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Abstract— The increasing importance of Android devices in our lives brings with it the need to secure personal 

information stored on these devices, such as contact details, documents, location data, and browser data. These devices 

are often targeted by attacks and malware designed to steal this data. In response, this work takes a novel approach to 

Android malware detection by integrating deep learning with traditional machine learning algorithms. An extensive 

experimental study was conducted using the DroidCollector network traffic analysis dataset. Eight different deep learning 

methods are analysed for malware classification. In the first phase, experiments were conducted on both original and 

stabilised datasets and the most effective methods were identified. In the second phase, the best performing deep learning 

methods were combined with XGBoost for classification. This hybrid approach increased classification success by 3-4%. 

The highest F1 and accuracy values obtained after 150 epochs of training with BiLSTM+XGBoost were 95.12% and 

99.33% respectively. These results highlight the superiority of combining deep learning and traditional machine learning 

techniques over individual models and significantly improve classification accuracy. This integrated method provides a 

very important strategy for developing high-performance models for various applications.  
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Gelişmiş Android Kötü Amaçlı Yazılım Tespiti: Derin 

Öğrenme ve XGBoost Tekniklerinin Birleştirilmesi 
 

Özet— Android cihazların hayatımızdaki artan önemi, bu cihazlarda depolanan kişisel bilgileri (iletişim bilgileri, belgeler, 

konum verileri ve tarayıcı verileri gibi) güvence altına alma ihtiyacını beraberinde getirir. Bu cihazlar genellikle bu 

verileri çalmak için tasarlanmış saldırılar ve kötü amaçlı yazılımların hedefi olur. Bu duruma önlem olarak, bu çalışma 

derin öğrenmeyi geleneksel makine öğrenimi algoritmalarıyla entegre ederek Android kötü amaçlı yazılım tespitine yeni 

bir yaklaşım sunmaktadır. DroidCollector ağ trafiği analizi veri kümesi kullanılarak kapsamlı bir deneysel çalışma 

yürütülmüştür. Kötü amaçlı yazılım sınıflandırması için sekiz farklı derin öğrenme yöntemi analiz edilmiştir. İlk aşamada, 

hem orijinal hem de önişlemden geçirilmiş (SMOTE, SMOTETomek, ClusterCentroids) veri kümeleri üzerinde deneyler 

yürütülmüş ve en etkili yöntemler belirlenmiştir. İkinci aşamada, en iyi performans gösteren derin öğrenme yöntemleri 

sınıflandırma için XGBoost ile birleştirilmiştir. Bu hibrit yaklaşım, sınıflandırma başarısını %3-4 oranında artırmıştır. 

BiLSTM + XGBoost modelinin 150 epoch ile eğitilmesiyle elde edilen en yüksek F1-score ve doğruluk değerleri sırasıyla 

%95,12 ve %99,33 olmuştur. Bu sonuçlar, derin öğrenme ve geleneksel makine öğrenimi tekniklerinin bireysel modellere 

göre birleştirilmesinin üstünlüğünü vurgular ve sınıflandırma doğruluğunu önemli ölçüde iyileştirir. Bu hibrit yöntem, 

çeşitli uygulamalar için yüksek performanslı modeller geliştirmek amacıyla önemli bir strateji sunmaktadır. 
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1. INTRODUCTION   

In today's digital landscape, mobile devices, especially 

smartphones and tablets based on the Android operating 

system, have become seamlessly integrated into our daily 

lives. They serve as versatile tools for communication, 

entertainment, business, and managing daily activities. 

However, this ubiquitous reliance on mobile devices also 

presents a significant challenge: the ever-present risk of 

security vulnerabilities and malicious software threats [1]. 

Indeed, the central role of Android devices in our daily 

lives is underlined by the vast trove of data they hold. From 

cherished personal photos to vital contact details, from 

sensitive financial records to indispensable calendar 

entries, these devices store a wealth of intimate and 

confidential information. Through sophisticated 

application and service integration, Android devices have 

become central tools for organizing and customizing users' 

lives. However, this wealth of data also presents significant 

security risks. The sensitive information stored on Android 

devices is a prime target for cybercriminals and malware. 

Unauthorized access to this data can have dire 

consequences, including financial loss, identity theft, and 

other serious disruptions. As a result, ensuring the security 

of Android devices is not only important but essential for 

user protection and peace of mind [2]. 

The Android ecosystem offers a wide range of applications 

and customization possibilities, but it also presents 

significant security vulnerabilities that malicious software 

can exploit to infiltrate devices. These vulnerabilities can 

pose serious threats to individual users, as well as 

companies and organizations [3]. To detect such threats, 

various analysis methods are employed in malware 

detection, which can be broadly classified as static, 

dynamic, and hybrid analysis approaches. Static analysis 

involves examining the file structure or code patterns of 

malware without executing it, making it fast and efficient 

but often ineffective against malware with advanced 

encryption and compression techniques. On the other hand, 

dynamic analysis examines the behavior of malware by 

running it in a controlled environment, which is more 

effective for detecting advanced threats but requires more 

resources. Hybrid analysis aims to overcome the 

limitations of both static and dynamic methods by 

combining the strengths of each, providing a more 

comprehensive and powerful solution for detecting 

complex malware. This hybrid approach ensures a more 

accurate assessment of potential threats, which is crucial in 

securing the Android ecosystem from malicious attacks.  

The use of advanced technologies such as deep learning 

offers a promising solution to detect malware on Android 

devices. This paper scrutinizes novel methodologies aimed 

at enhancing the security of Android devices, with a 

particular emphasis on research integrating deep learning 

and machine learning techniques. To the best of our 

knowledge, the proposed approach represents an 

unprecedented endeavor within the literature, promising 

innovative strides toward fortifying Android device 

security. 

1.1.Motivation 

The open source architecture of Android devices makes it 

easier for attackers to analyze and target these devices. 

Moreover, the diversity of devices in the Android 

ecosystem and the irregularity in update processes make it 

difficult to patch vulnerabilities quickly. For these reasons, 

effective and rapid detection of malware on Android 

devices has become a critical requirement for user security. 

In the face of increasingly sophisticated malware attacks, 

traditional security methods are insufficient. In the 

literature, machine learning and deep learning methods 

have been successfully applied for Android malware 

detection, but the hybrid combination of these two 

techniques and the integrated utilization of their 

advantages is very limited. This study aims to investigate 

how the hybrid use of machine learning and deep learning 

methods can improve classification success by examining 

the effects of unbalanced data distribution on malware 

detection on Android devices. 

