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 In large-scale agricultural crop classification studies (Turkey, Adana, Çukurova Plain, 
2500 km²), collecting sufficient and accurate ground truth data is costly, time-
consuming, and unsustainable. This study utilized parcels registered in the Farmer 
Registration System (FRS) as ground truth data. By analyzing time series EVI curves, 
discrepancies were identified between declared and actual crops. Erroneous parcels 
were eliminated, and the corrected data were used in the classification process.Using 
multi-temporal Sentinel-2 images from 2021, this study compared the performance 
of Random Forests (RF), Artificial Neural Networks (ANN), Support Vector Machines 
(SVM), and Extreme Gradient Boosting (XGBoost) algorithms for classifying crops 
like citrus, cotton, maize, peanut, sunflower, watermelon, wheat, and double-crop 
combinations (e.g., wheat-cotton, wheat-maize). The classification utilized 121 
features (11 images × 10 Sentinel-2 bands + EVI). XGBoost achieved the highest 
overall accuracy (92.14%), followed by RF (89.15%), SVM (86.14%), and ANN 
(85.48%).The EVI index proved critical, particularly in separating spectral curves of 
double crops. While single crops like cotton, maize, and wheat yielded high 
classification accuracy, double crops with overlapping phenological stages had lower 
accuracy. The study highlighted that crops at distinct phenological stages performed 
well across algorithms, whereas crops with similar stages struggled to achieve high 
accuracy.This method of using corrected farmer-declared parcels (FDP) as ground 
truth data demonstrated high classification performance across all algorithms, 
proving its reliability. The findings emphasize that FDP can effectively replace 
traditional field data collection, reducing costs and improving efficiency. This 
classification approach supports agricultural production monitoring, yield 
estimation, water resource analysis, and sustainable policy-making, serving as a 
robust tool for agricultural evaluation. 
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1. Introduction  
 

     Remote sensing technology is increasingly being used 
to survey and monitor agricultural land, increase 
productivity and make more efficient use of resources. 
With the increase in the number of freely available 
satellite images (Sentinel, Landsat, Modis), spatial, 
temporal and spectral resolution of satellites, 
agricultural applications such as detection and 
determination of agricultural crop types, crop water 
consumption, yield estimation have become one of the 
most widely used areas of remote sensing technology [1].      
     Therefore, professional management and monitoring 
of agriculture and water consumption are crucial. To 
effectively manage and monitor agricultural production, 
it is necessary to have information about the types of 
crops and cultivated lands. The increasing role of 
agriculture in the management of sustainable natural 
resources calls for the development of operational crop 
type mapping [2]. Traditional methods of obtaining and 
updating the crop type and planting area information are 
mainly based on sampling surveys and statistical reports 
[3] which have problems such as strong subjectivity, time 
consuming, labor-intensive, delayed updating, and the 
lack of spatial distribution information [4]. Agricultural 
applications are one of the most widely used areas of 
remote sensing technology and can be used to determine 
crop type classes [5]. 
     Satellite imagery enables observing, identifying, 
mapping, and evaluating dynamic agricultural areas with 
different temporal and spatial resolutions [6]. Image 
classification is the most common method used in 
agricultural crop type detection with satellite images. In 
recent decades, satellite images with global coverage and 
different spectral, spatial temporal characteristics have 
become freely available, such as Landsat and MODIS [7]. 
MODIS imagery has been used extensively for over a 
decade, but the spatial resolution of these products needs 
to be revised to characterize individual parcels of 
farmland [8]. MODIS images are only appropriate for 
parcels larger than 32 ha [9], which limits their 
usefulness in assessing small cultivated plots. Although 
the Landsat satellite has alleviated this problem, In 
particular, the temporal resolution (16 days) and spatial 
resolution (30 m PAN - 15 m RGB) have been insufficient 
again. Furthermore, the 16-day revisit cycle of Landsat is 
insufficient to capture the different phenological 
information of crops. High-resolution and very-high-
resolution (<1 m) imagery contain rich crop texture and 
structural information and can be used for crop type 
mapping under complex terrain and planting conditions, 
but their high cost, large data storage and computational 
requirements limit their application [10]. Sentinel-2A 
and Sentinel-2B satellites, with their 5-day acquisition 
period, 13 spectral bands and high resolution (10m-20m-
60m), provide a major advantage in crop type 
classification studies. Especially, revisit cycle of Sentinel-
2 is only five days, which is helpful for capturing 
phenological information of crops during, the sowing, 
growing and harvesting period [11]. Crop type 
classification studies can be carried out using either a  
 
