjnvxjn-ﬁ-n],
=0

J

and then applying the method of Section 2 on every subinterval of [a, b]. For each subinterval [z}, Zjn+n],
the grid points are z,4+; = Tjn + M, i=0,1,...n, where g = a and z,,; = b. The n-th order
Bernstein polynomial approximation to the solution of IVP over the subinterval [z, Zjn4r], is given

as

n
i (@) = Buy(@; [T, Tjninl) = D Yjnti B (@5 (€50, Tjnin)),  G=0,1,...,N —1, (12)
i=0
where yjnti = Y(Tjnt:). On each subinterval [, Zjntn], 7 = 0,1,..., N — 1, the present method of

Section 2 is applied. That is, the piecewise approximation u;(z) in is substituted instead of y(z) in
the differential equation of IVP (1f). Following that, a system of equations is solved by using Newton’s
method.

On the first subinterval [z¢, z,,], depending on the value A of the IVP (L)), we apply either the algorithm
in Table 1 or the algorithm in Table 2. That is, the number of unknowns and the initial guess for the
Newton’s method depend on the value A. On the other subintervals, [2jn, Zjninl, j =1,..., N — 1, we
apply algorithm in the Table 1 with the initial guess is chosen as the last approximate value found by
the Newton’s method on the previous interval (see ) The algorithm of the composite method is
explained in Table 5.

In the composite method, it is recommended to choose large N values and small n values, which
means that the interval [a,b] in IVP is aimed to be divided into more subintervals (N) and to be
used small degree of Bernstein polynomial approximation (n) which produces n x n Jacobian matrix in
the Newton’s method. Working with small n values for each subinterval reduces the computational time
compared with the proposed method in Section [2| (see Table 7). Another advantage of the composite
method is that the initial guesses in the Newton’s method are improved by increasing the value of N. In
Example 2, the initial value problem of Example 1 is again considered to make a comparison between
the composite method of [1] and the present composite method. The results show the effectiveness of the
present composite method.

Example 2. Consider the IVP (11]). The interval [0, 1] is divided into N equally spaced subintervals
and the grid points in each subinterval are chosen equally spaced which gives z; = ﬁ, k=0,1,...,nN.
In Table 4, the maximum absolute error between the values of the exact solution at the grid points,
y(zg), k = 1,2...,n, and the approximate values g by the present composite method is shown. In
addition to that, the maximum absolute error between y(x) and @(zy) obtained by the present method
and by the composite residual method developed in [1] are compared for different values of n and N.
In the calculations all values have been set to have precision 200, and Newton’s method applied with a
tolerance ¢ = 1073Y. It is seen in Table 4 that the function @(z) gives a better approximation at the
grid points with respect to the g5 values. The residual method of [1] approximates y(xzy) better than
Uk, but approximates much worse than @(xy) as the number of the subintervals N increases. In Table 7,
the number of unknowns, the minimum and the maximum of the number of iterations used in Newton’s
method and the corresponding CPU time for Example 2 are given. Note that the size of the Jacobian
matrix is n X n.

The order of convergence of the present method is investigated in a standard way by using the following
observed orders in n and N:
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TABLE 5. The algorithm of the present composite method

e Step 1: If A =0, apply the algorithm in the Table 1 over the interval [xq, z,], else apply the
algorithm in the Table 2 over the interval [xg, z,].
e Step 2: Set 7 =1 and set

Z i B (@; [wo, xn)),
where g; are obtainded from Step 1.
e Step 3: Define
n—1
Z Yintitl — Yjnai) Bl

ayjn—l-n) e (xjn—i-k; [xjn; xjn—i—n])

xyn-i—n -

. Afl (frjn—i-k» Zl 0 yjn+zB (x]n-Hw [IJTH x]n+n]))
Tjn+k — Ljn

- f (xjn—&-ka Z yjn-i-z

=0

Ik (Wjnt1, -

(xjn—&-kv [$]n7$]n+n])> =0, (13)

fork=1,2,...,n

e Step 4: Find the approximate solution [gjn41,. .., ngn]T of [Yjnt1s--- ,yjn+n]T by solving the
system of equations obtained in Step & with the Newton’s method with a given tolerance and
the initial guess

(0)

T ~ ~ T
,ymn} = [Gjns -+ Yjn] (14)

.
e Step 5: Set

n
Z YjntiB x_}n; ijL"rTL])
i=0
where §;n4; = yj(zlll is the approximate value of y(z) at the grid points of the j—th subinterval
calculated at the final step of the Newton’s method, say m.

e Step 6: If j = N — 1, then Stop, else set j = j + 1, and go to Step 3.