1.2.Novelties and Contributions 

In this work, the impact of balanced data distribution and 

the hybrid use of deep learning and machine learning 

(XGBoost) algorithms is studied to enhance accurate 

classification performance within the critical security 

domain of malware detection on Android systems. Android 

devices, due to their large user base and open-source 

nature, have become prime targets for malware attacks, 

making the accurate detection of these threats essential. 

Although various machine learning and deep learning 

techniques have been proposed in the literature for Android 

malware classification, the combined strengths of both 

methods remain underexplored. Deep learning models 

demonstrate superior performance in extracting 

discriminative features from high-dimensional and 

complex data structures, while the XGBoost algorithm 

achieves high accuracy in tree-based ensemble methods 

(boosting) due to its advanced optimization, regularization, 

and parallel processing capabilities. Through this hybrid 

approach, the study seeks to combine the adaptability of 

deep learning with the robust classification ability of 

XGBoost to reveal its impact on classification 

performance.The contributions of the study are listed 

below: 

1-Elimination of Imbalanced Data Distribution: In 

malware classification processes, the number of data 

mislabeled as harmless (False Positive) is critical, as this 

can allow malware to infiltrate the system. In order to avoid 

such security risks, the data set should have a balanced 

distribution. In this study, to investigate the impact of 

balanced data distribution on classification performance, 

"imbalanced data sampling" methods are applied, enabling 

a comparative analysis of performance differences 

between balanced and imbalanced data distributions. 

2-Hybrid Use of Deep Learning and Machine Learning 

Methods: The hybrid use of deep learning and machine 
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learning (XGBoost) methods is crucial for complex 

problems such as malware classification. While deep 

learning models exhibit strong performance in learning 

complex patterns and extracting discriminative features in 

high-dimensional data, the XGBoost algorithm provides 

more accurate classification results thanks to its 

regularization, error rate optimization and parallel 

processing capabilities. In this study, the potential for 

improving classification performance is analyzed by 

combining the strengths of both methods, demonstrating 

the hybrid approach’s ability to deliver both flexibility and 

accuracy. 

2. RELATED WORKS 

 Research in the field of Android malware detection has 

witnessed notable progress, as scholars have delved into a 

range of machine learning and deep learning 

methodologies to enhance detection accuracy. In this 

section, notable studies are reviewed, contributing to the 

comprehension and advancement of efficient malware 

detection systems. 

2.1. Deep Learning Studies  

Given the rise in malware targeting Android systems, 

recent research has increasingly focused on deep learning 

approaches to enhance detection accuracy. This section 

reviews notable studies that leverage deep learning 

architectures for malware detection, highlighting their 

methodologies and performance outcomes in comparison 

to traditional techniques.  

Elayan and Mustafa conducted a study introducing a Gated 

Recurrent Unit (GRU)-based Recurrent Neural Network 

(RNN) as an innovative approach for detecting malware on 

the Android operating system. Trained using static features 

extracted from Android applications, such as API calls and 

permissions, their model demonstrated significantly higher 

performance than traditional methods, achieving an 

accuracy rate of 98.2% on the CICAndMal2017 dataset. 

[4]. In the work of Bakour and Ünver [5], a hybrid model 

called DeepVisDroid was proposed for Android malware 

detection, combining deep learning techniques with image-

based features. This model transforms the source code of 

Android applications into four different grayscale image 

datasets, from which local and global features are extracted 

and analyzed. The proposed DeepVisDroid model 

achieved high success, reaching an accuracy of 98.96%. 

Yadav et al. presented an approach that utilizes images 

derived from bytecode files for malware detection and 

proposed an EfficientNet-B4 CNN based model. The 

EfficientNet-B4 architecture was chosen as the feature 

extractor for this process and worked with 226x226 

images. In the study, 5986 samples were collected, 

converted to color images, and mapped to binary files. 

These images derived from Android bytecode 

representations were evaluated with their proposed model. 

They showed that their method was effective by achieving 

95.7% accuracy [6]. Yumlembam et al. investigated the 

effectiveness of graph neural networks in detecting attacks. 

In the study, unique global descriptors were created using 

local and global graphs obtained from API features. The 

importance weight of each feature was calculated using 

linear regression, and graph embedding and model training 

were performed using graph neural networks. The 

experiments were conducted on two datasets, one with 

15,848 and the other with 56,461 samples. In this study, the 

proposed model was evaluated in terms of accuracy, 

precision, recall and F-score, and successful results up to 

99.18% were obtained. In addition, a hostile malware 

generation model called VGAE-MalGAN was developed 

and 98.43% accuracy was achieved with this model [7]. 

Furthermore, In their study, Bakır and Bakır [3] 

emphasized the importance of feature extraction methods 

for malware detection in Android systems. Therefore, they 

proposed a new feature extraction method, autoencoder- 

based DroidEncoder. In the study, an image-based dataset 

was created from Drebin and Malgenome datasets and 

studies were carried out using this dataset. The authors 

proposed three different autoencoders based on ANN, 

CNN and VGG19. At the end of the study, it was observed 

that the proposed method gave successful results in terms 

of different metrics. Mohammed et al. investigated deep 

learning techniques for Android application categorization. 

In this context, they proposed a deep belief neural network 

(DBN)-based application categorization method. Using the 

CIC-AAGM2017 dataset of 1900 instances, the proposed 

model was compared with four traditional feed-forward 

neural networks and seven machine learning models. The 

results show that the DBN-based model is effective in 

classifying Android apps as benign or malicious with 

98.7% accuracy [8]. Moreover, Tang et al. in their [9] 

research study propose a new classification method for 

detecting Android malware by addressing the weaknesses 

of traditional static analysis methods. The proposed 

method utilized a deep neural network that combines 

hashed bytecode image and attention mechanism. The 

method (ResNet-CBAM) processes the bytecode sequence 

of executable files into grayscale and Markov images and 

fuses these features to generate a feature space that can 

characterize Android malware. Experiments showed that 

the proposed ResNet-CBAM method can effectively 

represent bytecode sequence files, extract, and classify 

features. Based on the mixed image features, the malware 

detection accuracy reaches 98.67% and outperforms other 

similar methods [9]. Fu et al. stated that traditional methods 

cannot detect malware accurately and effectively due to 

their limitations. Therefore, they proposed a hybrid 

approach that combines multi-scale convolutional neural 

network (MSCNN) and ResNet networks. The approach 

was able to detect Android malware with high accuracy 

and precision by creating an advanced feature extraction 

network with MSCNN and a detection network with 

ResNet. At the end of the study, the authors confirmed that 

the results of the experiments show that the use of MSCNN 

as a multilevel feature extraction network significantly 

improves the performance of the hybrid models [10]. Liu 

et al. pointed out that semantic behavior feature extraction 

is critical for training a robust malware detection model. 