 

 
 
single image or multiple images. It has been found that 
using multi-temporal images for crop type classification 
is more accurate than using single date images [12]. 
Phenological differences can be effectively used to 
distinguish one type of crop from another, as some crop 
types have similar phenological stages during certain 
periods. For this reason, phenological information of 
crops is also very important for the classification study. 
For the past few decades, satellite remote sensing images 
have been used for crop classification, employing various 
image processing and classification techniques. Many 
parametric (linear regression, naive bayes, neural 
network and deep learning) and non-parametric (SVM, 
RF, KNN, DT, bagging and boosting algorithms) 
algorithms are used in classification studies. Many object 
or pixel-based machine learning algorithms have been 
used in the literature for crop classification with different 
bands, indexes, product types, and single-image or multi-
temporal images.  Zhang et al. [13] in Heilongjiang, China, 
crop classification was performed using 12 bands of 
Sentinel-2 imagery and four plant indices (NDVI, NDSVI, 
NDRI, NDTI). They employed SVM, DT, and RF algorithms 
for classification. The RF algorithm achieved the highest 
accuracy at 97.85%, followed by the SVM algorithm at 
97.22%, and the DT algorithm at 95.92%. Li et al. [14] 
using Sentinel-2 imagery and different vegetation indices 
in Minnesota, USA, corn, soya, wheat and sugar beet 
crops were classified. As a result of this study using deep 
learning (CNN) algorithm, 97.48% overall accuracy was 
achieved. They said that experimental results show 
limited accuracy for crop classification based on single 
temporal features (OA: ∼81) whereas multiple spectral 
or spatial information of temporal features significantly 
improves (OA: ∼97.43) the classification accuracy. Vuolo 
et al. [15]  in the Marchfeld region of Austria, Sentinel-2 
imagery and RF algorithm were used for crop type 
classification using single-time and multi-temporal 
imagery. Classification using the RF algorithm showed 
that reached low accuracies (OA: ∼0.50) during the 
growing season (March-April - single date) and an 
increase in OA (∼70) between the highest (May-June 
single date), with the highest accuracy achieved (OA: 
∼95) by using images from nine different dates (March-
October). Arvor et al. [16] in Brazil, 250 m MODIS 
imagery and Enhanced Vegetation Index (EVI) time 
series were used to classify soya beans, maize and cotton 
(OA: ∼74). Belgiu and Csillik [17]  crop type classification 
was performed using 4-band Sentinel-2 imagery (R-G-B-
NIR) and NDVI index in Italy, Romania and USA. In this 
study, object and pixel based classification was 
performed and RF algorithm and Time Weighted 
Dynamic Time Warping (TWDTW) algorithm were used. 
Object-based TWDTW outperformed pixel-based 
TWDTW in all three-study areas and the overall accuracy 
ranged between 78.05% and 96.19%.  
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2. Materials 
 

2.1. Study area 
 

     The study area (2500km2), Çukurova Plain, is located 
in southern Adana, a highly productive agricultural 
province in Turkey. The region has a continental climate 
that is mild in winter and hot with an average annual 
precipitation of 650 mm. The highest temperatures occur 
in August and the lowest in January, with an average of 
255 sunny days per year. The climatic and temperature 
conditions make two different seasons of crop cultivation 
the main cropping. The major crops grown in this region 
are wheat, sunflower, peanuts, watermelon, maize, 
cotton, soybeans, and citrus trees, which are planted in 
about 95% of the study area. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure.1 Study area Çukurova Plain- Adana. 
 

2.2. Data 
 

2.2.1. Sentinel-2 
 

     Sentinel-2 images were downloaded from the 
Copernicus (https://scihub.copernicus.eu/.com). Cloud-
free images from March 2021 to October 2021 were 
selected to encompass the entire crop-growing season. A 
total of 10 Sentinel-2 images (Tables 1 and 2) were 
selected as the primary input data of the experiment. 
Data preparation included stacking and resampling the 
20 m spectral bands to 10 m and removing the coastal 
band, water vapor, and the cirrus band, accomplished 
through the Sentinel Application Platform (SNAP). 
 

