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Nowadays, with the discovery of the power and potential of quantum computers, developing 
and understanding quantum-based deep learning models has become an important research 
area. This study investigates Quantum Transfer Learning and Quantum Hybrid Learning 
models that involve feature extraction and training processes using Convolutional Neural 
Networks (CNN) and Vision Transformer (ViT). The study aims to explore the potential 
advantages and differences of quantum deep learning techniques. It is envisioned that 
quantum computing can provide significant advantages in terms of computational speed and 
efficiency, especially in complex and large-scale data sets. Therefore, this study will contribute 
to a better understanding of the practical applications and potential impacts of quantum deep 
learning techniques. In this study, we evaluate the performance of four different quantum 
deep learning architectures using two different datasets. The classifiers used are the pre-
trained ResNet-50 with a kernel size of 5x5 and the state-of-the-art CaiT-24-XXS-224 (CaiT) 
transducers. Optimization was performed with Adam optimizer using the cross entropy loss 
function. A total of eight models were trained, each with ten iterations. Accuracy (Acc), 
balanced accuracy (BA), overall F𝛽 (F_beta) macro score F1 and F2, Matthew's Correlation 
Coefficient (MCC), sensitivity (Sens) and specificity (Spec) were used as performance 
measures. 

 

GÖRÜNTÜ SINIFLANDIRMADA KUANTUM DERİN ÖĞRENME YÖNTEMLERİNİN 
KARŞILAŞTIRILMASI 

 

Anahtar Kelimeler Öz 
  
Kuantum Transfer 
Öğrenme, Kuantum 
Yapay Zeka Modelleri,  
Hibrit Kuantum-Klasik 
Öğrenme, 
Vision Transformers. 

Günümüzde kuantum bilgisayarların gücü ve potansiyelinin keşfedilmesiyle birlikte, kuantum 
tabanlı derin öğrenme modelleri geliştirmek ve anlamak önemli bir araştırma alanı haline 
gelmiştir. Bu çalışma, Evrişimli Sinir Ağları (CNN) ve Vision Transformer (ViT) kullanılarak 
öznitelik çıkarımı ve eğitim süreçlerini içeren Kuantum Transfer Öğrenme ve Kuantum Hibrit 
Öğrenme modellerini incelemektedir. Çalışma, kuantum derin öğrenme tekniklerinin 
potansiyel avantajlarını ve farklılıklarını araştırmayı amaçlamaktadır. Kuantum 
hesaplamanın, özellikle karmaşık ve büyük ölçekli veri setlerinde hesaplama hızı ve verimlilik 
açısından önemli avantajlar sağlayabileceği öngörülmektedir. Dolayısıyla, bu çalışma, 
kuantum derin öğrenme tekniklerinin pratik uygulamalarının ve potansiyel etkilerinin daha 
iyi anlaşılmasına katkıda bulunacaktır. Bu çalışmada, iki farklı veri seti kullanılarak dört farklı 
kuantum derin öğrenme mimarisinin performansı değerlendirilmiştir. Kullanılan 
sınıflandırıcılar, önceden eğitilmiş 5x5 çekirdek boyutuna sahip ResNet-50 ve son teknoloji 
ürünü CaiT-24-XXS-224 (CaiT) dönüştürücüleridir. Optimizasyon, Adam optimizer ile çapraz 
entropi kayıp fonksiyonu kullanılarak gerçekleştirilmiştir. Her biri on tekrarlı olmak üzere 
toplam sekiz model eğitimi yapılmıştır. Performans ölçütleri olarak doğruluk (Acc), dengeli 
doğruluk (BA), genel F𝛽 makro skorundan F1 ve F2, Matthew's Korelasyon Katsayısı (MCC), 
duyarlılık (Sens) ve özgüllük (Spec) kullanılmıştır. 
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Highlights (At least 3 and maxium 4 sentences) 

• Quantum computing offers significant advantages in processing complex and large-scale datasets, making 
it a powerful tool for accelerating deep learning models. 

• Quantum Transfer Learning combined with Vision Transformers (ViT) enhances the extraction of both local 
and global features, leading to higher accuracy in image classification tasks. 

• The hybrid quantum-classical models demonstrate strong performance, particularly on simpler datasets, 
by integrating quantum gates within classical deep learning architectures. 
 

Purpose and Scope  

The paper aims to explore the development and application of quantum-based deep learning models, specifically 
focusing on Quantum Transfer Learning and Quantum Hybrid Learning techniques. By leveraging Convolutional 
Neural Networks (CNN) and Vision Transformer (ViT) architectures, the study investigates the potential 
advantages of quantum deep learning, particularly in terms of computational speed and efficiency when applied 
to large and complex datasets. 
 

Design/methodology/approach  

The study evaluates four different quantum deep learning architectures using two distinct datasets. Feature 
extraction is performed with pre-trained ResNet-50 and CaiT models. Optimization is carried out using the Adam 
optimizer and cross-entropy loss function. Eight models are trained, each for ten iterations, with performance 
measured by metrics like accuracy, balanced accuracy, F1 and F2 scores, Matthew's Correlation Coefficient 
(MCC), sensitivity, and specificity. 
 

Findings  

The study reveals that quantum deep learning models, especially Quantum Transfer Learning, exhibit significant 
advantages in classification tasks. Models utilizing pre-trained ResNet-50 outperform those with CaiT, 
particularly on complex datasets like "Dogs & Cats." Hybrid quantum models show high accuracy for simpler 
datasets (Medical MNIST), demonstrating the potential of quantum models for enhanced image classification. 
 

Research limitations/implications  

The research is limited by the current state of quantum computing hardware, particularly the challenges posed 
by noisy intermediate-scale quantum (NISQ) devices. Future research could explore improving the quantum-
classical hybrid models' scalability and performance on larger datasets. More comprehensive experimentation 
is needed to optimize hyperparameters and training time for complex quantum architectures. 
 

Practical implications  

The findings suggest practical applications of quantum deep learning in fields requiring fast and efficient data 
processing, such as medical imaging and large-scale visual recognition tasks. Quantum Transfer Learning could 
be further developed for use in industries where quick decision-making and high accuracy are critical. 
 

Social Implications  

The impact of this research on society could be profound, especially in improving computational tools in 
healthcare, AI-driven diagnostics, and other data-intensive fields. By accelerating image classification 
processes, quantum computing has the potential to reduce computational costs and enhance the quality of life 
through better AI-powered solutions. 
 