Therefore, they proposed SeGDroid, a novel Android 

malware detection method that focuses on learning 
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semantic information from sensitive function call graphs 

(FCGs). SeGDroid preserves sensitive API call context and 

removes irrelevant FCG nodes using graph pruning 

methods. Attributes of graph nodes are extracted by 

proposing a node representation method based on 

word2vec and social network-based centrality. This 

representation aimed to extract semantic information and 

graph structure of function calls. Experimental results 

showed that SeGDroid achieved 98.37% accuracy in the 

case of malware detection on the CICMal2020 dataset [11]. 

2.2. Machine Learning Studies  

In recent years, machine learning  (ML) techniques have 

played a crucial role in Android malware detection, 

offering effective solutions through algorithms capable of 

identifying patterns and anomalies in application behavior. 

This section explores key studies that apply machine 

learning models to classify malware, highlighting 

approaches such as decision trees, support vector 

machines, and ensemble methods. These studies 

underscore the adaptability and efficiency of machine 

learning in tackling the challenges posed by Android 

malware, setting a foundation for further advancements 

and hybrid approaches in the field. 

For instance, Raman et al., in their work, proposed an ML-

based method for detecting Android malware. The 

proposed method is optimized to detect Android malware 

with a KNN classification system using data stream-based 

API calls. Based on 1,050 malicious materials and 1,160 

benign samples, the study [12] showed that the dataflow-

based API-level features are successful (97.66%) in 

effectively detecting Android malware [12]. Similarily, 

Alani and Awad presented an ML-based system called 

AdStop for detecting Android adware by analyzing 

features in network traffic flow. While developing AdStop, 

they targeted design features such as high accuracy, speed, 

and generalizability. To improve the accuracy of adware 

detection and reduce the time burden, a feature reduction 

phase was applied, thus reducing the number of features 

used from 79 to 13. In the experiments, AdStop was found 

to be successful with 98.02% accuracy, 2% false positive 

rate, and 1.9% false negative rate [13]. In their study, 

Duran and Bakir [14] used machine learning algorithms for 

static analysis-based malicious application detection for 

the Android operating system. The imbalance of the class 

distribution in the dataset was eliminated by generating 

artificial data with the SMOTE algorithm. They also 

performed hyperparameter optimization to increase the 

accuracy of machine learning algorithms. This 

optimization determined the most appropriate 

hyperparameters with the Grid Search method. With the 

increasing threat of Android malware, it has become 

important to develop effective detection techniques. In the 

[15] study, the performance of various machine learning 

algorithms was evaluated. The study reveals that the 

LightGBM algorithm has the highest accuracy (91%), 

precision (89%), and F1 score (89%) for Android malware 

detection. Evaluations on a 5-class dataset containing both 

benign and malicious applications suggest that these 

findings can contribute to the development of effective 

Android malware detection systems. In another study [16], 

AlOmari et al. addressed the challenges faced by 

cybersecurity researchers focusing on developing new 

detection systems with the rapid increase in Android 

mobile malware threats. They examined the performance 

of various machine learning algorithms and then focused 

on achieving maximum accuracy by normalizing 

numerical features with the Synthetic Minority 

Oversampling Technique (SMOTE). 11,598 APKs were 

used on a large dataset and the highest accuracy value was 

95.49% with the light gradient boosting model. 

Furthermore, In order to secure Android mobile 

applications used in industrial platforms and smart cities, 

the authors of [17] present a machine learning-based 

approach called as the Hybrid Multimodal Machine 

Learning-Driven Android Malware Recognition and 

Classification (HM3-AMRC) model. HM3-AMRC 

accurately identifies and classifies Android malware using 

a new technique for feature selection and analysis that is 

according to authors more efficient than previous methods. 

A comprehensive benchmark analysis highlights that the 

HM3-AMRC method outperforms existing techniques 

with an accuracy of 99.01 [17].Furthermore, Jundi and 

Alyasiri in their study developed a hybrid system for 

malware detection on Android smartphones. They used 

Extreme Gradient Boosting (XGBoost) and Grammatical 

Evaluation (GE) to determine the optimal parameters for 

this detection model. The experimental results of the study 

showed that the proposed model outperforms conventional 

parameter tuning. As a result of the study, the proposed 

model achieved 98% accuracy for CICMalDroid-2020, 

99.02% accuracy for Drebin, and 99.28% accuracy for 

Malgenome [18]. On the other hand, Seyfari and Meimandi 

conducted a study in order to take precautions against 

malicious software that has increased with the widespread 

use of smartphones with Android operating system. In their 

study, they developed a method using simulated annealing 

algorithm and fuzzy logic to detect Android malware with 

machine learning algorithms. The study concluded that the 

proposed method achieved optimal results with a 99.02% 

accuracy rate using the KNN classifier in combination with 

a permission-based feature set. [19]. 

Table 1 includes some of the recently published studies in 

the domain of Malware detection. 
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Table 1. Some of the related studies 

Paper #Data #Class Method Accuracy (%) 

Elayan & Mustafa, 

2021 
712 2 GRU 98.20 

Bakour & Unver, 

2021 
9700 2 DeepVisDroid 98.96 

Raman et al., 2022 2210 2 KNN 97.66 

Alani & Awad, 2022 86228 2 
AdStop with 

RF 
98.14 

Yadav et al., 2022 5986 2 
EfficientNet-B4 

CNN 
95.70 

Yumlembam et al., 

2023 

15848 2 VGAE- 

MalGAN 

98.33 

56461 2 98.68 

Baghirov, 2023 11598 5 LightGBM 91 

AlOmari vd., 2023 11598 2 LightGBM 95.49 

A vd., 2023 2000 2 HM3-AMRC 99.01 

 3799 2  99.2 

Jundi & Alyasiri, 

2023 
15036 2 GE-XGBoost 99.0 

11598 5  97.9 

Bakır & Bakır, 2023 6000 2 DroidEncoder 98.56 

Mohammed et al., 

2023 
1900 2 

DBN-Based 

Model 
98.70 

Tang vd., 2024 22901 2 ResNet-CBAM 98.67 

Seyfari & 

Meimandi, 2024 

 