TABLE 6. Comparison of the present composite method with residual method of [1]

Residual method of [1] Present composite method
n, N (axy(o) —ulew)] || max fy(ee) = gel || maxy(er) — (o)
n=4, N=4 9.45664474 x 10 4.21627225 x 104 3.53213916 x 10~7
n=4, N =16 3.52031534 x 10~8 2.62336851 x 10~° 1.28781083 x 10~°
n=4, N =64 1.35785716 x 10~ 10 1.63900622 x 10~ 4.95387202 x 1012
n=38 N=41 2.52202370 x 10~ 10 1.79902313 x 10~ 4 1.15470563 x 1013
n=28, N=16 1.57651669 x 10~ 17 1.12396135 x 10~ 1.55191608 x 10~ 18
n=8, N==64 | 3.35287353 x 10~ 17 7.02418003 x 10~7 2.32335909 x 10~23
n =16, N = 5.28055377 x 10~ 12 8.39017975 x 10~° 1.4823513 x 10~25
n=16, N =16 | 8.05822076 x 10~12 5.24493429 x 10~° 3.47773253 x 10~3°
n=16, N=064| 9.13458198 x 10~ 12 3.27794226 x 107 | 8.01496348 x 10~

e observed order for i inn :

ord%(n, N) =

LOg (:2':,1;’\] )
Log(2)
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TABLE 7. Computational details for Example 2

0N £ unknowns min of max of CPU time

’ # iterations | # iterations | (in seconds)

n=4, N=4 16 5 5 3.512 x 1072

n=4, N=16 64 5 5 1.253 x 1071
n=4, N =64 256 4 5 4.370 x 1071
n=8 N=4 32 5 5 2.889 x 1071

n=238, N =16 128 5 5 1.383 x 10°
n=8, N =64 512 4 5 4.434 x 109
n=16 N=4 64 5 5 4.410 x 10°
n=16, N =16 256 5 5 1.805 x 107
n=16, N =64 1024 4 5 5.910 x 107

o observed order for g in N :

2 LOg (;:L;j\l )
Ordg(n, N) = W,

e observed order for @ inn :

ordqll(n, N) = Loigjz‘;jv)

e observed order for @ in N :

, Log (7;" pve )
d2(n.N) = —\»2N/
or u(n7 ) LOg(Q) k)
where e, y = max |y(zx)—7x| is the maximum absolute error in g values and é, y = max |y(xg)—
1<k<nN 1<k<nN
@(xy)| is the maximum absolute error in @(zy) values.

TaBLE 8. For Example 2, the observed orders for § in n (left) and observed orders for
g in N (right)

ord%(n, N) ordg(n, N)
N=4| N=8 | N=16 N=4| N=8 | N=16
n=4 | 1.22875 | 1.2242 | 1.22283 n=4 |2.00592 | 2.00055 | 2.00058
n=238 | 1.10044 | 1.09979 | 1.0996 n=238 | 2.00136 | 1.99918 | 2.00025
n =16 | 1.04762 | 1.04739 | 1.04733 n =16 | 2.00072 | 1.99899 | 2.0002

TABLE 9. For Example 2, the observed orders for @ in n (left) and observed orders for
@ in N (right)

ordL(n,N) ord2(n,N)
N=4| N=8 | N=16 N=4| N=8 | N=16
n=4 | 21.5446 | 25.6114 | 29.6282 n=4 | 4.06823 | 4.03125 | 4.01489
n =238 | 39.5028 | 47.3733 | 55.3087 n =28 | 8.13505 | 8.04807 | 8.01913
n =16 | 84.2594 | 99.9864 | 115.927 n =16 | 16.0056 | 15.9835 | 16.0093

The observed orders for Example 2 are presented in Table 8 and Table 9. It is seen from Table 8 and
Table 9 that the order of approximation by g values is much smaller than the order of approximation by @
values. It is concluded from Table 9 that in approximating @ values, increasing the degree of the Bernstein
polynomial approximation (n) is more effective than the increasing the number of subintervals (V).
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However, considering the computational cost, it is recommended to work with the Bernstein polynomials
of small degree.

The IVP solved in Example 1 and Example 2 is chosen without singularity in order to show the
effectiveness of the present method compared by other methods. An IVP with singularity is solved in
Example 3.

Example 3. Consider the following IVP with Riccati differential equation

’ Yy 2

T y
y'==+yle" -1

- = ¢ 0)=0, 0<zx<Ll 15
! L vet, y(0)=0, 0<a (15)

€T (c — e 4 6I+em)

e

The one parameter family of solutions of IVP is y(z) =

specific solution, we need one more condition. Suppose that, in addition to IVP , we have y'(0) = 0.
That is,

, ¢ € R. For a more

2
v =Yy 1)L tae y0)=0 Y0 =0. 0<a<1 (16)

x
d [x(c—e” +emte")
dz e’ —¢
the solution of IVP is obtained from the general solution by setting ¢ = 0, that is, the solution is
y(x) = ze® — x.

