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Abstract − This study constructs a structure S∗
R that had never been studied before and obtained new results by

defining a subset S∗
R of R as S∗

R = {a ∈ R| aRa = aRa∗ = (0)} where ∗ is an involution and it is called as the source
of ∗-semiprimeness of R. Moreover, it investigates some properties of the subset S∗

R in any ring R. Additionally, the
relation between the prime radical, which provides the opportunity to work on prime rings, has been studied in many
ways, and the set Sσ

R, the motivation of this study, is provided. Furthermore, it is proved that Sσ
R = {0} in the case

where the ring R is a reduced (σ-semiprime) ring and f(Sσ
R) = Sσ

f(R) under certain conditions for a ring homomorphism
f . Besides, it is presented that for the idempotent element e, the inclusion eSσ

Re ⊆ Sσ
eRe is provided, and for the right

ideal (ideal) I of the ring R, Sσ
R(I) is a left semigroup ideal (semigroup ideal) of the multiplicative semigroup R. In

addition, it is analyzed that the set Sσ
R is contained by the intersection of all semiprime ideals of the ring R.
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1. Introduction

An additive mapping x → x∗ on a ring R said to be an involution if (xy)∗ = y∗x∗ and (x∗)∗ = x hold
for all x, y ∈ R [1]. The ∗-ring is a ring with a ∗-involution. A ring with an involution is said to be
∗-prime (resp. ∗-semiprime) if xRy = x Ry∗ = 0 or xRy = x∗Ry = 0 implies that x = 0 or y = 0 ( resp.
xRx = x∗Rx = 0 implies that x = 0). Generally, we know that every prime ring with an involution
is ∗ -prime, but the converse need not hold. An example analyzed by Oukhtite and Salhi [2], R is a
prime ring and S = R × Ro, where Ro is the opposite ring of R. They show that ∗(x, y) = (y, x) is
involution ∗ on S and S is ∗-prime, but not prime, therein. Their basic work has become a clue to
study ∗-prime rings compose an overall class of prime rings. This work ignited the fire for the study of
∗-prime rings over time. Henceforth, involution ∗ will be denoted by σ. Let I be an ideal of ring R. If
σ(I) ⊆ I, then I is said to be a σ-ideal of R [3]. In [4], it is clarified that an ideal I of R may not be a
σ-ideal with the following example. Let R = Z × Z and σ : R → R defined by σ(a, b) = (b, a), for all
a, b ∈ R. For an ideal I = Z × {0} of R, I is not a σ-ideal of R since σ(I) = {0} × Z = I.
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In [5], McCoy extensively devoted that ring R is isomorphic to a subdirect sum of prime rings iff
β(R) = (0), such that β(R) is a prime radical of R. Recently, several studies have been conducted on
prime rings and prime radicals.

Since each prime ring is a semiprime ring, semiprime rings play a crucial role in more general results.
Inspired by the search work in this field over the last decades, multiple authors have demonstrated
commutativity for prime and semiprime rings [1, 6–8]. Posner [9] presented that if a prime ring has a
nontrivial derivation that is centralizing on the entire ring, then the ring is commutative. In [10], the
same result is proved for a prime ring with a nontrivial centralizing automorphism. Some authors have
generalized these results by considering only mappings assumed to be centralized on a convenient ideal
of the ring. Inspired by research studies carried out in this field, [11] and [12] introduced the source of
semiprimeness of the nonempty subset A in R, where SR(A) = {a ∈ R|aAa = (0)}. SR is written in
place of SR(R) for a ring R.

In the present paper, section 2 generalizes some results provided in literature. Afterward, section 3
discusses the need for further research.

2. Results

This section generalizes some of the literature results using the involution σ and the source of the
semiprimeness in the rings.

Definition 2.1. Let R be a ring, σ : R → R be an involution, and A be a nonempty subset of R. The
set Sσ

R(A) = {a ∈ R| aAa = aAσ(a) = (0)} is called the source of σ-semiprimeness of A in R and Sσ
R

is written in place of Sσ
R(R) for a ring R. It is obvious that Sσ

R ⊆ SR.