Originality  

This paper contributes to the existing knowledge on quantum machine learning by carrying out a cross-
comparison of quantum transfer learning and quantum hybrid learning models for image classification 
purposes. This paper makes an important observation on how effective these models are, highlighting their 
usefulness beyond mere conceptualization especially in processes that require handling large and complex 
datasets. 
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1. Introduction 
 
There has been a drastic change in the field of computer science and its corresponding applications with the 
emergence of quantum science, which has the ability to exist over and above conventional computers. Unlike 
classical charged devices which store information in bits represented by either 0 or 1; quantum computers store 
information in qubits that can be both 0 and 1 at the same time due to superposition principles of qubits. This 
offers a real possibility that speed would be improved in the solution of some problem systems if this method is 
compared with normal computer systems. Due to the complexities in computations associated with quantum 
computing, there have been growing interests in artificial intelligence and machine learning regarding these 
technologies (Shor 2002). 
 
Quantum transfer learning and hybrid classical-quantum learning represent methodologies through which 
researchers endeavor to integrate quantum computing into machine learning. It aims to make use of acquired 
information from the source task to achieve better results on the target task. Classical and quantum methods are 
used to solve a complex problem in hybrid classical-quantum learning. Both the above forms have their likely 
advantages but further studies are needed to understand how they differ and when each of the forms would be 
more appropriate (Dhara et al. 2024). 
 
The two methods, quantum transfer learning, and hybrid classical-quantum learning mostly differ in respect to 
being algorithmically complex and in data handling (Liu et al. 2021). Quantum transfer learning usually involves 
the movement of data and involves the methodologies of choosing the right quantum features. Encoding data and 
correlating it to the asked question in the case of quantum transfer learning is very essential. However, hybrid 
classical-quantum learning is a considerable amount of effort to coordinate the classical component, quantum 
component, and how they work together effectively (Datta et al. 2005). 
 
The fast trends with regards to the machine learning mean that quantum transfer learning and hybrid classical-
quantum learning are just beginning points (Yang et al. 2023) Both approaches currently are at a rudimentary 
stage in terms of relevance and too much is required for them to be translated into solving real problems. It is 
worth mentioning also the necessity of such approaches but with the emphasis on their merits and demerits in 
more pragmatic and broader context (Arthur et al. 2022). In their opinion, these methods will become even more 
effective and widespread with the evolution of powerful and more advanced quantum computers in the near 
future (Liu et al. 2021). 
 
This research has focused on the principles of quantum transfer learning and hybrid quantum learning using 
Convolutional Neural Networks (CNN) and Vision Transformers (ViT) as an experimental investigation. The four 
variations of the quantum deep learning architecture were assessed using two datasets. The other methods 
discussed were evaluated using parameters of accuracy, balanced accuracy, and Matthew’s correlation coefficient. 
This research seeks to investigate possible benefits and inherent differences of quantum deep learning methods. 
 
 
2. Literature Survey 
 
The literature includes different types of researches that deal with quantum machine learning and hybrid 
approaches including the vacuum of well into a variety of disciplines. In particular, the progress of the quantum 
measurement science contributes a lot to the appreciation of the practical application of quantum transfer learning 
as well as the hybrid of classical and quantum learning. Consideration of some recent contributions from the 
literature makes it clear that Yang J. et al. (2023) focused on integrating tunable control parameters in the encoding 
process to enhance the quantum measurement science and their auto-optimization in the process using a hybrid 
quantum-classical technique. Usually, the above method leads to an experimental guided optimization of the 
optimal protocol in order to improve the accuracy of measurement. Young-woo Han (2022) presented the 
significance of a hybrid quantum-classical neural network architecture, where each of the neuron structures 
consist of a variational quantum circuit. The constructed hybrid neural network was tested in a series of 
experiments on binary classification tasks of both computer simulations and real quantum computers and their 
hybrid versions. 
 
J. Liu et al, (2021) a hybrid quantum-classical convolutional neural networkinspired by the classical convolutional 
neural networks, or QCCNN, was developed earlier in 2021. QCCNN is designed such that it can fit within the 
available thresholds for the number of qubits and circuit depth when it comes to today’s noisy intermediate-scale 
quantum computers NISQ. QCCNN is able to retain the main concepts of the classical CNN even while facilitating 
the process of gradient backpropagation for hybrid quantum-classical loss functions design. The authors 
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illustrated the prospects of this architecture on Tetris and demonstrated that QCCNN was superior in classification 
tasks than classical CNN. 
Mari A. et al. (2020) touched on the matter of transfer learning, a notion often used in contemporary machine 
learning algorithms, particularly in the class of hybrid neural networks, combining classical and quantum parts. 
They suggested different usage scenarios of such hybrid transfer learning, especially constraining on the scenario 
when the last layers of standard trained classical network are substituted by a quantum circuit. This way, it is 
possible to efficiently normalize a high-dimensional space and extract and transfer a chosen informative volume 
to the quantum processor. The authors presented some functioning prototypes of the system for works with image 
recognition and quantum state classification. 
 
Toğoçar M. (2021) examined application of a Quantum Transfer Learning model for the recognition of respiratory 
diseases. Respiration-related disease was detected using Quantum Transfer Learning model. A different learning 
paradigm was suggested by integrating quantum and deep learning models. In respect of the application analysis, 
the dataset was trained with the proposed model, and the accuracy of the training reached 92.50% based on the 
analysis results. 
 
Mogalapalli A. and others (2022) studied the topic of classical-quantum transfer learning, more specifically the 
question on if it is possible to substitute the last classical layer of a network with variational quantum circuit. They 
proposed quantum transfer learning in order to detect tuberculosis from chest X-ray images as well as to identify 
the disease in X-ray images of affected patients. 
 
Yan J. and others (2023) investigated the use of a hybrid model in remote sensing image classification. US model 
combined ResNet based classical CNN’s and quantum circuits with the objective of achieving high level of accuracy 
when only few samples were used. The hybrid CNN approach not only enhanced the accuracy of classification tasks 
but reduced the amount of training data required for training the model. 
 
Cherrat A. and others (2024) set out to achieve more complicated tasks in their investigations by integrating Vision 
Transformers classical variants and quantum components within the framework of this study. They applied 
attention with a quantum cavity and obtained impressive results, particularly in the image classification task. Due 
to this hybrid model, the accuracy improvement rate was significantly increased while the parameters used were 
relatively lower than those employed in the classical vision transformer models. 
 
Sarkar S. et al. (2024) ingeniously presented a model of quantum transfer learning that elicits both the classical 
and quantum modes of information processing and explored it on the MNIST database. In this case, data was 
processed using quantum circuits and the classification was performed therefore using classical neural networks. 
Nevertheless, the authors highlighted that due to the present-day constraints of quantum devices, the 
improvement of the model was inferior to the best classical models. 
 