The interval [0, 1] is divided into N equally spaced subintervals and the grid points in each subinterval
are chosen equally spaced which gives xj = niN, k=0,1,...,nN. The maximum absolute errors between
the exact solution and the approximate solution obtained by the present composite method for different
values of n and N are presented in Table 10 for IVP . As it is seen in the previous examples, the
function a(xy) gives a better approximation to the exact solution at the grid points with respect to the gy,
values. In the calculations, all values have been set to have precision 200, and Newton’s method applied
with a tolerance e = 1073,

Since

)
e—cC

z=0

TABLE 10. Maximum absolute errors for different values of n and N in Example 3

n, N | Jnax ly(zx) — Url | Dhax ly(zx) — @(zg)]

n=4, N=4 | 1.78248879 x 102 1.59193312 x 10~
n=4, N=28 | 4.87498803 x 103 7.38490360 x 10~
n=4, N=16] 1.27251127 x 103 3.53911198 x 10~8
n=6 N=4 | 1.07524886 x 102 7.68042008 x 10~°
n=06, N=8 | 292854233 x 103 9.76674297 x 1011
n=6, N=16] 7.63725525 x 10~* 1.28153044 x 10~ 12
n=28, N=4 | 7.68709965 x 103 1.69775305 x 10~ 12
n=238, N=8 | 2.09227322 x 1073 5.44009282 x 10~ 1°
n=38, N=16]| 545547944 x 10~* 6.66133815 x 10~ 10

The three examples above are elementary first-order, nonlinear or singular initial value problems that
can be solved analytically. The next example considers a more complex IVP.
Example 4. Let
y y*
v =2+ —1)— = +xe®, y(0)=0, y(0)=0, 0<z<1. (17)
x x
The IVP has the solution y(x) = e®x — x. The numerical results that obtained from the proposed
method is given in Table 11. In the calculations, all values have been set to have precision 200, and
Newton’s method applied with a tolerance ¢ = 1073C.
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TABLE 11. Maximum absolute errors for different values of n and N in Example 4

n, N Jpax ly(xx) — Ukl ey [y(wr) — a(zg)]
n=4, N=4 | 1.78202994 x 10~2 1.97536111 x 105
n=4, N=38 | 4.87479577 x 1073 9.08814769 x 10~ 7
n=4, N=16| 1.27250231 x 10~3 4.27711100 x 10~8
n==6, N=4 | 1.07524864 x 102 9.75738312 x 109
n=6, N=8 | 292854231 x 103 1.22655774 x 10~ 10
n==6, N=16| 7.63725525 x 10~ * 1.60704783 x 10~ 12
n=28, N=4 | 7.68709965 x 10> 2.14350759 x 10~ 12
n=28, N=28 | 2.09227322 x 10~3 6.77236045 x 10~ 1°
n=28, N=16]| 545547944 x 10~% 4.44089210 x 1016

4. CONCLUSION

A new composite method for solving first-order singular and nonlinear initial value problems has been
developed. The size of the matrices that are used in the approximation method with Bernstein poly-
nomials increases as the number of nodes are increased. The motivation to introduce this new method
is to deal with the small-sized matrices, even if the number of nodes is increased. Test problems are
used to serve numerical comparisons of the present method with others. Numerical examples show the
effectiveness of the present method. Even for a small degree of approximation, the proposed method
provides a satisfactory approximation to the exact solution. Working with small degree of approximation
is recommended in order to reduce the computational cost of the method. As a future work, the present
method will be used to solve the IVP’s with higher-order differential equations.
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APPENDIX

Notation List

y(x): the exact solution of IVP on [a,b]

y(x;) = y;: the value of the exact solution of IVP at the grid point z; of [a, b]

Ui = yl(mﬂ): the approximate solution of y(x;) = y; found by the Newton’s method after m iterations
u(z) = Y1y yi B (z;[a,b]): n-th degree Bernstein polynomial approximation of y(z) on [a, ]

a(z) = Y i i B (z;[a,b]): the approximate solution of y(z) on [a,b] with known coefficients g;

yr(z): exact solution of IVP (|1)) on the subinterval [z)_1,zk] of [a, D]

yr(z¥) = y¥: the value of the exact solution of IVP at the grid point ¥ of [x_1, k]

gr = yf(mﬂ): the approximate solution of vy (z¥) = y¥ found by the Newton’s method after m iterations
up(z) = Y1y y¥ B(x; [x—1, Tk)): n-th degree Bernstein polynomial approximation of yy(z) on [zg_1, ]
g(z) = Soi o UF B (@; [xg—1,7x]): the approximate solution of yy(z) on [zx_1,z)] with known coeffi-
cients g¥
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