Table 1. Spectral bands of Sentinel-2 images. 

 

Table 2. Acquisition time of Sentinel-2 
Day of Year (DOY) Acquisition Time 

88 29 March 2021 
105 5 April 2021 
125 5 May 2021 
140 20 May 2021 
165 6 June 2021 
195 14 July 2021 
223 11 August 2021 
250 7 September 2021 
275 2 October 2021 
290 17 October 2021 
300 27 October 2021 

2.2.2. Farmer declaration parcels (train-test data) 
 

     The Farmer Declaration Parcels (FDP) in Turkey, also 
known as the Farmer Registration System (FRS), is a 
government initiative aimed at registering and tracking 
agricultural activities and farmers in the country. This 
system was implemented to improve the efficiency and 
transparency of agricultural practices and to provide 
various benefits to registered farmers. Under the FRS, 
farmers are required to register themselves and their 
agricultural activities. This registration process involves 
providing personal information and details about the 
land they are cultivating. Parcels that include agricultural 
activities registered in the system by farmers are called 
farmer declaration parcels (FDP). Parcels registered in 
the Farmer Registration System were used as ground 
truth data in the study. In addition to the geometric 
information of the parcels, the system also includes 
information on the province, district, parcel number, 
agricultural parcel number, cultivated product 
information, area, surface area, cadastral area, 
cultivation date and harvest date of each parcel. There 
were 87.692 parcels registered in 2021 in the study area. 
When these declaration-based parcels were examined, it 
was found that there had been systematic and non-
systematic differences between the geometry and 
attribute information of the parcels comparing to the 
field reality. Due to these differences, the declared 
parcels underwent editing and deletion processes. At the 
end of these processes, ground truth data were produced 
from the declared parcels and used as training and test 
data in the classification process. After farmer 
declaration parcels (FDP) were used as reference data in 
the classification study. 

 

 

Figure.2 Map of the study area in Adana, with the reference  

Band Names 
Spectral 

Band 

Spatial 

Resolution (m) 

Blue B2 10 
Green B3 10 

Red B4 10 
Red-Edge B5 20 
Red-Edge B6 20 
Red-Edge B7 20 

NIR B8 10 
NIR B8a 10 

SWIR B11 20 
SWIR B12 20 
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3. Methodology 
 

3.1. Methodology overview 
 
The overall methodology of the study is described in 

Figure 3. The method consists of four basic steps: satellite 
image pre-processing, reference data preparation, 
machine learning classification, and accuracy analysis. 
Firstly, the pre-processing steps of Sentinel-2 images 
were applied and the bands and indices used in the 
classification study were determined. Afterward, editing 
and deletion operations were performed on the parcels  

 

 
                                        Figure.3 General workflow of this study 

 
3.2. Satellite image pre-processing 

 
     In data processing, there is no need for further 
geometric correction of L1C products; only atmospheric 
correction and spatial resolution resampling are 
required [18].  Sentinel-2 images are provided in Level 
1C format and contain above-atmosphere reflectance 
values. To calculate the actual reflectance values of plants 
in a classification study, top-of-atmosphere (TOA) values 
should be converted to bottom-of atmosphere  
reflectance values should be converted to bottom-of- 
 
 

 
 
 
 
that have declarations. At the end of this process, the 
spectral separation curves of each product were 
determined by using the remaining parcels and the 
images created with the time series EVI index. Thirdly, 
pixel-based classification was performed using RF, SVM, 
ANN and XGB algorithms. Finally, the accuracy analyses 
of the obtained results were calculated and the 
algorithms' results were compared. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
atmosphere reflectance values (BOA) [19].Atmospheric 
effects were eliminated by converting TOA values to BOA 
values using the Sen2cor plugin. After Sen2Cor 
processing, the L1C TOA reflectance values were 
transformed into Level-2A (L2A) Bottom-of-Atmosphere 
(BOA) reflectance values [20].  Clouds resulting from 
atmospheric effects and shadows cast by clouds in 
satellite images are the primary sources of noise that 
pose challenges in challenges in image analysis. The 
brightness caused by clouds and shadows negatively 
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impacts data analysis. These effects can lead to changes 
in values of NDVI and other indices, causing errors in 
various analyses and classification processes [21].  
Cloud-covered areas cause anomalies in the bands in the 
images as well as the pixel values in the indexes created 
from these bands, which adversely affect the 
classification result [22]. In order to eliminate these 
anomalies in pixel values and increase the classification 
accuracy, clouds and shadow areas caused by clouds 
were detected and masked by the Sen2cor software. 