Lemma 2.2. Let R be a ring. Then, a ∈ SR if and only if σ(a) ∈ SR.

Proof. Let a ∈ SR. Then, aRa = (0). Using the additivity of σ, σ(aRa) = σ(0) = 0. Thus,
σ(a)σ(R)σ(a) = (0). Since σ is bijective, σ(a) ∈ SR. On the other hand, it is observable since σ is
injective.

The following proposition is easily obtained from the definitions of the Sσ
R and σ-semiprime ring.

Proposition 2.3. Let R be a σ-semiprime ring. Then, Sσ
R = {0}.

Lemma 2.4. Let R be a ring and A be a subring of R. Then, Sσ
A = Sσ

R(A) ∩ A.

Proof. Let x ∈ Sσ
A. In this case, x ∈ A and xAx = xAσ(x) = (0). Since x ∈ R, x ∈ Sσ

R(A). Therefore,
x ∈ Sσ

R(A) ∩ A. Conversely, assume that y ∈ Sσ
R(A) ∩ A. Thus, y ∈ A and yAy = yAσ(y) = (0). Hence,

y ∈ Sσ
A is provided.

Lemma 2.5. Let R be a ring and A and B be nonempty subsets of R. If A ⊆ B, then Sσ
R(B) ⊆ Sσ

R(A).

Proof. Let x ∈ Sσ
R(B). Then, xBx = xBσ(x) = (0). Hence, xAx ⊆ xBx = (0) and xAσ(x) ⊆

xBσ(x) = (0). Consequently, x ∈ Sσ
R(A) is provided.

Theorem 2.6. Let R and T be two rings, A ⊆ R and B ⊆ T , and σ : T → T and β : R → R be two
involutions. In this case, the mapping

α : R × T → R × T, α(a, b) = (β(a), σ(b))

is an involution. Furthermore, the equation Sα
R×T (A × B) = Sβ

RA) × Sσ
T (B) is provided.

Proof. Let R and T be two rings, A ⊆ R and B ⊆ T , and σ : T → T and β : R → R be two
involutions. In this case,
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i.

α((a, b) + (c, d)) = α(a + c, b + d)
= (β(a + c), σ(b + d))
= (β(a) + β(c), σ(b) + σ(d))
= (β(a), σ(b)) + (β(c), σ(d))
= α(a, b) + α(c, d)

ii.

α((a, b)(c, d)) = α(ac, bd)
= (β(ac), σ(bd))
= (β(c)β(a), σ(d)σ(b))
= (β(c), σ(d))(β(a), σ(b))
= α(c, d)α(a, b)

iii.

α2(a, b) = α(α(a, b))
= α(β(a), σ(b))
= (β2(a), σ2(b))
= α(a, b)

Therefore, the mapping α is an involution.

Moreover, if (x, y) ∈ Sα
R×T (A × B), then (x, y)(A × B)(x, y) = (x, y)(A × B)(β(x), σ(y)) = (0, 0).

From here, xAx = yBy = xAβ(x) = yBσ(y) = 0. Thus, x ∈ Sβ
R(A) and y ∈ Sσ

T (B). This
implies that, (x, y) ∈ Sβ

R(A) × Sσ
T (B). Conversely, suppose that (x, y) ∈ Sβ

R(A) × Sσ
T (B). Then,

x ∈ Sβ
R(A) and y ∈ Sσ

T (B). This requires that, xAx = yBy = xAβ(x) = yBσ(y) = 0. Subsequently,
(x, y)(A × B)(x, y) = (x, y)(A × B)(β(x), σ(y)) = (0, 0) is obtained. Therefore, (x, y) ∈ Sα

R×T (A × B).

Corollary 2.7. According to Remark 2.6, if R = T and β = σ is taken, then Sα
R×R(A × B) =

Sσ
R(A) × Sσ

R(B) is provided.