15036 

 

2 

Proposed 

Method with KNN 

 

99.02 

Fu vd, 2024 11598 5 
MSCNN+ResN 

et18 
99.20 

Liu vd, 2024 11598 5 SeGDroid 98.37 

Examining Table 1 reveals that previous studies on 

malware detection primarily employ either deep learning 

methods or traditional machine learning algorithms. Our 

proposed model, however, integrates deep learning models 

with the XGBoost algorithm in a hybrid approach, 

leveraging the strengths of both. Deep learning models are 

adept at extracting distinctive features from high-

dimensional and complex data, capturing intricate patterns 

that are essential for effective malware detection. These 

extracted features are then fed into XGBoost, a robust 

classifier known for its high accuracy and generalization 

capabilities. By combining the feature extraction power of 

deep learning with the strong classification performance of 

XGBoost, this hybrid approach achieves a more accurate 

and resilient malware detection system. 

3. MATERIALS AND METHODS 

This section provides a comprehensive overview of the 

dataset used in the study, describing its key characteristics 

and relevance for malware detection. To address the 

imbalance in the dataset, three data distribution 

techniques—SMOTE, SMOTETomek, and 

ClusterCentroids—are presented, each explained in detail 

to demonstrate their roles in rebalancing the data. Finally, 

this section describes the eight different deep learning 

models and the XGBoost algorithm used in the study, 

highlighting their specific functionalities and how they 

contribute to the hybrid approach for improved malware 

detection accuracy.  
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3.1. Used Dataset 

This study analyzes the DroidCollector network traffic 

analysis dataset [17], [18]. Comprising 7844 data samples 

and spanning 17 attributes, this dataset serves as a 

foundational resource for our investigation. It is 

specifically designed for detecting malicious activity in 

Android applications based on network traffic analysis. 

The dataset was obtained through dynamic analysis, 

allowing for the capture of real-time network traffic 

behavior during the execution of Android applications in a 

controlled environment. This dynamic approach helps in 

identifying subtle differences in the network patterns of 

malicious and benign applications. The details of the 

dataset, including its attributes and sample sizes, are 

presented in Table 2. 

3.2. Preparing Dataset 

Preparing a dataset is crucial for the success of machine 

learning tasks like Android malware detection. It directly 

impacts the quality, generalization, and fairness of the 

model. A well-prepared dataset reduces bias, enhances 

interpretability, and ensures compliance with ethical 

considerations. It also facilitates reproducibility, saves 

computational resources, and increases the real-world 

applicability of the model. Overall, proper dataset 

preparation is essential for building reliable, accurate, and 

ethical machine learning models that contribute to the 

security of mobile devices and the digital ecosystem. 

A meticulous preliminary analysis brought to light the 

presence of missing values (NaN) within certain attributes. 

Recognizing the potential impact of these missing values 

on the accuracy of our analysis, a strategic approach was 

formulated. Specifically, the attributes 'duracion,' 

'avg_local_pkt_rate,' and 'avg_remote_pkt_rate' were 

identified as containing NaN values and subsequently 

removed from the dataset. This meticulous curation of the 

dataset serves a dual purpose: it not only ensures precision 

and coherence in our analytical processes but also elevates 

the dataset's reliability by adeptly addressing the challenge 

posed by missing values. Consequently, this methodical 

handling contributes to the robustness of our findings and 

enhances the overall quality of the dataset employed in our 

study. 

The final attributes and descriptions of the dataset are 

presented in Table 2. 

Following these procedures, it was observed that the 'name' 

and 'type' attributes of the dataset consisted of object 

expressions. To facilitate further analysis, the Label 

Encoder method was implemented, converting these 

attributes into numeric values. Subsequently, adjustments 

were made to the 'type' column, rendering it suitable for 

classification purposes. The resultant 'Benign' and 

'Malicious' class distributions of the dataset are detailed in 

Table 3. 

Table 2. Features and description of dataset 

Feature Description 

 

 

 
 

 

 
 

 

name 

‘AntiVirus' 'Browser' 'chess' 'Communication' 'DailyLife' 'Education' 'Finance' 'HealthAndFitness' 'Input' 

'MediaAndVideo' 'NewsAndMagazines' 'Personalization' 'Photography' 'Productivity' 'Reading' 'Shopping' 

'Social' 'Sport' 'Tools' 'TravelAndLocal' 'Ackposts' 'Acnetdoor' 'Adrd' 'Adsms' 'Aks' 'Antares' 'Anudow' 
'BaseBridge' 'Boxer' 'DroidDream' 'DroidKungFu' 'DroidRooter' 'DroidSheep' 'EICAR-Test-File' 'EWalls' 

'ExploitLinuxLotoor' 'FaceNiff' 'FakeDoc' 'FakeFlash' 'FakeInstaller' 'Fakelogo' 'Fakengry' 'FakeRun' 

'FakeTimer' 'FinSpy' 'Fjcon' 'FoCobers' 'Fujacks' 'Gamex' 'Gapev' 'Gappusin' 'GGtrack' 'GinMaster' 
'Glodream' 'Gmuse' 'Gonca' 'Hamob' 'Hispo' 'Iconosys' 'Imlog' 'JSExploit-DynSrc' 'JSmsHider' 'Kmin' 

'Ksapp' 'Loozfon' 'Luckycat' 'Maxit' 'MMarketPay' 'Mobilespy' 'Mobsquz' 'Moghava' 'Nandrobox' 

'Nickspy' 'NickyRCP' 'Nyleaker' 'Opfake' 'Pirater' 'Pirates' 'PJApps' 'Placms' 'Plankton' 'Raden' 
'RootSmart' 'SafeKidZone' 'Saiva' 'Sakezon' 'Sdisp' 'SeaWeth' 'SendPay' 'SerBG' 'Smspacem' 'SMSreg' 

'Spy.GoneSixty' 'Spy.ImLog' 'SpyHasb' 'SpyMob' 'SpyPhone' 'Spyset' 'Stealer' 'Stealthcell' 'Steek' 'Tesbo' 