 

 
Figure.4 Cloud detection and masking. 

 
3.3. Reference data preparation  

 
     The study area is located within the borders of 
Çukurova Plain and has a rich diversity of agricultural 
crops. Cotton, maize, wheat, barley, sunflower, 
sunflower, watermelon and peanuts are the region's 
most widely grown crops. Cotton, maize and soybeans 
are also planted as second crops after wheat harvest. The 
region is also rich with fruit trees of high economic value 
such as oranges, tangerines, grapefruit and lemons. 
Among the categorized crops, wheat and barley crops are 
classified under the wheat class, while orange, mandarin, 
grapefruit and lemon trees are classified under the citrus 
class. In addition to these crops, maize, cotton, 
watermelon, peanuts, sunflower and second crop maize, 
cotton and soybeans are also included in the 
classification study. 

There are 87.692 farmer declaration parcels in the 
study area. It was also found that the operator caused 
errors during data entry in the system (crop planted, area 
planted, declaration change). Another problem is related 
to the declared agricultural parcels and it has been 
determined that some of these parcels have topological 
errors, overlaps or agricultural parcels within non-
agricultural areas [23]. Before farmer declaration parcels 
could be used as ground truth data, pre-processing was 
carried out and the parcels with erroneous declaration 
were eliminated. As a result of these processes, the 
number of parcels decreased from 45.692 to 16.333. The 
biggest problem with the FDP is that the declaration and 
the actual crops are often different. Parcels with 
agricultural product declarations despite the non-
existence of any agricultural activity constitute another 
problem. These wrong and incorrectly represented 
declaration parcels need to be removed to be used as 

ground truth data in the classification process. 
An approximate calendar for all crop types in this 

geographical region is available in Figure.5. The calendar 
presents information about the sowing, growing and 
harvesting periods of the crops grown in the region. The 
exact dates of sowing and harvest vary depending on 
plots and farmers. There might be differences of up to 1–
3 months in some cases. For certain crops, the harvesting 
of the first planted fields in the season overlaps with the 
sowing of the last fields. Therefore, no intermediate 
growth period is shown in this calendar. 

Figure.5 Approximate crop calendar in the region 
 

 
Different vegetation indexes are used to determine 
agricultural crop classification, NDVI, EVI, SAVI etc. 
index, which provide information on plant health.  In this 
study, each parcel overlapped with multi-temporal NDVI 
images and NDVI median values of each plot were 
calculated in time series. After this process, each parcel's 
vegetative development and change were determined 
and the characteristics of NDVI curves showing 
variability over time were revealed (Figure 9). The 
characteristics NDVI curves for each crop were checked 
regarding the phenological calendar and the spectral 
reflectance values of each crop collected in the field study 
[24].  For each agricultural class outlier NDVI curves have 
been deleted and these parcels represent incorrect 
ground truth The characteristics of separation curves 
generated with NDVI differed for each agricultural crop 
(wheat, sunflower, peanut, watermelon, citrus, maize, 
cotton), which is a single harvest crop, while the 
characteristics of NDVI separation curves were found to 
be close to each other for agricultural crops with double 
harvests (wheat-maize, wheat-cotton, wheat-soybean) 
similar, this similarity decreased when EVI values were 
used (Figure8a-Figure8b). Therefore, the characteristic 
curves were reconstructed for all crops using EVI values 
instead of NDVI values (Figure 9). As a result of 
eliminating outlier parcels, 8549 FDP were used in the 
classification study as ground truth data. After 
atmospheric correction, cloud dedection and masking, 10 
bands (B2, B3 B4, B5, B6, B7 B8, B8A, B11, and B12) were 
composited with 10 m resolution. The images produced 
as a result of the EVI index of each image were also 
included in the classification process. A total of 11*11 
(121) bands composite images were used in the 
classification process. 
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                     Figure.6a Non-clean farmer declaration parcels (Sunflower).               Figure.6b Cleaned farmer declaration parcels (Sunflower). 
 