Theorem 2.8. Let R be a ring. Then, the following conditions hold:

i. If I is a right ideal of R, then Sσ
R(I) is a semigroup left ideal of multiplicative semigroup R.

ii. If I is an ideal of R, then Sσ
R(I) is a semigroup ideal of multiplicative semigroup R.

Proof. i. Let a ∈ Sσ
R(I) and r ∈ R. Thus, aIa = aIσ(a) = (0). Since I is a right ideal, raIra ⊆

r(aIa) = (0) and raIσ(ra) = raIσ(a)σ(r) = (0). Hence, ra ∈ Sσ
R(I).

ii. Since I is an ideal, in view of (i), Sσ
R(I) is a semigroup left ideal. Therefore, it remains to prove

that Sσ
R(I) is a semigroup right ideal. Let a ∈ Sσ

R(I) and r ∈ R. Hence, aIa = aIσ(a) = (0). Since I

is an ideal,

arIar ⊆ aIar = (0)
arIσ(ar) = arIσ(r)σ(a) ⊆ aIσ(a) = (0)

Thus, ar ∈ Sσ
R(I).
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Lemma 2.9. Let R be a ring. If Q is a semiprime ideal of R, then Sσ
R ⊆ Q. Consequently, if {Qλ}λ∈Λ

is a family of semiprime ideals of R, then Sσ
R ⊆

⋂
λ∈Λ

Qλ.

Proof. Let Q be a semiprime ideal of R and a ∈ Sσ
R. Then, aRa = aRσ(a) = (0) ⊆ Q. Since Q is a

semiprime ideal, a ∈ Q. Moreover if {Qλ}λ∈Λ is a family of semiprime ideals of R then a ∈ Qλ for all
λ ∈ Λ.

It is an immediate corollary that Sσ
R is contained in the prime radical β(R) of R.

Proposition 2.10. If e ∈ R is an idempotent element, then eSσ
Re ⊆ Sσ

eRe.

Proof. Let a ∈ Sσ
R and assume that x = eae ∈ eSσ

Re. Then, aRa = aRσ(a) = (0). From here,
x(eRe)x = eaeReae ⊆ eaRae = (0) and x(eRe)σ(x) = eaeReσ(e)σ(a)σ(e) ⊆ eaRσ(a)σ(e) = (0) holds.
Consequently, x ∈ Sσ

eRe.

However, the inclusion eSσ
Re ⊆ eSσ

R(eRe)e follows from Lemma 2.5.

Remark 2.11. Let R be a ring, Tn(R) be a ring of all n × n diagonal matrices over R, and σ : R → R

be an involution. Then,

γ : Tn(R) → Tn(R), [γ(A)]ij =
{

σ(aij), i = j

0, i ̸= j

is an involution.

Proposition 2.12. Let σ : R → R be an involution and γ be the involution defined in the Remark
above. Then,

i. Sγ
Tn(R) ⊆ Tn(Sσ

R)

ii. If Sσ
R is a principal ideal of R, then Sγ

Tn(R) = Tn(Sσ
R).

Proof. i. Here,
Sγ

Tn(R) = {A ∈ Tn(R) | ATn(R)A = ATn(R)γ(A) = [0]}

and

Tn(Sσ
R) = {A = [aij ] ∈ Tn(R) | aij ∈ Sσ

R, i, j = 1, . . . , n}
= {A = [aij ] | aijRaij = aijRσ(aij) = (0), i, j = 1, . . . , n}

Assume that A ∈ Sγ
Tn(R). Let Eij(x) = xEij be scalar matrices, for any x ∈ R. In this case,

AEij(x)A = AEij(x)γ(A) = [0]. Respectively, AEij(x)A = [0] and AEij(x)γ(A) = [0] gives that
aijRaij = (0) and aijRσ(aij) = (0). Hence, Sγ

Tn(R) ⊆ Tn(Sσ
R).

