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ABSTRACT In this manuscript, we establish hybrid function projective synchronization of a new hyperchaotic
system using an adaptive control technique with unknown system parameters. In order to prevent either from
deriving from participants in the single hyperchaotic financial system, identical master and slave systems are
chosen. We design an adaptive controller to achieve global chaos synchronization between these master and
slave systems. The synchronization results are based on adaptive control theory and Lyapunov stability theory.
Additionally, we outline the basic dynamic characteristics of both hyperchaotic financial systems. Numerical
simulations performed in Matlab validate our results excellently.
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INTRODUCTION

In nonlinear science, chaotic dynamics is an interesting area of
research that has been a lot of exploration in current decades.
Chaotic events have an impact on a wide range of domains, includ-
ing secure communication, computer science, quantum physics,
biological systems, chemical systems, power converters, electrical
engineering, psychology, and so on (Chen and G.ed. 1999) .Com-
plex dynamics with unique characteristics, like topological mixing,
dense periodic orbits, unusual attractors, broad Fourier transform
spectra, limited and fractal motion qualities in phase space, and
great sensitivity to beginning circumstances, are characteristics
of a hyperchaotic system (Farivar,F. and Teshnehlab 2012). L. M.
Pecora and Carroll (1990) established the master-slave idea for
synchronization of chaotic systems in 1990.

Given the extensive practical applications of chaotic dynamical
systems in the fields mentioned above, numerous theoretical and
experimental studies have been conducted on controlling chaos
and achieving synchronization (Abd-Elouahab and Wang 2010;
Chen, L. and Wu 2011). To be more precise, synchronization of
nonlinear dynamical systems allows for a deeper comprehension
of collective dynamical behaviour in systems that are physical,
chemical, biological, and other. Numerous mathematical, physi-
cal, sociological, physiological, and biological systems have been
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shown to exhibit synchronous behaviour (Koronovskii, A.A. and
Hramov 2013).

Many techniques for controlling and synchronizing, have been
designed comparable and non-identical chaotic systems have been
developed in an effort to improve ways for chaos management
and synchronization. Such methods include backstepping control
(Li, S.Y. and Chiu 2012), adaptive control ( Khan, A. and Shikha.
2017), linear feedback (Ma, M. and Cai 2012), optimal control (Li,
Y. and Li 2013),(Cai, G. and Fang 2013) active control (Kareem, S.O.
and Njah 2012), active sliding control ( Khan, A. and Prasad 2016),
passive control ( Motallebzadeh, F. and Cherati 2012), and so on.
To derive the controller in these published works, one has to be
aware of the values of the system’s parameters.

Nevertheless, these factors are frequently unknown in real-
world scenarios. Subsequently deriving an adaptive controller,
therefore, is an important problem for the control and synchro-
nization of hyperchaotic financial systems with unknown system
parameters ( Vaidyanathan, S. 2015). For the purpose of synchroniz-
ing hyperchaotic financial systems, a number of synchronization
techniques have been developed such as complete synchroniza-
tion (CS) ( Chen, H. and Guo 2021), generalized synchronization
(GS) (Zheng, Z. and Hu 2000), projective synchronization (PS),
and hybrid synchronization (HS) (Wu, X. and Li 2012). Due to its
ability to achieve speedier communication with its proportional
features There are now two positive Lyapunov exponents (LE) that
point to hyperchaotic behaviour. This dissipative hyperchaotic
system’s mathematical characteristics are shown both theoretically
and statistically, including Lyapunov exponents (Al-Azzawi, S and
Hasan 2024).
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In order to have a thorough understanding of the dynamics of
the suggested system, we have examined Hamilton energy and
competitive modes at various parameter values. One of the sim-
plest concepts for gaining a deeper knowledge of the dynamics or
stability of a chaotic system is Hamilton energy. Research reveals
that if one can totally control the energy flow in a chaotic system,
one can successfully manage its stability. By handling the Hamil-
ton energy, they can do this. The significance of the Hamilton
energy for the formation of nonlinear oscillations has been exam-
ined in recent research on chaotic systems (Khan, A. and ALi 2024)
projective synchronization has garnered substantial attention and
has been thoroughly explored among the numerous types of chaos
synchronization (Li., Z. and Xu 2004).