              

 

 

 

 

 

 

 

 

 

 

 

                Figure.7a Non- clean farmer declaration parcels (Cotton).                    Figure.7b Cleaned farmer declaration parcels (Cotton). 
 

 
 

 
  

 
 
 
 
 
 

                          Figure.8a NDVI curve characteristics of double crops                        Figure.8b EVI curve characteristics of double crops  
                          (Wheat-Cotton, Wheat-Maize, Wheat-Soybean).                         (Wheat-Cotton, Wheat-Maize, Wheat-Soybean). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.9 NDVI curves characteristics of single crops 
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4. Classification Algorithms and Tuning Parametres 
 

4.1. Artificial neural network (ANN) 
 

     An artificial neural network (ANN) is a machine-
learning algorithm that was originally developed to 
model the ability of a human brain to solve pattern 
recognition problems, and it has been increasingly used 
in remote sensing for image classification in recent years 
. The basic ANN framework consists of dense networks 
that are made up of interconnected neurons that are 
organized in layers and weights are assigned to these 
connections. These weights are first randomly 
determined and then iteratively adjusted for training; 
then, the effect on the output nodes is observed until the 
separation of the inputs and the predefined classes incur 

an error [25]. In this study, three parameters need to be 
set up: learning rate 0.001 to 0.1, number of layers: 1 to 

5, batch size 16 to 512 [26]. 
 

4.2. Support vector machine (SVM) 
 

     A support vector machine (SVM) is a non-parametric 
learning algorithm that has frequently been used in 
remote sensing applications. In case of nonlinear 
classification, SVMs can perform the classification by 
using various types of kernels, which turns nonlinear 
boundaries to linear ones in the high-dimensional space 
to define optimal hyperplane [27];[28]. There are four 
kernel functions, which are linear, polynomial, radial 
basis function (RBF) and sigmoid kernels, which are the 
most frequently used types in SVM algorithms. Among 
them, the radial basis function (RBF) kernel outperforms 
the others with two parameters of the costs (C) and the 
kernel width parameter (γ) [29] [30]. 

 
4.3. Random forest (RF) 

 
     RF is a bagging-type ensemble algorithm that 
synthesizes predictions utilizing multiple decision trees. 
The RF classifier generally has a higher classification 
accuracy than a single decision tree. The random forest 
(RF) is an ensemble classifier that has been widely used 
in remote sensing studies currently due to its 
classification accuracy [31];[32]. Higher accuracies have 
been achieved with RF as compared to other machine 
learning algorithms in many crop mapping studies 
[33];[34].  In order to implement the RF, two parameters 
need to be set up: the number of trees (ntree) and the 
number of features in each split (mtry) [35].  Several 
studies have stated that satisfactory results could be 
achieved with the default parameters [36];[37]. In this 
study, to find the optimal RF model for classification, a 
range of values for both parameters were tested and 
evaluated: ntree = 100, 200, 400, 600 and 1000; mtry = 
1:12 with a step size of 1. 
 
4.4. Extreme gradient tuning machine (XGBoost) 
 
     The extreme gradient boosting (XGBoost) algorithm is 
a tree-based machine-learning algorithm and is a 
scalable implementation of the gradient boosting 
machines (GBM) algorithm, especially in data science 
studies where self-learning models achieve high 
performance [38].  XGBoost is a scalable machine-

learning algorithm that minimizes the error rate by 
learning step by step by increasing the tree Structure 
[39].  XGBoost generates a series of decisions to predict 
the variable and each tree is designed to reduce the 
prediction errors of the previous trees. In this study, for 
XGBoost parametres max depth, min child weight, 
gamma, subsample and learning rate were used. 
 