'TheftAware' 'Trackplus' 'TrojanSMS.Denofow' 'TrojanSMS.Hippo' 'Updtbot' 'Vdloader' 'Vidro' 'Xsider' 
'YcChar' 'Yzhc' 'Zitmo' 'Zsone' 

tcp_packets it has the number of packets TCP sent and got during communication. 

dist_port_tcp it is the total number of packets different from TCP 

external_ips 
represents the number the external addresses (IPs) where the application tried to communicated 

vulume_bytes it is the number of bytes that was sent from the application to the external sites 

udp_packets the total number of packets UDP transmitted in a communication 

tcp_urg_packet 
represents a special type of TCP packet expressing an emergency situation, where the "URG" flag in the 

TCP header is used 
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source_app_packets it is the number of packets that were sent from the application to a remote server 

remote_app_packets number of packages received from external sources 

source_app_bytes 
this is the volume (in Bytes) of the communication between the application and server 

remote_app_bytes this is the volume (in Bytes) of the data from the server to the emulator 

Table 3. Dataset distributions 

Type Number of Data 

Benign 4704 

Malicious 3141 

3.3. Addressing the Imbalanced Data Sampling Challenge 

When dealing with imbalanced class distributions in a 

dataset, conventional classification algorithms may exhibit 

a bias towards the majority class, diminishing the 

effectiveness of detecting minority class instances. This 

imbalance poses a significant challenge in achieving 

optimal performance with deep learning algorithms. 

Therefore, it becomes imperative to rectify this issue by 

employing techniques that balance the dataset, enhancing 

reliability and efficiency. Two commonly used methods 

are oversampling (introducing additional data) and 

undersampling (removing data), as highlighted by [19]. 

3.3.1. SMOTE (Synthetic Minority Over-Sampling 

Technique)  

SMOTE is a powerful technique designed to fortify the 

minority class in datasets exhibiting class imbalance, 

thereby promoting a more balanced learning model. This 

method generates synthetic examples by interpolating 

instances from the minority class, enabling the learning 

model to better discern minority class examples and 

improve overall performance. SMOTE effectively 

mitigates overfitting issues associated with random 

oversampling and addresses information loss resulting 

from random undersampling. This ensures that the model 

possesses a more robust and generalizable structure [20]. 

3.3.2. SMOTETomek 

SMOTETomek is a rebalancing strategy that creates a 

balanced dataset by over-sampling the minority class while 

simultaneously under-sampling the majority class. This 

strategy aims to obtain the examples used to achieve 

balance between classes in a more balanced and effective 

manner, as well as improve the model's capacity to obtain 

information from both categories more effectively. In this 

way, the learning model gains a more generalizing 

structure and reduces the possibility of misclassification, 

allowing more reliable results to be obtained. 

SMOTETomek improves the performance of learning 

algorithms by providing an effective solution to balance 

between classes with few and many examples [21]. 

3.3.3. ClusterCentroids 

ClusterCentroids is a technique that generates synthetic 

samples by clustering minority class instances within the 

dataset using clustering algorithms and leveraging the 

centers of these clusters. This method aims to alleviate the 

challenges posed by class imbalance by improving the 

representation of minority class instances. By creating 

synthetic samples based on clustered representations, 

ClusterCentroids contributes to a more balanced and 

representative dataset, thereby enhancing the performance 

of learning models, especially in scenarios with 

imbalanced class distributions [22]. The results obtained 

from this phase of the study are presented in Table 4. 

Table 4. Dataset distribution after preprocessing 

Data Type #Benigndata #Maliciousdata 

Original 4704 3141 

SMOTE 4704 4704 

SMOTETomek 4485 4485 

ClusterCentroids 3141 3141 

3.4. Deep Learning Methods  

In recent years, deep learning has rapidly solved complex 

problems in various scientific fields and gained importance 

as a subfield of artificial intelligence. This development 

has revealed deep learning methods that are used 

effectively in applications such as pattern recognition and 

data analysis. Deep learning involves deep neural networks 

consisting of hierarchical layers that are capable of 

automatic learning, often on large and complex datasets. 

These methodologies have demonstrated remarkable 

success, notably in fields such as image and voice 

recognition, natural language processing, malware 

detection, and other cognitively demanding tasks [23], 

[24], [25], [26]. Deep learning contributes to the 

acceleration of scientific and technological developments 

with its ability to reveal complex relationships within data 

[27]. 
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3.4.1. CNN 

Convolutional Neural Networks (CNN) are one of the deep 

learning models that are effective in tasks such as computer 

vision [28] recognition [29] and classification [30]. CNN 

provides the ability to learn and generalize patterns and 

features more effectively, especially by being used in areas 

such as image and video analysis. Thanks to their filtering 

and pattern recognition capabilities, CNN models are used 

in many application areas to achieve high performance on 

complex visual data [31]. 

3.4.2. RNN 

Traditional Neural Networks typically do not retain their 

final results for subsequent phases, whereas Recurrent 

Neural Networks (RNNs) are specifically engineered to 

address this constraint. RNNs offer a unique capability for 

data persistence through internal feedback loops, enabling 

them to retain memory of previous information using 

interconnected components. Thanks to these features, they 

can successfully process sequential datasets such as 

language modeling, text generation, and time series 

forecasting. In order to learn long-term dependencies more 

effectively, models such as GRU and LSTM, which are 

advanced variants of RNNs, are also used [32]. 

3.4.3. GRU 

Gated Recurrent Unit (GRU) is an RNN variant that aims 

to learn long-term dependencies more effectively. GRU is 

a deep learning model that is particularly successful when 

applied to sequential data processing tasks such as 

language modeling, text generation, and time series 

analysis. GRUs are specifically designed to solve the 

vanishing gradient problem in traditional RNNs, providing 

an effective solution to prevent gradients from shrinking 

excessively over time and to prevent long-term 

dependencies. Thanks to their lightweight structure, GRUs 

offer faster training processes and less computational 

complexity, providing effective performance, especially on 

large datasets [33]. 

3.4.4. BiGRU 

Different from unidirectional GRU models, the 

Bidirectional Gated Recurrent Unit (BiGRU) model 

includes information in both forward and reverse time 

directions. Forward GRU captures prior information and 

reverse GRU captures subsequent information, obtaining a 

wide range of context information in the network intrusion 

traffic prediction task and effectively extracting deep 

features of the traffic. These two GRUs with opposite 

directions jointly determine the output of the current 

location, thus providing a more comprehensive 

prediction/classification capability [34]. 