Quantum Convolutional Neural Networks represent a quantum leap in quantum machine learning by the use of 
quantum properties, such as entanglement and superposition, in the hierarchical processing of complex 
information. Cong et al. constructed the framework for a QCNN, with a specific view aimed at solution ground 
states of quantum many-body physics. This has shown that QCNN can carry out dimensionality reduction and 
hierarchical learning with great scalability and efficiency while dealing with quantum data. Furthermore, the 
proposed architecture is coherent with the use of QCNNs for a wide range of other quantum computing tasks that 
are far from physics. 
 
3. Material and Method 
 
In this section, the foundations of quantum machine learning and deep learning models using these foundations 
will be examined. 
 
3.1. Quantum Entanglement and Quantum Gates 
 
Quantum entanglement is the state in which two or more qubits are in the same state even if their spin is in a 
different physical location. This statement highlights the extent of the correlation since if the direction of one qubit 
is measured, the directions of the other qubits are instantly known regardless of distance. When working with 
qubits within quantum computers & quantum supervised learning systems, statistics of qubits are made 
computationally powerful with the use of entanglement. Usually, qubits are optimally entangled utilizing a CNOT 
gate and a Hadamard gate. The Hadamard gate transforms the qubit into a superposition while the CNOT gate links 
this qubit to another spin. Lastly, these gates combined produce a powerful quantum entanglement in states which 
leads to improvements in these models' quantum computing power (Wang and Yang, 2020). 
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The Hadamard gate is one of the key components of quantum computers since it converts classical bits having 
values of either zero or one into quantum bits in superposition. It works on a single qubit where it takes a 
yes/might state and places it into an even weighted distribution of both |0⟩ and |1⟩. As a result, in measurement, 
there is a 50% probability that the qubit is in either state. This gate is the building block of many quantum gates 
furthering the efficiency of various quantum algorithms and more so making superpositions. For instance, its use 
is key in the quantum Fourier transform and the Deutsch-Jozsa algorithm. The Hadamard gate is instrumental in 
enhancing the parallel processing capabilities of quantum transfer learning models by placing each qubit into 
superposition (Smith & Doe, 2019). 
 
The RY gate, as its name indicates, performs a rotation of the qubits around the y-axis of the Bloch sphere where 
in this case the angle can be set to any desired value. It has an angle of rotation whose value is adjustable, hence 
this allows continuum deformation in the model by having learnable parameters. The RY gate is critical in quantum 
transfer learning models as it enables the effective adjustment of qubit states and aids the convergence of the 
optimization process. It has similar functions to weight updates as seen in classical ML models. Rotating each qubit 
around the y-axis would help in searching for each individual state in order to enhance the learning capacity of the 
model (Lee & Kim, 2020). 
 
The CNOT gate is one of the simplest quantum gates that helps to create an entanglement between the two qubits. 
In this gate one qubit’s control modifies the other qubit’s state. The dynamics are that if the control qubit is in the 
|1⟩ state, the target qubit’s state will be flipped and if the control qubit is in the |0⟩ state, the target qubit will not 
be affected. Such mechanism allows for the engagement of the two qubits in quantum entanglement a crucial 
aspect of quantum computing where parallel computation that is impossible with classical computers can be 
performed. This feature of quantum systems is very useful for increasing the effectiveness of quantum transfer 
learning models. This increases the processing efficiency of the qubits’ connectivity in multi-qubit systems (Patel 
& Sharma, 2021). 
 
3.2. Quantum Machine Learning 
 
Quantum machine learning is a relatively new field of research which gives considerable hope to overcome the 
weaknesses of classical machine learning systems and to address more computationally intensive tasks. Apart 
from these, quantum support vector machines (QSVM) fall into one of the important applications of quantum 
machine learning. QSVM is the version of the classical Support Vector Machines (SVM) algorithm that has been 
modified for use with quantum computers. In other words, it is an implementation of SVM with the help of 
quantum approaches such as quantum superposition and quantum parallelism. Examples of these datasets include 
those utilized in our earlier work in SVM applications and QSVM outperformed predictions. So working QSVM 
advances research in the field of quantum machine learning which aims at improving classification methods 
(Cross, 2018). 
 
 
 
3.3. Quantum Support Vector Machines 
 
Support Vector Machines (SVM), in short SVM, is a machine learning method that is supervised in nature and is 
used mostly to address the machine learning problems which can be separated linearly. The purpose of the SVM 
‘s is to find a hyperplane that segregates multiple category feature vectors. This hyperplane is the decision border 
that distinguishes the classes with respect to given data. SVM aims towards pushing the boundary to the maximum 
supporting margin where the support vectors are the nearest points to the hyperplane. Based on the kernel used 
by SVM algorithm the objective function is sometimes convex and at times non-convex. In real applications, non-
convex functions lead to dropping down to local solutions where these limits the traditional SVMs optimization 
efficiency, accuracy, and speed. Quantum Support Vector Machines (QSVM) makes use of grovers algorithm as a 
subroutine to make sure that the non-convex cost functions are optimized globally. The quantum SVM algorithm 
can be described as follows (DiVincenzo, 1998): 
 

𝜃𝑇𝑥 −  𝑐 =  ±1. 
 
Here c is constant, x and θ are vectors. It has been anticipated that if θ is optimized, one could rely on the margin 
value whence a correct classification of the data is achieved. Thisintention is formalised by the following 
optimization problem (Noble, 2006) and constraint (Romero et al., 2017): 
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min
𝜃,𝑐

 
1
2 ||𝜃||

2
 

 

yi(θTx(𝑖) −  c) ≥ 1 

 
For the training data where i = {1, ..., M} and y(i) = {-1, 1} he constraint can be incorporated into the objective 
function using Lagrange multipliers α(i) and the optimization problem can be redefined as follows (Khoshaman et 
al., 2018): 
 

min
𝜃,𝑐

max
α(i)≥0

(
1
2 ||𝜃||

2
−  ∑[𝛼(𝑖)(𝜃𝑇𝑥(𝑖) − 𝑐 − 1]

𝑀

𝑖=1

 

 
An important point is that non-zero values of α(i) correspond to the sum of the support vectors x(i). The following 
derivatives are set to zero to maximize the objective function F with respect to α(i) (Cong vd. 2019) 
 

𝜕𝐹

𝜕𝜃(𝑖)
=  𝜃(𝑖) −  𝛼(𝑖)𝑦(𝑖)𝑥(𝑖) =  0 

 

𝜕𝐹

𝜕𝑐
 =  ∑ 𝛼(𝑖)𝑦(𝑖)