The synchronization of the master and slave systems up to a
scaling factor is the defining feature of projective synchronization.
Chen and Li have considered the function projective synchroniza-
tion (FPS), a unique synchronization approach (Chen, Y. and Li
2007) . As opposed to projective synchronization, function pro-
jective synchronization (FPS) allows synchronization between the
response and drive systems up to a certain scaling function rather
than a constant. Projective synchronization (PS) or complete syn-
chronization (CS), respectively, can be achieved by choosing the
scaling function to be either a constant or unity. Thus, a more inclu-
sive definition of projective synchronization is function projective
synchronization. Function projective synchronization is very help-
ful for safe communications because of the unpredictable nature
of the scaling function, which can further improve communication
security.

In more general terms, though, not every element in the vec-
tor can synchronize to the required scaling function. All of the
vector’s scaling functions differ in hybrid function projective syn-
chronization (HFPS) (Ojo, K.S.. and Omeike 2014) which increase
complexity and fortifies secure communication even more. The
primary benefit of employing the adaptive control technique is
that it enables controllers to accomplish drive and response sys-
tem synchronization without requiring knowledge of parameter
values. This method effectively synchronizes the systems with
less information needed. The active control technique is used
to create synchronization and anti-synchronization between the
drive and response systems. Controller design requires parame-
ter values. These days, secure communication is a major concern.
Hybrid function projective synchronization (HFPS), as previously
mentioned, increases controller complexity and makes it more dif-
ficult for hackers to interpret communications. This combination
enhances secure communication.

Additionally, most reported research on hybrid function pro-
jective synchronization achieve synchronization between two hy-
perchaotic financial systems that are both part of the unified hy-
perchaotic financial system. Inspired by the above discussion,
in this work, we address the HFPS via adaptive control. Com-
plete synchronization (CS), projective synchronization (PS), anti-
synchronization (AS), and hybrid projective synchronization (HPS)
are the subcases of hybrid function projective synchronization.

This manuscript organized as: The problem of statements for
the hyperchaotic financial system’s synchronization are covered in
Section 2. In section 3 A description of the hyperchaotic financial
system’s basic dynamical features is given. Section 4 is succeeded
by the hyperchaotic financial system’s hybrid function projective
synchronization (HFPS) via adaptive control. A numerical simula-
tions and discussions Section 5. Finally, conclusion is delivered in
Section 6.

PROBLEM STATEMENT FOR SYNCHRONIZATION OF
CHAOTIC SYSTEM

Assume that a hyperchaotic financial system with a state vector is
a driving system.
Xm ∈ Rn and P ∈ Rn×n is system matrix given by

Ẋm = PXm + f (Xm) (1)

Where f (Xm) : Rn → Rn is the system’s nonlinear part. An-
other highly hyperchaotic financial system can be thought of as a
slave system with a state vector. The system matrix Ys ∈ Rn and
Q ∈ Rn×n with controller is provided by P

Ẏs = QYs + g (Ys) + σ (Xm, Ys) (2)

Where g (Ys) : Rn → Rn is nonlinear part of the slave system and
σ is the adaptive controller added in slave system for synchroniza-
tion of the systems (1) and (2).

For hybrid function projective synchronization, the error e ∈ Rn

between states Xm and Ys is defined as:

e = Ys − A(t)Xm (3)

Where A(t) = diag (η1(t), η2(t), . . . . . . ., ηn(t)) is the diagonal
matrix and ηi(t) : Rn → R(i = 1, 2, . . . . . . , n) are functions that are
bounded and continuously differentiable, ηi(t) ̸= 0∀t.

From (1) and (3) error dynamics as:

ė = QYs + g (Ys) + σ (Xm, Ys)− PXm − f (Xm) (4)

Therefore, for hybrid function projective synchronization,
the goal is to determine the controller σ (Xm, Ys), so that
limt→∞ ∥e(t)∥ = 0, ∀e ∈ Rn.

Remark 1: If A(t) = diag (η1(t), η2(t), . . . . . . . . . , ηn(t)) where
ηi(t) ∈ R are constants, then hybrid function projective synchro-
nization simplifies to hybrid projective synchronization. Further-
more, when all ηi(t) are identical, the problem reduces to projective
synchronization.

FUNDAMENTAL DYNAMICAL PROPERTIES OF THE SYS-
TEM

Consider the novel financial system:

ẋ1 = x3
2 + (x2 − a) x1 + x4

ẋ2 = 1 − bx2 − x1
2 (5)

ẋ3 = −x1x2 − cx3

ẋ4 = −0.05x1x3
2 − dx4

Where the interest rate (x1), investment demand (x2), price
index (x3), and average profit margins (x4) are the four state
variables for which the system specifies the temporal evolution.
Differentiation with respect to time t is indicated by the dot and
a ≥ 0 the saving amount, b ≥ 0 the cost per investment, c ≥ 0 is
the elasticity, and d ≥ 0 is positive systems parameter.