 

 

3.4.5. LSTM 

Long Short-Term Memory (LSTM) networks consist of 

three main gates: input, output, and forget gates. These 

gates include a sigmoid neural network layer and a point 

multiplication process, which processes the input vector to 

determine the rate at which each component is allowed to 

pass. LSTM is a type of RNN and is particularly successful 

in time series analysis, language modeling, and natural 

language processing tasks. Its ability to effectively learn 

long-term dependencies and its capacity to store 

information make LSTM an effective tool in complex 

intra-temporal relationship and pattern recognition tasks 

[35], [36]. 

3.4.6. BiLSTM 

Bidirectional Long Short-Term Memory (Bi-LSTM) is a 

type of RNN that combines memory cells and a gate 

mechanism, enabling efficient modeling of sequential data. 

Bi-LSTM has a bi-directional structure, consisting of two 

LSTM layers, with the input sequence being processed in 

the forward direction and used in the backward direction. 

The outputs of the two layers are combined to produce the 

final output, and the output of the hidden layers is passed 

through a linear layer that calculates probability scores. Bi- 

LSTM, with its ability to capture both prior and subsequent 

contextual information in the input sequence, provides a 

more comprehensive contextual understanding by 

simultaneously evaluating information before and after the 

current time step using forward and backward LSTM 

layers [37]. 

3.4.7. CNN+BiGRU 

Compared to traditional neural networks, CNN offers 

advantages in weight sharing between the receiver field 

view and the hidden layer, especially given the non- 

linearity and randomness of network traffic data. Thanks to 

the weight-sharing mechanism, CNN can reduce network 

complexity and facilitate feature extraction with the same 

convolution kernel. The CNN-BiGRU model combines 

CNN and Bidirectional Gated Recurrent Unit (BiGRU) 

architectures, which are effective in image and sequential 

data analysis, capturing spatial and temporal context and 

offering a wide range of applications. This model can be 

successfully used in areas such as visual data and time 

series analysis. [38]. 

3.4.8. CNN+BiLSTM 

Compared to traditional techniques, CNN-based feature 

learning enables an end-to-end information processing 

process from input to output, bypassing the feature 

extraction phase. However, considering that a single model 

may not provide ideal results in predicting time series data, 

more effective results can be achieved by successfully 

combining the local feature extraction capabilities of CNN 

with the nonlinear temporal processing capabilities of 

BiLSTM. In this context, the CNN-BiLSTM model is a 
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deep learning model that can be effectively used in visual 

data analysis and sequential data processing. The CNN part 

is used for feature extraction and the BiLSTM part is used 

for sequential data analysis, capturing spatial and temporal 

context simultaneously, providing a wide range of 

applications [39]. 

3.4. Machine Learning Methods 

Machine learning is a branch of artificial intelligence that 

can make accurate predictions by providing applications 

with the capacity to learn from experience and data rather 

than predetermined rules. Machine learning algorithms 

work by using input data as features to predict new output 

values. This discipline focuses on pattern recognition and 

learning, improving the ability of computer systems to 

learn from experience and data [40]. 

3.5.1. XGBoost 

XGBoost, or eXtreme Gradient Boosting, is a standout 

Gradient Boosting algorithm renowned for its exceptional 

scalability. Boasting high speed and performance, 

XGBoost is known to be ten times faster than alternative 

methods. Its superiority lies in swift model tuning, 

facilitated by a distinctive regularization technique that 

mitigates overfitting. This algorithm is a formidable asset 

for tackling regression and classification challenges, 

demonstrating efficacy across a myriad of applications. 

Leveraging optimization techniques such as parallel 

processing, tree regularization, and feature selection, 

XGBoost emerges as a powerful and versatile tool in data 

analysis.[41], [42]. In this study, XGBoost was employed 

due to its remarkable scalability, high speed, and 

performance, making it well-suited for handling large 

datasets efficiently. Its unique regularization technique 

helps prevent overfitting, ensuring the robustness of the 

models developed in the study. Additionally, XGBoost's 

effectiveness in regression and classification tasks, coupled 

with its proven track record in various applications, made 

it a compelling choice for enhancing the accuracy of the 

malware detection system being investigated.  

4. EXPERİMENTAL RESULTS AND DISCUSSION  

4.1. Experimental setup and evaluation metrics  

The computer used in the experiments is equipped with 

features that offer high performance and processing 

capacity. The main component of the system is a powerful 

48-core Xeon processor, which is capable of handling 

intensive processing loads. The system is also equipped 

with 256 GB of RAM for efficient data processing and 

memory management. This combination of hardware 

allows us to perform our experiments efficiently and 

effectively. Python programming language was employed 

for the execution of the experiments. 

Standard evaluation metrics were employed in this study to 

assess the results obtained from the experiments such as 

accuracy, precision, recall, and F1-score. 

The model used in the study is presented in Figure 1.As 

seen in the Figure 1. the study consists of two phases. In 

the first phase of the study, classification tasks were 

conducted using eight different deep learning methods, 

including CNN, RNN, GRU, Bi-GRU, LSTM, Bi-LSTM, 

CNN+BiGRU, and CNN+BiLSTM, on both the original 

dataset and the dataset enhanced with imbalanced data 

sampling techniques. Furthermore, to achieve optimal 

results in the classification process, hyperparameter 

optimization was performed using Optuna in conjunction 

with a genetic algorithm. The hyperparameter ranges used 

for optimization are provided in Table 5. Throughout this 

phase, the epoch value was kept constant at 50. 

Additionally, experiments were conducted on three 

different distributions of 70/30, 80/20, and 90/10 as train 

and test. The same training and test sets were used 

throughout both phases of the experiment. Specifically, 

after the deep learning model was trained, features were 

extracted and passed as input to the XGBoost classifier. 

Consistency was maintained across both stages by keeping 

the same validation and test sets during feature extraction 

and classification, thereby preventing data leakage or bias 

in model evaluation. This approach ensured a fair 

comparison of performance between the standalone deep 

learning models and the hybrid model with XGBoost. The 

accuracy, precision, recall, and F1-score results of these 

studies are presented in detail in Tables 6, 7, 8, and 9. Table 

6 contains the results of the study conducted with the 

original dataset, while Tables 7, 8, and 9 present the results 

of the studies conducted with the datasets obtained after the 

Smote, SmoteTomek, and ClusterCentroid processes, 

respectively.The methods that yielded the best results were 

determined during this phase. In the second phase, the 

classification process was carried out using the deep 

learning structures identified as the most effective in the 

first phase, combined with the XGBoost ML classifier. 