4.5. Tuning parametres 
 
     In the field of machine learning, tuning parameters, 
known as hyperparameters, refer to settings or 
configurations that are not learned from the training data 
but are established before training a model. These 
parameters exert control over various aspects of the 
learning process and can significantly influence the 
model's performance. The process of discovering the 
best parameters for a particular machine learning 
algorithm and dataset is commonly referred to as 
hyperparameter tuning or optimization. Tuned 
parameters are crucial for achieving high-accuracy 
results when utilizing artificial neural networks (ANN), 
support vector machines (SVM), random forests (RF), 
and XGBoost. Each classifier involves distinct tuning 
steps, tuned parameters, and optimal settings 
determined based on the highest overall classification 
accuracy. In this study, the optimum parameters of each 
classifier are shown in Table 3 
 

Table.3 The optimal parametres for ML algorithm. 
 

Algorithm Hyperparameter Optimum value 

RF 
ntree 800 

mtry 11 

SVM 
C 64 

gamma (γ) 0.125 

ANN 

learning rate 0.01 

number of layers 3 

batch size 32 

XGB 

max depth 10 

min child weight 3 

gamma 0.2 

subsample 1 

learning rate 0.05 

 
     In the classification study, 4274 of 8549 FDP parcels 
were selected as training data and 4275 of them were 
selected as test data to be used in the accuracy analysis 
Table 4. 
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Table.4 Training and testing data for classification 
 

Class Name Training Data Test Data 

Citrus tree 1516 1516 

Cotton 844 844 

Maize 980 980 

Peanut 98 98 

Sunflower 131 131 

Watermelon 58 58 

Wheat 230 231 

Wheat-Cotton 139 139 

Wheat-Maize 16 16 

Wheat-

Soybean 
262 262 

Total 4274 4275 

     
 A pixel-based classification study was performed with R 
software using RF, SVM, ANN and XGB machine learning 
algorithms. 

 
5. Results and Discussion 

 
Within the scope of this study, the performance of 

machine learning algorithms including RF, SVM, ANN, 
and XGB for agricultural crop classification has been 
compared. Parcels whose land cover has been classified 
by using pixel-based classification have been overlapped 
with the physical block created within the scope of the 
Integrated Administration and Control System (IACS) 
project. Non-agricultural areas (roads, artificial surfaces, 
forests, wetlands, water, bare land) were masked and 
eliminated using polygons within the physical blocks. As 
a result of this process, only the classification result 
representing the agricultural crop classification has been 
obtained Figure10-11-12. 

 

 
Figure.10 Crop classification result 

 
Figure.11 Crop classification with overlap physical blocks 
 

 
Figure.12 Masked crop classification result with physical 

blocks 
 
 
 
 
 
 
 
 
 
 
 

In order to assess the accuracy of classification 
performance, there are many metrics available in the 
literature. In this work, Recall, Precision and F1-score 
have been used to assessment class accuracy. Precision is 
a metric that quantifies the number of the true positives 
that actually belong to true positives. In other words, it is 
the measure of accuracy. On the other hand, recall is a 
metric that quantifies the true positives made out of all 
true positive samples. The lower limit for both precision 
and recall scores is 0 and the upper limit is TP, FP, TN, 
and FN denote true positive, false positive, true negative, 
and false negative where each of the terms represent a 
special case depending on the relation between 

Citrus Trees   Cotton   

    
Watermelon   Wheat   

    
Peanut   Sunflower   

    
Wheat_Maize   Wheat_Soybean   

    
Maize   Wheat_Cotton   
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prediction and the ground truth. By using the Recall and 
Precision of each class, and the F1 score values, which are 
the harmonic average of these two values, the overall  

 

Table.5 F1 score, recall and precision of RF classification 
results. 

 

Table.6 F1 score, recall and precision of SVM 
classification results. 

 

 

accuracy (Table 5-6-7-8) and each algorithm's confusion 
matrix have also been calculated (Figure.13-Figure14). 
 

 
Table.7 F1 score, recall and precision of ANN 

classification results. 