The values of the parameters a = 0.9, b = 0.2, c = 1.5
and d = 0.17 the Lyapunov exponents are λ1 = 1.1605,λ2 =
0.6589,λ3 = −0.7145 and λ4 = −2.0642 as shown in Fig 1.
∑4

λ=1 λi = −0.9593 ≤ 0. The considered system is hyperchaotic
based on our calculation of the Lyapunov exponent for the sys-
tem witnessing the two positive Lyapunov exponents. Here two
Lyapunov exponents are positive and two are negative, positive
Lyapunov exponents shows that system 5 is hyperchaotic.
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Figure 1 Lyapunov exponents of the 5 hyperchaotic financial system

Lyapunov exponent spectrum

In a dynamical system, the rate at which infinitesimally close paths
separate is quantified by the Lyapunov exponent spectrum. The av-
erage exponential rate of divergence or convergence in particular
directions inside the system’s phase space is represented by each of
the exponents that make up this representation. When neighbour-
ing trajectories diverge, a positive Lyapunov exponent suggests
chaotic activity; conversely, a negative one suggests convergence
to a stable point or periodic orbit. Zero exponents frequently imply
neutral stability, as in the case of a conservative system’s trajectory.
The complete range of Lyapunov exponents sheds light on the
general stability of the system as well as the characteristics of its
attractors.

Bifurcation analysis

Bifurcation analysis as parameter a increases from 0.5 to 2, the sys-
tem transitions from stable behavior to hyperchaotic oscillations
in the interest rate x. For values of parameter b ranging from 0.1 to
0.5, the system exhibits very large fluctuations in the steady state
of x reaching magnitudes on the order 1012 suggesting instability
in the system. As parameter c increases from 1 to 2, the system
shows hperchaotic behavior initially, but the fluctuations in x re-
duce as c increases. Parameter d, ranging from 0.1 to 0.3, leads to
hyperchaotic behaviour for the most of its range , with multiple
steady-state value of x. The systems remains hyperchaotic.

Dissipation

The divergence of the system 5 is

∇V =
˙(

∂x
∂x

)
+

˙(
∂y
∂y

)
+

˙(
∂z
∂z

)
+

˙(
∂w
∂w

)
= −a − b − c − d = −(a + b + c + d) < 0.

Since a, b, c, d ≥ 0, the dynamical system (3.1) is a dissipative
system, and

V̇(t) = e−(a+b+c+d).

This indicates that as t increases, each volume carrying the
trajectory of this dynamical system (3.1) shrinks to zero at an
exponential rate of −(a+ b+ c+ d). Hence, the asymptotic motion
settles onto an attractor of the new dynamical system (3.1), thereby
limiting all of the orbits of the system to a certain subset with zero
volume. (Wu, X. and Li 2012).

Figure 2 Lyapunov exponent spectrum of the new system 5 and
L1 represented largest lyapunov exponent in all cases. (a) rep-
resented versus parameter a, (b) represented versus parameter
b, (c) represented versus parameter c, (d) represented versus pa-
rameter d
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Figure 3 Phase portraits of 5 hyperchaotic financial system (a) in
x-y-z space, (b) in the x-y-w space, (c) projection on the y-z plane,
and (d) projection on x-z plane

Equilibrium and Stability
The equilibrium of system 5 can be obtained by solving equations:

x2
3 + (x2 − a)x1 + x4 = 0

1 − bx2 − x2
1 = 0

−x1x2 − cx3 = 0

−0.05x1x2
3 − dx4 = 0

system 5 has a trivial equilibrium points E0 = (0, 0, 0, 0) and two
nontrivial equilibrium points E1 = (0.9, 0.7,−0.4,−0.05), and
E2 = (2.6, 5,−9.06,−3.53). Therefore, E0 is stable and E1 and
E2 are unstable equilibrium points.

HYBRID FUNCTION PROJECTIVE SYNCHRONIZATION OF
HYPERCHAOTIC FINANCIAL SYSTEM VIA ADAPTIVE CON-
TROL

Our aim is to achieve hybrid function projective synchronization
between master and slave hyperchaotic systems using the method
of adaptive control. Is that regard, we consider the master and
slave system, follows:

ẋ1 = x3
2 + (x2 − a) x1 + x4

ẋ2 = 1 − bx2 − x1
2 (6)

ẋ3 = −x1x2 − cx3

ẋ4 = −0.05x1x3
2 − dx4

Where x1, x2, x3 and x4 are typical profit margins, price index,
investment demand, and interest rate. and a, b, c and d are pos-
itive parameters. The above system 6 has already been seen as
hyperchaotic for the specified values of parameterise.