This approach involved training the deep learning models 

and subsequently feeding their outputs into the XGBoost 

ML model. The f1-score was used as the evaluation metric, 

as it provides a balanced assessment of model performance 

by considering both precision and recall. The f1-score 

results for this phase are presented in Table 10. 
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Figure 1. The proposed method 

Table 5. Hyperparameter ranges 
According by Range 

Optimization alg. 

Mini-batchGD, 

MomentumGD, Adam,  

Adadelta, Adagrad,  

Adamax, Nadam 

Conv_layer_number 1, 2, 3 

Filter_size 32, 64, 96, 128 

Kernel_size 3,5 

Activation 
relu, tanh, gelu, swish, selu, 
LeakyReLU 

Kernel_initializer 

uniform, lecun_uniform, normal, 

zero, glorot_normal, he_normal, 
he_uniform 

Dense_layers_number 1, 2, 3, 4, 5, 6 

Dense_neuron_number 32, 64, 96, 128 

Dense_activation 
relu, tanh, gelu, swish, selu, 
LeakyReLU 

Dense_kernel_initializer 

uniform, lecun_uniform, normal, 
zero, glorot_normal, he_normal, 

he_uniform 

Table 6. Results of the Original Dataset 

Model Train (%) Accuracy Precision Recall F1-Score 

 

CNN 

70 75.83 89.11 75.06 81.48 

80 85.53 82.99 91.94 87.24 

90 79.11 87.30 80.68 83.86 

 

RNN 

70 88.91 93.88 88.29 91.00 

80 81.26 89.63 80.97 85.08 

90 74.39 83.40 77.23 80.20 

 

GRU 

70 85.00 88.61 86.58 87.58 

80 80.05 84.60 82.40 83.48 

90 83.95 88.73 85.91 87.30 
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Bi-GRU 

70 91.08 89.25 95.51 92.27 

80 91.84 92.94 93.34 93.14 

90 87.90 90.57 90.02 90.30 

 

LSTM 

70 78.08 95.23 74.87 83.83 

80 87.25 91.76 87.46 89.56 

90 86.88 90.37 88.73 89.54 

 

Bi-LSTM 

70 82.33 88.26 83.17 85.64 

80 88.59 90.48 90.38 90.43 

90 91.85 93.65 93.27 93.46 

 

CNN+BiGRU 

70 86.79 87.62 89.99 88.78 

80 72.72 87.70 72.37 79.30 

90 88.15 92.62 88.80 90.67 

 

CNN+BiLSTM 

70 87.51 88.26 90.58 89.40 

80 88.34 89.73 90.60 90.17 

90 78.98 89.55 79.31 84.12 

Table 7. Results of the Smote Dataset 

Model Train (%) Accuracy Precision Recall F1-Score 

 

CNN 

70 83.21 86.71 81.49 84.02 

80 88.95 85.94 91.23 88.51 

90 80.13 84.00 78.24 81.02 

 

RNN 

70 87.42 88.24 87.21 87.72 

80 86.82 83.48 89.22 86.25 

90 76.51 80.63 74.80 77.61 

 

GRU 

70 88.66 88.31 89.30 88.80 

80 87.83 85.09 89.81 87.38 

90 87.35 84.00 90.27 87.02 

 

Bi-GRU 

70 61.60 98.05 57.16 72.22 

80 77.52 67.38 84.07 74.81 

90 90.33 88.63 91.92 90.25 

LSTM 

70 81.44 86.78 78.87 82.64 

80 83.85 84.55 83.12 83.83 

90 83.74 79.16 87.44 83.09 

 

Bi-LSTM 

70 83.60 90.26 80.06 84.85 

80 90.38 90.67 89.99 90.33 

90 76.83 81.05 75.05 77.94 

 

CNN+BiGRU 

70 81.72 85.87 79.77 82.71 

80 90.06 87.88 91.71 89.75 

90 90.33 91.16 89.83 90.49 

 

CNN+BiLSTM 

70 88.81 87.06 90.59 88.79 

80 88.10 89.27 87.03 88.14 

90 87.04 85.89 88.12 86.99 
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Table 8. Results of the SmoteTomek Dataset 

Model Train (%) Accuracy Precision Recall F1-Score 

CNN 

70 87.70 82.59 91.41 86.78 

80 87.79 83.99 91.94 87.79 

90 85.68 84.97 86.67 85.81 

RNN 

70 86.59 85.55 86.81 86.17 

80 90.13 90.72 90.43 90.57 

90 75.03 92.81 68.93 79.11 

GRU 

70 81.05 82.21 79.66 80.91 

80 75.64 85.91 72.52 78.65 

90 86.68 92.37 83.30 87.60 

Bi-GRU 

70 87.11 86.77 86.83 86.80 

80 84.34 91.89 80.77 85.97 

90 74.81 97.60 67.47 79.79 

LSTM 

70 83.62 80.30 85.30 82.73 

80 85.95 85.17 87.60 86.36 

90 74.03 77.56 73.10 75.26 

Bi-LSTM 

70 91.05 93.16 89.03 91.04 

80 94.87 96.16 94.15 95.14 

90 88.35 89.54 87.82 88.67 

CNN+BiGRU 

70 88.78 86.31 90.29 88.26 

80 88.91 89.43 89.34 89.39 

90 76.47 86.71 72.50 78.97 

CNN+BiLSTM 

70 89.64 87.83 90.66 89.22 

80 86.23 88.15 85.86 86.99 

90 88.46 86.06 90.80 88.37 

Table 9. Results of the ClusterCentroid Dataset 

Model Train (%) Accuracy Precision Recall F1-Score 

CNN 

70 82.02 84.89 81.14 82.97 

80 77.65 77.16 77.78 77.47 

90 89.67 91.02 89.68 90.34 

RNN 

70 70.93 96.51 64.62 77.41 

80 85.12 89.94 81.95 85.76 

90 76.47 78.14 77.68 77.91 

GRU 

70 81.17 71.53 89.92 79.68 

80 78.84 79.87 78.13 78.99 

90 87.12 84.73 90.42 87.48 

Bi-GRU 

70 68.22 93.73 62.90 75.28 

80 80.51 68.05 90.45 77.67 

90 71.22 56.89 83.70 67.74 

LSTM 
70 84.14 84.28 84.89 84.58 

80 83.93 84.19 83.65 83.92 
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90 77.74 78.44 79.39 78.92 