ii. Assume that Sσ
R = (u) is a principal ideal generated by u ∈ R. Let A = [aij ] ∈ Tn(Sσ

R). It is written
that [ABA]ii = aiibiiaii and [ABγ(A)]ii = aiibiiσ(aii), for any B = [bij ] ∈ Tn(R) where 1 ≤ i ≤ n.
Adopting aii ∈ Sσ

R = (u) and u ∈ Sσ
R, [ABA]ii = (0) and [ABγ(A)]ii = (0), for all 1 ≤ i ≤ n. Therefore,

ABA = [0] and ABγ(A) = [0]. Thus, A ∈ Sγ
Tn(R). Consequently, Tn(Sσ

R) ⊆ Sγ
Tn(R). In view of (i), the

equality Sγ
Tn(R) = Tn(Sσ

R) holds.

Theorem 2.13. Let R and T be two rings, f : R → T be a ring homomorphism, and σf = fσ. Then,
f(Sσ

R) ⊆ Sσ
f(R). Moreover, if f is injective, then f(Sσ

R) = Sσ
f(R).

Proof. Let x ∈ f(Sσ
R). In this case, there is an element a ∈ Sσ

R such that x = f(a). Thus, aRa =
aRσ(a) = (0). Hence, xf(R)x = f(aRa) = f((0)) = (0) and xf(R)σ(x) = f(aRσ(a)) = f((0)) = (0).
Therefore, x ∈ Sσ

f(R).
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Let f be injective. Assume that y ∈ Sσ
f(R). Then, yf(R)y = yf(R)σ(y) = (0) where y = f(a), for

a ∈ R. This means that (0) = yf(R)y = f(aRa) and (0) = yf(R)σ(y) = f(aRσ(a)). Since f is
injective, aRa = aRσ(a) = (0). As a result, a ∈ Sσ

R. This means that y = f(a) ∈ f(Sσ
R).

Lemma 2.14. Let R be a ring. If a ∈ R is neither a right zero divisor nor a left zero divisor, then
a ∈ R − Sσ

R.

Proof. If a ∈ R is neither a right zero divisor nor a left zero divisor, then a ∈ R − SR. Given the
inclusion Sσ

R ⊆ SR, R − SR ⊆ R − Sσ
R is obtained. Therefore, a ∈ R − Sσ

R.

Lemma 2.15. If R is a unitary and commutative ring, then

Sσ
R =

{
a ∈ R | a2 = aσ(a) = (0)

}
Proof. Let R be unity and commutative ring. Consider the set K =

{
a ∈ R| a2 = aσ(a) = 0

}
.

Assume that a ∈ Sσ
R. Then, aRa = aRσ(a) = (0). Adopting the fact that R is unity, a2 = aσ(a) = 0.

Thus, a ∈ K. To prove the converse, let b ∈ K. Then, b2 = bσ(b) = 0. Therefore, b2x = bσ(b)x = 0,
for all x ∈ R. Since R is commutative, bxb = bxσ(b) = 0. Hence, bRb = bRσ(b) = (0). Consequently,
b ∈ Sσ

R yields that K = Sσ
R.

Proposition 2.16. If R is a reduced ring, then Sσ
R = {0}.

Proof. If R is a reduced ring, then SR = {0} (see [11], [12]). Using the inclusion Sσ
R ⊆ SR, Sσ

R = {0}.

3. Conclusion

In this study, the set Sσ
R was defined using the involution defined by a ring and the relation between set

SR found in the literature was obtained. Afterward, the relationship between Sσ
R and the prime radical

is investigated. Towards the end of this study, the behavior of the set Sσ
R under a homomorphism and

its characteristic property in a reduced ring are investigated. Many studies exist on ∗-prime rings,
∗-semiprime rings, and their ideals. These studies can be generalized by using the structure of the
source of semiprimeness in ∗-prime rings and ∗-semiprime rings. As a result, this set, which provides
our motivation, will serve as a reference for other studies in the field.
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