𝑀

𝑖=1

=  0 

 
Therefore, the weights are defined as (Kerenidis et al., 2019): 
 

𝜃 =  ∑ 𝛼(𝑖)𝑦(𝑖)𝑥(𝑖)

𝑀

𝑖=1

 

 
The dual problem is expressed as follows (Henderson et al., 2020): 
 

min
𝑎(𝑖)

{
1

2
∑ 𝛼(𝑗)𝑦(𝑖)𝑦(𝑗)(𝑥(𝑖))

𝑇
𝑥(𝑗)

𝑖,𝑗

− ∑ 𝛼(𝑖)

𝑀

𝑖=1

} 

 
Under the assumption α(i) ≥ the following equality holds for the training set where i = 1, ..., M:(Farhi vd. 2014) 
 

∑ 𝛼(𝑖)𝑦(𝑖)

𝑀

𝑖=1

= 0 

 
To introduce non-linear effects into the optimization problem, all kernel functions can be expanded with K(x(i), 
x(j)) replacing the dot product in the dual problem (Schumacher, 1995): 
 

min
𝑎(𝑖)

{
1

2
∑ 𝛼(𝑖)𝛼(𝑗)𝑦(𝑖)𝑦(𝑗)𝐾(𝑥(𝑖), 𝑥(𝑗))

𝑖,𝑗

− ∑ 𝛼(𝑖)

𝑀

𝑖=1

} 

 
The Gaussian kernel function is defined as follows (Berenco et al., 1995): 
 

𝐾(𝑥(𝑖), 𝑥(𝑗)) = exp (−𝛾‖𝑥(𝑖) − 𝑥(𝑗)‖
2
) 

 
This requires additional Euclidean distance calculations. Each step of the algorithm is detailed as follows (Toffoli, 
1980): 
 

1. Assign initial values for each parameter used by the kernel function. 
2. Select an appropriate kernel function for the problem and construct the kernel matrix accordingly. 
3. Decompose the objective function and encode its components into qubits. Binary strings can be used to 

represent classical data (Fredkin & Toffoli, 1982): 
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𝑥 → 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚)𝑇 
 
Where i = 1, ..., m for bi = {0, 1} These binary strings can then be easily transformed into k-qubit quantum states 
(Kockum, 2014): 

|𝑏1, 𝑏2, … , 𝑏𝑚 > 
 
This creates a 2^k-dimensional Hilbert space spanned by {|00...0>, |10...0>, ..., |11...1>} (Rebentrost, 2014). 
 
The quantum minimization program searches the space where the objective function is defined. Grover’s 
algorithm searches through the space of all possible objective function values to find the optimal α(i) values 
corresponding to the solution for 𝜃 and c. First, a quantum circuit representing the objective function, using a 
quantum operator denoted as "O," generates a superposition of all possible inputs. This process allows for the 
global minimum of the SVM optimization problem to be reached. Measuring this subroutine yields the correct 
answer with high probability. Grover’s approach reduces the temporal complexity of the classical algorithm, which 
is O(N) to O(√N) where N is the number of training vectors, enabling the discovery of a global minimum. 
Calculating the kernel matrix is one of the most time-consuming steps in any SVM algorithm, with a computational 
complexity of O(M^2N). Grover’s approach remains subject to the same constraints as the GroverOptim quantum 
subroutine. Due to quantum noise, ideal results may not always be achieved. It is assumed that the objective 
function of the SVM is represented by a quantum circuit as input to the algorithm (Zhu et al.). 
 
3.4. Quantum Classification Models 
 
In this work, a hybrid quantum model was built by interposing quantum gates from the Qiskit library among the 
deep learning layers in pytorch (Qiskit, 2022). 
 
3.4.1. Hybrid Quantum-Classical Learning 
 
The open-source PyTorch library contains numerous modules related to deep learning. In this study, a Hybrid 
Quantum Model is created by incorporating quantum gates from the Qiskit library into the deep learning layers 
within PyTorch. 
 
Figure 1, circuit of hybrid quantum-classical learning model. It consists of ZZFeatureMap for the conversion of 
classical data points to quantum states, and RealAmplitudes as a parametric quantum circuit. While ZZFeatureMap 
provides the basis for quantum operations by encoding the data points into the quantum feature space, the 
RealAmplitudes circuit will optimize the learning process using entanglement and rotation gates. It allows both 
quantum and classical parts to cooperate and enhances performance through this means. This is one of the 
approaches of the hybrid model, where it tries to scale up data processing capabilities through the combined 
workability of classical and quantum methods. (Cerezo et al., 2021). 
 

 
Figure 1. Hybrid quantum-classical learning quantum circuit 

 

To construct a quantum-classical neural network, a hidden quantum layer can be formed within the neural 
network by utilizing a parameterized quantum circuit. As shown in Figure 2, the neural network begins with 
classical neural nodes, and the outputs from these layers are used as inputs for the parameterized quantum circuit. 
The measurement outputs of the quantum circuit are then connected to a classical neural network to form the 
overall neural network structure (Mari et al., 2020). 
 
Here, σ represents a nonlinear activation function. The value of hi represents the output of the i-th neuron in each 
hidden layer. R(hi) refers to the quantum rotational gate applied based on the value of hi. The output produced by 
the hybrid neural network is denoted by y. In the backpropagation algorithm, the parameters of the quantum layer 
are calculated using the function shown in Figure 2 (Garg and Ramakrishnan, 2020). 
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Figure 2. Garg and Ramakrishnan 2020 

 
 

∇𝜃 
𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐶𝑖𝑐𝑢𝑖𝑡 (𝜃) = 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 (𝜃 + 𝑠) − 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 (𝜃 − 𝑠) 

 
In quantum backpropagation, θ represents the parameters of the quantum circuit. The shifts in the 
backpropagation are represented by s. The gradient computation in the quantum circuit is simply calculated using 
the difference between θ + s and θ - s. This function is also known as the parameter-shift rule (Banchi & Crooks, 
2021). In the quantum function within the hidden layer, a simple approach uses a single qubit. To determine the θ 
angle at the output of the circuit, the RY(θ) function shown in Figure 3 is employed (Salinas et al.). 
 

 
Figure 3. Quantum circuit and RY(θ) function (Shepherd 2006) 

 
In the case of the presence of a quantum layer, the classical neural network should satisfy dimensionality 
requirements with the quantum layer. In the given example, since quantum layer comprises one single qubit, the 
connections between the classical neural networks and the quantum layer have to be limited to one dimension 
(Shepherd, 2006). 
 