The slave system is described as:

ẏ1 = y2
3 + (y2 − a) y1 + y4 + u1

ẏ2 = 1 − by2 − y2
1 + u2 (7)

ẏ3 = −y1y2 − cy3 + u3

ẏ4 = −0.05y1y2
3 − dy4 + u4

Where y1, y2, y3 and y4 are typical profit margins, price index,
investment demand, and interest rate. and a, b, c and d are positive
parameters and u1, u2, u3 and u4 , continuously differentiable, non-
zero scaling functions. The error dynamics is expressed as the
derivative of 8 is

ei = yi − ηixi, where i = 1, 2, 3, 4 (8)

and η′
is(i = 1, 2, 3, 4) are bounded, continuously differentiable,

non-zero scaling functions. The error states’ time derivative of 8 is

ėl = ẏi − η̇l(t)xi − ηi(t)ẋl (9)

Using 6 ,7 and 9 we obtain

ė1 = y2
3 +(y2 − a) y1 + y4 +u1 − η̇1(t)x1 − η1(t)

(
x2

3 + (x2 − a) x1 + x4

)
ė2 = 1 − by2 − y2

1 + u2 − η̇2(t)x2 − η2(t)
(

1 − bx2 − x2
1

)
(10)

ė3 = −y1y2 − cy3 + u3 − η̇3(t)x3 − η3(t) (−x1x2 − cx3)

ė4 = −0.05y1y2
3 − dy4 + u4 − η̇4(t)x4 − η4(t)

(
−0.05x1x2

3 − dx4

)
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Figure 4 Bifurcation for Parameter a, Chaotic Behaviour with Increasing Parameter a . Bifurcation for Parameter b, Extreme Oscillations and
Instability with Parameter b. Bifurcation for Parameter c, Transition to Stability with Increasing Parameter c. Bifurcation for Parameter d, Chaotic
Dynamics with Varying Parameter d

To achieve HFPS between master and slave hyperchaotic fi-
nancial systems with uncertain parameters and arbitrary initial
conditions, we need to design appropriate controllers ui(t)(i =
1, 2, 3, 4) and a parameter update rule. In this way, the unknown
parameters will be estimated simultaneously with the assurance
that the error dynamical system 10 is asymptotically stable at the
origin, and HFPS between the slave system 7 and the master sys-
tem 6 will be achieved. As a result, for the error dynamical system
10, the synchronization problem is transformed into a stability
challenge.
The controller are designed as follows:

u1 = −y3
2 − y2y1 + η̇1(t)x1 + η1(t)x1 + η1(t)x2x1 + âe1 + η1(t)x4 − k1e1

u2 = −1 + y1
2 + η̇2(t)x2 + η2(t)− n2(t)x1

2 + b̂e2 − k2e2 (11)

u3 = y1y2 + η̇3(t)x3 − η3(t)x1x2 + ĉe3 − k3e3

u4 = 0.05y1y3
2 + η̇4(t)x4 − η4(t)0.05x1x3

2 + d̂e4 − k4e4

and the following is how the parameter updating rules are
made:

˙̂a = − (y1 − η1(t)x1) e1 − k5ea

˙̂b = − (y2 − η2(t)x2) e2 − k6eb (12)
˙̂c = − (y3 − η3(t)x3) e3 − k7ec

˙̂d = − (y4 − η4(t)x4) e4 − k8ed

Where the control gain ki > 0(i = 1, 2, . . . , 8), â, b̂, ĉ, and d̂
are the parameters for the estimated variable that are unknown.
ea = â − a, eb = b̂ − b, ec = ĉ − c, and ed = d̂ − d are corresponding
parameter errors. We select the Lyapunov function that satisfies
the requirements of Lyapunov stability theory for the parameter
update methods designed above. That will demonstrate the sta-
bility of the faulty dynamical system and the achievement of the
necessary synchronization. However, we select the subsequent
Lyapunov function candidate for the error system 10:

V(t) =
1
2

(
e1

2 + e2
2 + e3

2 + e4
2 + ea

2 + eb
2 + ec

2 + ed
2
)

(13)

Undoubtedly, V(t) > 0. Along the trajectories of the error
system 10, the time derivative of V(t) equals