 

Table.8 F1 score, recall and precision of XGBoost 
classification results 

 

 

 

R
F

 

Class Name F1 Recall Precision 

Citrus Trees 89.86 91.70 88.10 

Cotton 92.36 94.20 90.60 

Maize 91.79 94.20 89.50 

Peanut 89.79 90.50 89.10 

Sunflower 87.63 85.20 90.20 

Watermelon 86.29 87.40 85.20 

Wheat 93.75 93.20 94.30 

Wheat-Cotton 86.69 85.80 87.60 

Wheat-Maize 79.90 78.00 81.90 

Wheat-

Soybean 
80.15 79.70 80.60 

Overall Accuracy : % 89.56 

S
V

M
 

Class Name F1 Recall Precision 

Citrus Trees 85.62 87.20 84.10 

Cotton 85.90 86.20 85.60 

Maize 87.08 85.70 88.50 

Peanut 84.18 87.50 81.10 

Sunflower 85.46 81.20 90.20 

Watermelon 85.91 88.80 83.20 

Wheat 87.75 88.20 87.30 

Wheat-Cotton 82.69 83.80 81.60 

Wheat-Maize 76.42 75.00 77.90 

Wheat-

Soybean 
80.54 77.70 83.60 

Overall Accuracy :  % 86.14 

A
N

N
 

Class Name F1 Recall Precision 

Citrus Trees 84.94 85.80 84.10 

Cotton 86.62 88.20 85.10 

Maize 86.46 83.80 89.30 

Peanut 84.67 86.30 83.10 

Sunflower 85.24 84.20 86.30 

Watermelon 85.18 89.70 81.10 

Wheat 90.15 93.20 87.30 

Wheat-Cotton 81.28 82.50 80.10 

Wheat-Maize 77.00 77.10 76.90 

Wheat-

Soybean 
79.76 77.10 82.60 

Overall Accuracy : % 86.56 

X
G

B
o

o
st

 

Class Name F1 Recall Precision 

Citrus Trees 90.95 90.40 91.50 

Cotton 93.92 95.60 92.30 

Maize 92.58 96.10 89.30 

Peanut 89.25 89.20 89.30 

Sunflower 88.60 88.80 88.40 

Watermelon 84.44 83.50 85.40 

Wheat 95.59 94.50 96.70 

Wheat-Cotton 85.66 87.60 83.80 

Wheat-Maize 82.43 79.40 85.70 

Wheat-

Soybean 
81.87 83.50 80.30 

Overall Accuracy :  % 92.14 
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Figure.13 Confusion matrix for RF and SVM classification 
 

 

Figure.14 Confusion matrix for ANN and XGBoost classification. 
 

 

 
     As shown in Table 5-6-7-8, XGBoost showed the most 
accurate results OA (%92.14), followed by RF OA 
(%89.56), SVM OA (%86.14) and ANN OA (%85.48). SVM 
and ANN classifiers both in OA and all classes were only 
slightly different. The highest accuracy in all classifiers 
was for wheat (RF-F1-%93.75, SVM-F1-%87.75, ANN-
F1% 90.15, XGBoost-F1-%95.59) cotton (RF-F1-%92.36, 
SVM-F1-%85.90, ANN-F1% 86.62, XGBoost-F1-%93.92) 
and maize (RF-F1-%91.79, SVM-F1-%87.08, ANN-F1% 
86.46, XGBoost-F1-%92.58) classes and the lowest for 

the double crops, wheat-cotton (RF-F1-%86.59, SVM-F1-
%82.69, ANN-F1% 81.28, XGBoost-F1-%85.66) wheat-
maize (RF-F1-%79.90, SVM-F1-%76.42, ANN-F1% 
77.00, XGBoost-F1-%82.43) wheat-soybean (RF-F1-
%80.15, SVM-F1-%80.54, ANN-F1% 79.76, XGBoost-F1-
%81.87) All four models exhibited an overall accuracy of 
approximately %84-89 for watermelon, peanut and 
sunflower classes. Citrus trees and wheat are 
distinguished from other crops because they have 
different phenological information. 
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     As observed in the error matrix for all classifiers, 
there is some degree of confusion between maize 
and sunflower. This can be attributed to the fact that 
maize and sunflower exhibit similar characteristics 
in their NDVI curves. In the case of SVM and ANN 
classifiers, cotton is misclassified as peanut, and 
peanut is misclassified as maize. Additionally, 
sunflower and watermelon are a confused with 
peanuts to some extent. In the crop classes especially 
double crops, wheat-cotton, wheat-maize, and 
wheat-soybean, there was a notable degree of 
confusion between these classes across all 
 