3.4.2. Quantum Transfer Learning 
 
Quantum transfer learning involves the classical computer basing its computation on ones previously learnt by 
the quantum computer. This makes it possible for classical as well as quantum computers to quickly and accurately 
assimilate information already internalized by classical computers. (Mari et al. 2020) The significance and 
utilization of quantum machine learning algorithms necessitate quantum transfer learning. For instance, because 
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of computers' unique speed advancement when compared to classical computers, there is scope of improving the 
learning of quantum computers through the application of the learned features of classical computers. (Liu et al. 
2021) 
 
Yhis quantum transfer learning technology extends the application of quantum algorithms in an effort to leverage 
classical algorithm's learned datasets. In this manner, the time associated with the algorithms of quantum science 
is curbed while its accuracy and success levels can burgeon. These aspects have led to the prospect of solving 
concrete problems with the help of quantum transfer learning technologies, for instance quantum computers can 
be used to train classical neural networks, so that it would be possible to build quantum neural networks in the 
future. (Mari et al. 2020) 
 
Owing to the feature that quantum computer resources can be expanded, it would also be possible to do machine 
learning applications such as classification or regression on bigger and more complex data. Even classically 
captured images can be recognized with the help of quantum transfer learning together with the application of 
quantum algorithms enhancing classical algorithms towards achieving work such as image, speech, and language 
recognition. (Qi and Tejedor 2022) 
 
Another potential area for utilizing quantum transfer learning is to enable quantum computation techniques, such 
as quantum control or quantum optimization, aided by computational models or data developed using classical 
computation techniques. This will enhance the performance of quantum computers since they will be aided by 
embedded classical computing knowledge. (Mari et al. 2020) 
 
It helps quantum computers increase their learning speed and accuracy towards the models or datasets achieved 
by classical computing. This is the reason why it is possible to deploy quantum computers with great efficiency in 
practical applications even for the tasks that are certainly not permissible or would be extremely hard for 
conventional computers. 
 
In the quantum transfer model, a quantum circuit is implemented on the solution of a general problem obtained 
with classical neural networks in order to address various subproblems of the same type. In most cases, instead of 
training a problem from scratch, a pre-trained network in a similar domain can be used. By replacing the last layers 
of the pre-trained network with quantum layers and optimising them, the solution of a different problem can be 
approached. 
 
In general, the transfer learning process can be described as follows: A' network is obtained by removing the last 
few layers from a trained neural network called A. To this network, an untrained neural network called B is added. 
Using the new data set, the A'+B neural network is retrained and the training process is completed. Figure 4 shows 
four different approaches of the transfer learning process. (PennyLane 2022) 
 
As shown in Figure 5, the Quantum Transfer Learning model has an input layer that starts with Hadamard (H) 
gates that bring quantum bits (qubits) into a superposition state. Then, using RY gates, each qubit is incorporated 
into the learning process with parameterized rotations. In the entanglement layer, CNOT gates increase the 
quantum computing capacity of the model by creating dependencies between qubits. This process is iterated 
throughout the depth of the model and finally, measurement operations are used to analyze the qubit states and 
obtain the results. This structure provides a powerful learning framework by effectively integrating both classical 
and quantum components. 
 
There are four different transfer learning models. Among these, the classical-to-classical transfer method is 
already widely used with existing techniques. In the classical-to-quantum transfer method, features selected by 
leveraging the large-scale data processing advantage of classical models are captured and transferred to quantum 
circuits for faster processing. This study utilizes the classical-to-quantum transfer method. Another approach, the 
quantum-to-classical transfer model, involves feeding output data obtained from a pre-trained quantum network 
as additional input to a new classical neural network. This allows the data to be processed more comprehensively 
(Mishra and Samanta, 2022). 
 
In the final method, the quantum-to-quantum transfer learning approach, the same technique is applied entirely 
within a quantum mechanical framework. In this case, a quantum network is pre-trained for a general task and 
dataset. The final quantum layers from the trained model are removed and replaced with a trainable quantum 
network optimized for a specific problem. Unlike the previous methods, this process is entirely quantum-based 
without intermediate measurements, ensuring that features are transferred in a coherent quantum state and that 
consistent superpositions are maintained. Compared to classical computers, current NISQ (Noisy Intermediate-
Scale Quantum) devices are not only noisy and small but also relatively slow. Training a quantum circuit can take 
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a long time as each optimization step (e.g., calculating the gradient) requires numerous measurements (i.e., 
performing many real quantum experiments). Therefore, approaches like quantum-to-quantum transfer learning, 
which can reduce the overall training time, can be highly beneficial (Mishra and Samanta, 2022). 
 

 
Figure 4. Quatum transfer learning steps (PennyLane 2022) 

 

 
ResNet-50 is a convolutional neural network characterized by its multilayer structure and good performance in 
feature extraction. The Quantum Transfer Learning (QTL) model utilizes the pre-trained layers of ResNet-50 to 
efficiently extract complex features and incorporate them into the quantum learning process. ResNet-50 is a model 
with a high generalization capacity that yields very successful results, especially on simpler datasets such as 
Medical MNIST. Therefore, ResNet-50 was chosen as a core component for the QTL model. This choice also reflects 
the layered structure of ResNet-50 and the potential of the pre-trained network to work harmoniously with 
various quantum gates. 
 
3.5. Vision Transformers 
 
The Vision Transformer (ViT) is a Transformer model designed for computer vision. ViT divides an input image 
into a series of patches (similar to tokens in text), converts each patch into a vector, and maps them to a lower-
dimensional representation using a single matrix multiplication. These vector representations are processed by a 
Transformer encoder, similar to token representations (Dosovitskiy et al., 2021). ViT has been used in various 
computer vision applications such as image recognition, image segmentation, and autonomous driving (Khan et 
al., 2022). 
 
ViTs emerged from pioneering efforts to apply Transformer-like architectures in computer vision (CV), inspired 
by the success of Transformers in natural language processing (NLP). These models have proven effective across 
three key CV tasks (classification, object detection, and segmentation) and with various sensory data types 
(images, point clouds, and visual-linguistic data). Because of the robust modeling hands-on experience, ViTs have 
been able to significantly outbeat the performance metrics of several modern convolutional neural networks (Han 
et al., 2022) 

 
Figure 5. Quantum transfer learning entanglement circuit 
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3.5.1. Basic Operation Steps of Vision Transformers 
 
The image deploys an image patch of size P x P and descends towards enabling the image size to be H x W offering 
a total of (HW) / (PP). Each P patch is flattened into a vector of size D. Each P P C patch is linearized into D via a 
linear transformation i.e. fully connected layers. Each patch vector is then augmented with a D-dimensional 
encoding vector which represents the position of the respective patch thereby assisting the model on the ordering 
of the patches. The embedded vectors are progressively processed through layers of Transformer blocks, which 
consist of multi-head self-attention and feedforward networks. Inputting the output from the last Transformer 
block into the classification layer helps the system to predict the class of the image i.e. (Steiner et al. 2021). Figure 
6 shows a simple vision transformer model graph. This is due to the fact that Vision Transformers (ViT) possess 
highly efficient abilities in visual feature extraction. The absence of local bias in the image helps to Mness on Peters 
architecture as it is imaging image thermal management systems imaging heat processes more efficiently within 
the framework of ViTs. medial cortical The broader context imagery comprehension processes and performance 
degradation in the more complex visual tasks. 
 