V̇(t) = e1 ė1 + e2 ė2 + e3 ė3 + e4 ė4 + ea ėa + eb ėb + ec ėc + ed ėd

V̇(t) = e1

(
y2

3 + (y2 − a) y1 + y4 + u1 − η̇1(t)x1 − η1(t)
(

x2
3+

(x2 − a) x1 + x4)) + e2

(
1 − by2 − y1

2 + u2 − η̇2(t)x2−

η2(t)
(

1 − bx2 − x1
2
))

+ e3 (−y1y2 − cy3 + u3 − η̇3(t)x3−

η3(t) (−x1x2 − cx3)) + e4

(
−0.05y1y3

2 − dy4 + u4 − η̇4(t)x4−

η4(t)
(
−0.05x1x3

2 − dx4

))
+ ea ėa + eb ėb + ec ėc + ed ėd (14)

Using 11, 12 and 14, we obtain

V̇(t) = e1 (ea (y1 − η1(t)x1))− k1e1
2 + e2 (eb (y2 − η2(t)x2))− k2e2

2

+e3 (ec (y3 − η3(t)x3))− k3e3
2 + e4 (ed (y4 − η4(t)x4))− k4e4

2

+ea (− (y1 − η1(t)x1) e1 − k5ea) + eb (− (y2 − η2(t)x2) e2 − k6eb)

+ec (− (y3 − η3(t)x3) e3 − k7ec)+ ed (− (y4 − η4(t)x4) e4 − k8ed)

= −k1e1
2 − k2e2

2 − k3e3
2 − k4e4

2 − k5ea
2 − k6eb

2 − k7ec
2 − k8ed

2

= eKe < 0

Where e = (e1, e2, e3, e4, ea, eb, ec, ed) and K =
diag (k1, k2, k3, k4, k5, k6, k7, k8).
Based on the Lyapunov stability theory, the error vector e
asymptotically converges to zero, meaning that limt→∞ ∥e(t)∥ = 0.
since V̇(t) < 0 It also suggests that the unknown parameters
are approximated simultaneously the hybrid function projective
synchronization of the master and slave systems is both globally
and asymptotically synchronized.
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NUMERICAL SIMULATIONS

To demonstrate the viability and validity of the proposed syn-
chronization technique, numerical simulations are carried out.
The selected parameter of the hyperchaotic financial system as
a = 0.9, b = 0.2, c = 1.5, and d = 0.17. The initial condition
of master and slave system are chosen as x(0) = (3, 1,−2,−3)
and y(0) = (5, 3,−6,−3). The scaling functions η1 = sin(t), η2 =
0.5 cos(t), η3 = 1 + sin(t), and η4 = cos(0.1t) are chosen at ran-
dom. It is assumed that the control gains are ki = 0.11∀i =
1, 2, . . . , 8. and Figs. 5 and 6 display the outcomes of the simu-
lation. Figure 4 illustrates how the error dynamics approach zero
as t approaches infinity. As seen in Figure3 exhibit that values of
the unknown parameters also tend to â → a, b̂ → b, ĉ → c, d̂ → d
Consequently, the intended hybrid function projective synchro-
nization between the slave and master systems is achieved.

Figure 5 The estimated value of the parameters that are unknown
â, b̂, ĉ and d̂ as hybrid function projection synchronization occurs

Figure 6 Error in synchronization between the slave and master
system states

CONCLUSION

By including more terms and increasing one more variable, aver-
age profit margins x4, based on the chaotic system described in
(Wu, X. and Li 2012) is achieved. Both theoretical and numerical
analyses are performed on a few fundamental dynamical features,
including the Lyapunov exponent spectrum, bifurcations, equi-
libria, and hyperchaotic dynamical behaviours. This manuscript
successfully demonstrates hybrid function projective synchroniza-
tion (HFPS) of a novel hyperchaotic system utilizing an adaptive
control technique, even in the presence of unknown system param-
eters. The chosen master and slave systems are carefully selected
to ensure that they are distinct from any members of the unified
chaotic financial system. An adaptive controller is meticulously de-
signed to ensure global chaos synchronization between the master
and slave systems. The synchronization is carefully proven using
Lyapunov stability theory and adaptive control theory, ensuring
theoretical soundness. Additionally, the manuscript provides a
detailed analysis of the fundamental dynamical properties of the
hyperchaotic financial systems. The effectiveness and accuracy
of the proposed synchronization strategy are further confirmed
through numerical simulations conducted in MATLAB, validating
the theoretical findings and demonstrating practical applicability.
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