  

 
Figure.15 Crop classification results for all algorithm 
 
 
 
 

 
 
algorithms. Particularly, the classes wheat-maize 
and wheat-soybean obtained low accuracy values for 
all machine learning algorithms. Especially the 
wheat-maize and wheat-soybean classes could not 
reach a high accuracy value for all classifiers. The 
reason for the low accuracy is that double crops have 
similar or identical sowing time, length of production 
period, and harvest time, their growth status at each 
stage are almost identical. In this study shows that 
RF and XGBoost algorithms perform better than ANN 
and SVM. It was also shown that crops with differing 
phenological periods achieved high performance. 

 
 

 
. 
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6. Conclusion 
 

     In this study, the performances of four machine 
learning algorithms, namely, random forest (RF), 
support vector machine (SVM), artificial neural 
network (ANN) extreme gradient boosting machine 
(XGBoost), and using a feature space that contained 
eleven temporal phases, with 10 spectral bands and 
EVI indices per each phase for the crop type 
classification of the Çukurova Plain in Adana were 
evaluated and compared (Figure 15). 
     The comparisons involved analyzing the impact of 
tuning parameters on classification results and 
assessing the classification accuracy achieved by 
each classifier with their respective optimal 
parameters. When comparing processing unit times, 
(64 GB RAM, Core i7-9750H CPU hardware) the 
fastest algorithm was XGBoost, (46min. 48sec.) 
followed by RF as the second-fastest (1h. 12 min. 
24sec.) and ANN as the third-fastest ( 1h 23min. 12 
sec.). SVM (1h 57min 12sec.) on the other hand, was 
notably slower in comparison to the other 
algorithms.  
      In this study using multi-temporal satellite 
imagery, the selection of image dates should be done 
carefully due to the dynamic structure of agricultural 
areas. In multi-temporal image classification, 
satellite image dates have a significant effect on 
classification accuracy. Therefore, the phenological 
characteristics of agricultural crops should be 
carefully studied, and appropriate dates should be 
determined by taking phenological characteristics 
into account. 
     As a result of this study, agricultural crop type 
classification using the bands and indices of Sentinel-
2 image showed that the classification accuracy of 
agricultural crops with different phenological 
periods was high, while agricultural crops with close 
phenological periods could not reach high accuracy 
due to confusion with each other. For each of 
classifier performed high accuracy values for single 
crops and low accuracy values for double crops. In 
order to increase the classification accuracy, 
especially for double crops, Sentinel-1 radar images 
and indices generated from these images, as well as 
deep learning methods with different algorithms, 
will be used in the next study. 
     The fact that the images are freely available, that 
the 10-metre resolution bands are sufficient for 
agricultural applications in regions with certain sizes 
of agricultural parcels, and that they have a high 
temporal resolution of 5 days make Sentinel-2 data 
very valuable for the detection of agricultural crops. 
Reference data were used to train the models 
created in the machine learning algorithms. In order 
to obtain the reference data, it is necessary to go to 
the field and carry out a study or product 
information of agricultural parcels that can replace 
the reference data collected in the field. 
     To train the machine learning model employed in 
classification studies, reference (ground truth) data 
must be utilized. Another objective of this study is to 
generate ground truth data from farmer declaration 
parcels (FDP) for the classification study. Prior to 
using these farmer declaration parcels as ground 

truth data, preprocessing was conducted. Any  
 
 
 
parcels with errors or outliers in the FDP parcels 
were excluded, resulting in the creation of reference 
parcels to be employed in the classification process. 
     In study areas with large areas such as this study, 
collecting sufficient and homogeneous data from the 
land for each class for which the crop type is to be 
determined is costly and time-consuming, and is not 
sustainable. Due to this situation, the alternative of 
using FDP as ground truth data was used. By 
performing various processing steps (topological 
correction, editing, deletion, elimination of outliers 
about characteristics of EVI curves), ground truth 
data were generated from these parcels and used in 
the classification study. By transforming the FDP into 
ground truth data due to various processes, high 
accuracy was obtained from the classification result. 
It has also shown that it can be used as ground truth 
data in this and similar studies. 
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