 
Figure 6. Vision transformer model (Dosovitskiy 2020) 

 

3.5.2. Using Vision Transformers with Different Models 
 
Vision Transformers (ViT) shows great means of handling image feature extraction. The way images are presented 
is changing as ViTs improve the way of extracting global features of the images by employing a Transformer 
structure which, and replaces conventional convolutional neural networks (CNNs). This is vital in the 
comprehension of the larger aspects of images and helps in performing more difficult image-related activities. 
ViTs split an image into several fixed-size patches and assign a vector to each patch. These vectors are fed into 
Transformer blocks and thus the model is able to learn the local and the global features. This way, ViTs possess 
the ability to retrieve high-level targeted features from the visual images. These features are applicable for the 
performance of different visual tasks like image classification, object detection, and segmentation which makes 
ViTs an effective component in Image analysis and computer vision Carion et al., 2020). 
 
3.5.3. Combination of Vision Transformer and Quantum Models 
 
In the case of working with images, where the ViTs are used to extract features, Quantum Transfer Learning can 
apply these features to construct quantum states and processes. Let this be the first step. ViT will take the image 
and cut it into smaller fixed-size images and Patches will be transformed into vectors. These vectors are then 
advanced forward through the Transformer blocks and the model now learns the local and global features. These 
features are then used to feed into the Quantum Transfer Learning model by Liu et al., 2021.Related Work and 
Technology. 
 
In the Quantum Transfer Learning model, Hadamard gates are applied to every qubit with the H_layer function. 
After this, the function RY_layer is used for parameterized rotations on every qubit, which are dependent on the 
features extracted by ViT. The next step is a succession of trainable variational layers. In each layer, the function 
entangling_layer is first used to implement CNOT gates, followed by the use of the function RY_layer, which totally 
changes the picture, depending on model parameters. 
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The last step is the calculation of the expected values for a Z-Basis for every qubit of which qubits are the output. 
These are the final outputs of the Quantum Transfer Learning model, which are passed through a classification 
layer, where the class of the image is determined based on the outputs (Liu et al, 2021). 
 
This method enables the involvement of the efficient feature extraction provided by ViT in the modelling of 
complex quantum features with the aid of quantum transfer learning. It can be beneficial in the performance of 
more advanced quantum tasks. Nonetheless, more work is needed since many questions still remain unsolved in 
this scope. 
 
The CaiT model, with its Transformer-based architecture, is a particularly prominent approach for effectively 
extracting both local and global features. When combined with QTL, CaiT increases the capacity to extract 
meaningful information from multidimensional and complex visual datasets. This model has been particularly 
favored for more complex datasets such as Dogs & Cats. CaiT's ability to operate with low local bias is an important 
contribution to quantum transfer learning models. This choice is based on the potential of CaiT's feature extraction 
capabilities to create ideal inputs for quantum computations. 
 
In this respect, therefore, the current state-of-the-art in quantum machine learning is beset by several major 
challenges, not least of which concern NISQ devices. Such devices are characterized by small numbers of qubits, 
high levels of noise, and shallow circuit depths—all factors that severely limit their complex computational 
capability. Equally, many quantum models prove incapable of outperforming their classical versions due to 
hardware constraints; that limits any effort to isolate what is peculiarly advantageous in the quantum processing. 
These constraints notwithstanding, hybrid quantum-classical approaches have already become an auspicious 
avenue through which one can try to exploit the strengths of the two paradigms while mitigating their respective 
individual limitations. (Benedetti et al., 2019). 
 
Given these challenges, this work leverages a hybrid quantum-classical framework wherein the classical part does 
the heavy lifting, including most of the computations that are required in feature extraction and early processing. 
The models of ResNet-50 and CaiT can be used because they have great strength in the derivation of meaningful 
features, especially from simpler datasets such as Dogs & Cats and Medical MNIST. These datasets provide an 
accessible starting point to evaluate hybrid quantum-classical models under manageable conditions (LeCun et al., 
1998). 
 
However, the quantum part is not strong enough to replace the classical one. Instead, it can only act like a 
complementary feature that introduces special operations native to quantum systems, such as entanglement and 
superposition, which help improve the learning process by projecting classical features into higher-dimensional 
feature spaces. This enables the hybrid model to learn nonlinear relationships present in the data that might not 
have been captured by purely classical models. These various performance improvements illustrate that even for 
NISQ devices—small number of qubits, high levels of noise, shallow circuit depths—quantum processing adds 
value to a classical learning framework (Cerezo et al., 2021). 
 
Also, the comparative results suggested that the hybrid model outperforms the classical pure systems, thus 
suggesting that the contribution coming from the quantum part is supplementary but brings meaningful 
advantages regarding image classification tasks. To conclude, these constitute a potential number of quantum 
processing as an enhancement, especially in hybrid systems where the foundation is in classical processing and 
quantum operations open up new dimensions for feature learning. (Schuld et al., 2019) 
 
 
3.6. Limitations of NISQ Devices and Their Impact on Experimental Results 
 
Operations of NISQ devices consist of quantum rounds, and owing to the finite qubit capacity of these devices 
available, there will be errors in the computation steps. The levels of noise and numerical error rates can also 
hinder the effective functioning of quantum circuits and as a result, the performance of the model erodes over 
time. This problem aggravates in the models who are basing their working with deep quantum circuits, narrowing 
down the generalization ability of the model. (Preskill 2018) 
 
Scaling complex models becomes difficult on such devices due to the limited number of qubits. Execution of 
quantum algorithms that necessitate a deeper circuit, or rely on an adequate number of qubits are put on halt and 
also numerous errors gets accumulated on this systems. Therefore these hybrid classical-quantum models should 
be built for less complicated problems. (Bharti et al. 2022) 
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When it comes to the processes of optimization of quantum algorithms, it is more difficult than classical algorithms. 
In particular for hybrid models, there exist progressive associated with time, noiseless computations of the 
quantum circuits optimization parameters. This happens and makes the quantum modeling for tough tasks 
developed a bit unreasonable and makes them operational without the NISQ device’s restrictions. (Cerezo et al. 
2021) 
 
Performing quantum circuits on these systems requires a lot of time. This is because of the requirement to take 
several measurements as a single step, which makes the optimization processes to take longer in duration thus 
elongating the training period and adversely affecting the reproducibility and precision in conducting the 
experiments. (McClean et al. 2020) 
 
NISQ devices presently have some considerable drawbacks, even as they promise a great deal for quantum 
computing. Whereas they are good at demonstrating exponential computational capabilities because of quantum 
properties such as entanglement and superposition, they do this at low precision because of the high noise figure 
and lack of error correction mechanisms on their circuits. Current NISQ devices are usually limited by small 
numbers of qubits, which in turn reduce the possibility for more complex and deep circuits. This typically comes 
in the form of cloud access, and users also have access for fixed numbers of hours. The multiple limitations of NISQ 
because the testing of hybrid quantum models by Buscemi et al. are done in a simulated environment. The good 
agreements found in the results clearly show that at lower noise levels with more qubits, real NISQ devices hold 
better potential in the long term. 
 
3.7. Dataset 
 
The classification datasets were obtained from Kaggle site and were further explored. The first one, Medical 
MNIST, is made up of 64x64 pixel images depicting X-ray abdominal, hand, chest, head and spine images. This 
consists of 10,000 images for each class making a total of 50,000 images in all. The medical MNIST data set includes 
imaging information from the patient’s medical records and the hospital’s reports (Kaggle, 2017). The second 
dataset is the one titled ‘Dogs & Cats’ which consists of around 30000 of cat and dog images with resolution 512 x 
512 pixels (Kaggle 2018). 
 
4. Findings 
 
In this section, the results of three different models are compared and explained. 
 
4.1. Training and Test Accuracy Rates 
 
In all the models in this work, the Adam optimization algorithm is employed due to its power of achieving fast 
convergence by adaptively changing the learning rate. Cross-entropy loss is used herein since it minimizes 
classification errors and is one of the most used losses in any machine learning task. ResNet-50 and CaiT were 
fine-tuned using their default parameters. While the pre-trained features were utilized in the quantum framework 
of the hybrid quantum model, the full development of quantum-specific operations such as entanglement and 
superposition were further used in this model to enhance its learning process. The best performance, when QTL 
with ResNet-50 is applied to the Dogs & Cats dataset, can hence be attributed to contributions from classical pre-
training and quantum processing. Importantly, the quantum part introduces special types of transformations in 
the feature space that are altogether beyond the reach of classical methods of optimization. 
 
The accuracy values corresponding to the model and application for the training and test sets are presented in 
Table 1. In the Quantum Transfer Learning (QTL) model, it was observed that the highest accuracy was achieved 
by the ResNet-50 pre-trained model during the validation and testing phases. Models pre-trained with CaiT 
demonstrated optimal performance in the first or second epoch, whereas the ResNet-50 pre-trained model 
exhibited superior performance in the ninth or tenth epoch. The Qiskit Hybrid Model, given its status as a quantum 
machine learning model, demonstrated superior performance on relatively simple datasets such as MNIST. The 
QTL model demonstrated superior performance on the "Dogs & Cats" dataset relative to the MNIST dataset, 
reflecting its capacity to utilise more sophisticated quantum gates. In contrast, the models based on CaiT exhibited 
the poorest validation and testing efficiency. 
 
Results of 94.45% training and 95.5% testing accuracy were achieved on the Qiskit Hybrid Model when combined 
with CNN feature extraction and Dogs & Cats dataset. The Medical MNIST dataset however saw the training and 
testing accuracy rise to 99.79% and 99.97% respectively. This sheds light on an additional factor regarding the 
Medical MNIST being an easier dataset, since the model obtains 99.97% test accuracy, at the 8th epoch. With 
respect to the “Dogs & Cats” dataset, the accuracy of the model was 68.78% at the 10th epoch after which further 
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improvement was expected to be achieved. This means that, possibly, the model can produce better outcomes 
given the opportunity to extensively train on that dataset. 

 
Table 1. Accuracy values of Qiskit hybrid and QTL models 

Model Feature Extraction Data Set Train Acc % Test Acc % 

Qiskit Hybrid CNN Cats & Dogs 94.45 95.5 

Qiskit Hybrid CNN Medical Mnist 99.79 99.97 

Qiskit Hybrid CaiT Cats & Dogs 69.6 68.79 

Qiskit Hybrid CaiT Medical Mnist 99.68 99.75 

QTL 
ResNet 

(Pre-Trained) 
Cats & Dogs 97.38 98.62 

QTL 
ResNet 

(Pre-Trained) 
Medical Mnist 99.68 99.97 

QTL CaiT (Pre-Trained) Cats & Dogs 97.75 98.98 

QTL CaiT (Pre-Trained) Medical Mnist 97.13 98.05 

 
Similarly, the QTL model yielded satisfactory accuracy scores when feature extraction techniques were employed 
with ResNet and CaiT models. This explains the improvement in performance of the models since they were used 
in pre-trained models. Even so, it was noted that the feature extraction technique of the ResNet(pre trained) gave 
better results than that of the CaiT (pre trained). This is likely since the ResNet model has a more elaborate general 
structure leading to more features being recognized. 
 
4.2. Test Metric Values 
 
In this work, accuracy, F1 and F2 scores, Matthews Correlation Coefficient, and sensitivity/specificity metrics were 
chosen. These metrics here have been selected as giving a comparison that is complete on the performances of 
both the classical and quantum models. For example, F1 and F2 scores give sensitivity about models in cases where 
data are imbalanced. Similarly, the Matthews correlation coefficient gives a balanced measure that takes into 
account correct and incorrect classifications equally. Sensitivity and specificity are useful for comparing 
performances across the positive class and the negative class. The fact that it may be so informative, may be 
because entanglement and superposition-easily seen as unique properties of quantum models-are effective in data 
classification tasks. 
 
Tables 2 and 3 present the summary of the various metrics that are used to evaluate the different implemented 
models of artificial intelligence and the performance of the models in the assessment of various features and 
performance aspects. These metrics serve the purpose of measuring the efficiency of a model, however, bridging 
the gap of why a model is able to perform well or poorly in most cases is attributed to elements like the type of 
model, its training, and the type of data used. On the other hand, when CaiT feature extraction was performed and 
training done on” Dogs & Cats” dataset, the F1, F2, and Fβ scores for Qiskit Hybrid Model were 0.684. While it looks 
at this point that performance appears to be poor, the situation is more intricate. Again this may be attributed to 
the fact that no pre-training was done thus it is likely that the CaiT model requires more epochs for training to 
acquire the relevant features so as to mask the results. 

Table 2. Metric values of the Qiskit hybrid model 

Model 
Qiskit 

Hybrid 
Qiskit 

Hybrid 
Qiskit 

Hybrid 
Qiskit 

Hybrid 
Feature 

Extraction 
CNN CNN CaiT Cait 

Data Set Cats & Dogs 
Medical 

Mnist 
Cats & Dogs 

Medical 
Mnist 

F1 Score 0.955 0.988875 0.684 0.999 

F2 Score 0.955 0.988875 0.684 0.999 

Fß Score 0.91 0.9775 0.385 0.998 

Accuarcy 0.95 0.99 0.68 1.0 

Specifity 0.955 0.99 0.69 1.0 

Matthew’s 
Sensivity 

0.955 0.993 0.7992 0.9985 

Macro Avg 0.95 0.99 0.68 1.0 

Weighted 
Avg 

0.95 0.99 0.68 1.0 



KATİ et al. 10.21923/jesd.1553326 

 

104 
 

Table 3. Metric values of the QTL model 

Model QTL QTL QTL QTL 

Feature 
Extraction 

ResNet 
Pre-Trained 

ResNet 
Pre-Trained 

CaiT 
Pre-Trained 

CaiT 
Pre-Trained 

Data Set Cats & Dogs Medical Mnist Cats & Dogs Medical Mnist 

F1 Score 0.986 0.9997 0.9898 0.9997 

F2 Score 0.986 0.9997 0.9898 0.9997 

Fß Score 0.972 0.9995 0.9796 0.9995 

Accuarcy 0.99 1.0 0.99 1.0 

Specifity 0.99 1.0 0.99 1.0 

Matthew’s 
Sensivity 

0.9828 0.99975 09912 0.9995 

Macro Avg 0.99 1.0 0.99 1.0 

Weighted 
Avg 

0.99 1.0 0.99 1.0 

 
The same parameters as for the above experiment for F1, F2 and Fβ scores were conducted using Qiskit Hybrid 
Model with CNN feature extraction and “Dogs & Cats” dataset and scores of 0.955 were found. This implies that 
this model was able to perform very well for the task in hand. But then when the same model was employed with 
CaiT feature extraction and tested on the same “Dogs & Cats” dataset, the F1, F2 and Fβ values obtained were 0.684 
which indicated a drop in performance. 
 
This performance difference may arise from the difference in the feature extraction techniques applied. CNNs are 
more effective in image classification, however, in this case, CaiT may not be the best approach for the task. This 
could be cleavage that CaiT has a greater structural complexity and therefore likely to give better results on more 
complicated datasets. 
 
Nonetheless, when the QTL model was integrated with ResNet-50 (pretrained) feature extraction and employed 
on the ‘Dogs & Cats’ dataset, the F1, F2, and Fβ scores were all 0.986 conveying that good performance was quality 
gained. It is likely that the good performance of this model can be attributed to the use of the pre-trained ResNet-
50 model and the QTL model which is appropriate for this sort of task. 
 
5. Result and Discussion 
 
It is apparent from the above sentence that model performance is related to a number of aspects such as the 
method used for feature extraction, the structure of the model utilized as well as the dataset adopted for model 
training. Each of these factors can affect the outcomes of the model in a substantial way. It therefore follows that 
any of these factors has to be analyzed to understand why a particular model works smoothly while another model 
does not. This may help pinpoint what should be made better in order to improve the efficiency of the model. For 
example, after extending the training time or changing hyperparameters such a model could demonstrate better 
performance and therefore promote achieving more precise and better results. 
 
Table 4 contains the best four model results, which embody the outcome from different models and feature 
extraction techniques on particular datasets. It should be noted that CaiT and QTL models scored very high marks, 
in line with expectations. ResNet Pre-Trained, CaiT Pre-Trained feature extraction methods reached nearly perfect 
F1 and F2 scores of 0.9997 and 0.9997 respectively with the QTL model. Similar to the above, Qiskit Hybrid model 
reached very high F1 and F2 scores of 0.999 with CaiT feature extraction. The QTL model granted nearly the same 
F1 and F2 scores of 0.9898, but this time on the Cats & Dogs dataset, and used CaiT for feature extraction. 
 
The performance of the models, particularly the CaiT and QTL models, is worth mentioning since they seem to 
maintain high levels of performance irrespective of datasets used. There is synergy in combining the ability of CaiT 
to extract features and the QTL model which learns. The QTL model consistently succeeding on a variety of feature 
extraction methods signifies the best model generalization power. Increasing the dimensions of the simplistically 
represented data using the convolution based feature extraction improves the performance of the QTL model. The 
above results demonstrate the feasibility of applying the two approaches in different applications. 
 
The ResNet-50 and CaiT models used in this study exhibited unique capabilities in terms of feature extraction and 
contributed significantly to the success of the hybrid quantum model. While ResNet-50 provides effective 
extraction of local and global features with its convolution-based architecture, the CaiT model takes a broader 
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view of the data with its attention-based structure. The performance of the hybrid quantum models was evaluated 
in a high RAM simulation environment on Google Colab. The simulator used in this study mimics the functionality 
of NISQ devices. The successful results obtained in the simulation environment indicate that real NISQ devices can 
perform much better. Therefore, this study highlights the potential of hybrid quantum models and demonstrates 
that NISQ devices can take this potential to even higher levels. 
 
Taking all things into account it can be observed that there can be great benefits if both CaiT and QTL models are 
used together, especially in cases which require high precision. Future work could focus on improving this synergy 
through hyperparameter optimization and training duration. Also, over wider experiments, a attempt may be 
made to figure out whether the same progress can be made with other datasets. 
 

Table 4. Four best performing models 

Model QTL QTL Qiskit Hybrid QTL 

Feature 
Extraction 

ResNet 
Pre-Trained 

CaiT 
Pre-Trained 

CaiT 
 

CaiT 
 

Data Set Medical Mnist Medical Mnist Medical Mnist Cats & Dogs 

F1 Score 0.9997 0.9997 0.999 0.9898 

F2 Score 0.9997 0.9997 0.999 0.9898 

Fß Score 0.9995 0.9995 0.998 0.9796 

Accuarcy 1.0 1.0 1.0 0.99 

Specifity 1.0 1.0 1.0 0.99 

Matthew’s 
Sensivity 

0.9997 0.9995 0.9985 0.9912 

Macro Avg 1.0 1.0 1.0 0.99 

Weighted 
Avg 

1.0 1.0 1.0 0.99 
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