Bi-LSTM 

70 88.70 94.35 85.32 89.60 

80 80.51 83.87 78.48 81.08 

90 89.98 91.92 89.50 90.69 

CNN+BiGRU 

70 85.36 82.63 88.25 85.35 

80 88.46 88.02 88.73 88.37 

90 88.55 87.13 90.94 88.99 

CNN+BiLSTM 

70 87.48 87.67 88.03 87.85 

80 78.04 73.96 80.38 77.04 

90 88.39 88.32 89.67 88.99 

Tables 6, 7, 8, and 9 show that the optimal training/testing 

distribution, which yields the best results for each data 

type, occurs when 80% of the dataset is allocated to 

training and 20% to testing. The analysis of deep learning 

methods reveals that the RNN model consistently produces 

the lowest performance results. Furthermore, bidirectional 

models appear to achieve higher success rates compared to 

other deep learning methods. Notably, when the dataset 

obtained after the SmoteTomek process is used, the most 

successful results are achieved. 

Considering these findings, an optimal f1-score of 95.14% 

was achieved using the Bi-LSTM deep learning method 

with an 80/20 training/test distribution on the dataset 

obtained after the SmoteTomek process. Based on the 

results from the first phase, it was decided to use the 

SmoteTomek dataset in the second phase, with 80% 

allocated for training and 20% for testing. The first-phase 

results also revealed that the lowest performance was 

observed in studies conducted with the dataset obtained 

after applying the ClusterCentroid method. This may be 

attributed to the data loss resulting from the data reduction 

process of the ClusterCentroid method, which likely 

negatively impacted the results. 

In the second stage of the study, different epoch values, 

such as 50, 100, and 150, were evaluated to assess their 

impact on model performance. The models were created 

using the hyperparameter values shared in Table 11, and 

the results were then compared. The variation in epoch 

values was chosen to investigate how training duration 

affects the performance of the deep learning models. The 

models were re-run both with and without the XGBoost 

algorithm, allowing for the evaluation of the impact of 

different epochs on the classification results and enabling 

a comparative analysis to identify the optimal 

configuration for each scenario. The results of the Bi-

LSTM, Bi-GRU, and CNN models, which achieved the 

three highest success rates in the second phase of the study, 

are presented in Table 10. 

Table 10. F1-Score and Accuracy (Acc) results for the top 3 results in the second phase of the study 

Epoch Score BiLSTM BiLSTM +XGB BiGRU BiGRU+XGB CNN CNN +XGB 

50 
F1- Score 

95.04 95.79 85.97 90.42 87.79 92.03 

Acc 94.77 97.44 84.34 92.00 87.79 93.72 

100 
F1- Score 

92.88 95.72 94.18 94.42 91.60 92.21 

Acc 92.36 97.97 93.98 98.24 91.36 96.41 

150 

F1- Score 
95.12 95.12 93.50 94.25 91.68 92.75 

Acc 94.93 99.33 93.26 98.85 92.92 99.13 

 

Table 11. Hyperparameter Values for Each Model 
Model Hyperparameter Vlaue 

CNN 

Optimization alg Adamax 

Conv_layer_number 3 

Conv_Filters (96, 96, 32) 

Conv_kernel_size (3, 3, 5) 

Conv_activation ('tanh', 'tanh', 'tanh') 

Conv_kernel_initializer ('glorot_normal', 'lecun_uniform', 'he_uniform') 

Dense_layers_number 3 

Neuron_number in Dense layers (96, 96, 64) 

Dense_activation ('tanh', 'tanh', 'relu') 
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Dense_kernel_initializer ('lecun_uniform', 'lecun_uniform', 'uniform') 

RNN 

Optimization alg Adamax 

Rnn_layer_number 3 

Rnn_units (32, 96, 32) 

Rnn_activation ('relu', 'tanh', 'selu') 

Rnn_kernel_initializer ('normal', 'glorot_normal', 'uniform') 

Dense_layers_number 2 

Dense_neuron_number (128, 128) 

Dense_activation ('tanh', 'tanh') 

Dense_kernel_initializer ('glorot_normal', 'uniform') 

LSTM 

Optimization alg Adamax 

Lstm_layer_number 2 

Lstm_units (32, 128) 

Lstm_activation ('swish', 'tanh') 

Lstm_kernel_initializer ('lecun_uniform', 'glorot_normal') 

Dense_layers_number 4 

Dense_neuron_number (64, 32, 96, 64) 

Dense_activation ('swish', 'gelu', 'swish', 'swish') 

Dense_kernel_initializer ('glorot_normal', 'glorot_normal', 'normal', 'normal') 

BiLSTM 

Optimization alg Nadam 

Lstm_layer_number 2 

Lstm_units (128, 64) 

Lstm_activation ('tanh', 'LeakyReLU') 

Lstm_kernel_initializer ('normal', 'he_uniform') 

Dense_layers_number 5 

Dense_neuron_number (32, 128, 64, 128, 96) 

Dense_activation ('relu', 'swish', 'relu', 'tanh', 'gelu') 

Dense_kernel_initializer 
('lecun_uniform', 'glorot_normal', 'lecun_uniform', 'lecun_uniform', 

'glorot_normal') 

GRU 

Optimization alg Nadam 

Gru_layer_number 2 

Gru_units (128, 128) 

Gru_activation ('swish', 'tanh') 

Gru_kernel_initializer ('he_normal', 'he_uniform') 

Dense_layers_number 1 

Dense_neuron_number (64) 

Dense_activation ('relu') 

Dense_kernel_initializer ('glorot_normal') 

BiGRU 

Optimization alg Nadam 

BiGru_layer_number 1 

BiGru_units (64) 

BiGru_activation ('tanh') 

BiGru_kernel_initializer ('glorot_normal') 

Dense_layers_number 3 

Dense_neuron_number (64, 32, 32) 

Dense_activation ('tanh', 'relu', 'selu') 

Dense_kernel_initializer ('he_uniform', 'lecun_uniform', 'normal') 

CNN+BiGRU 

Optimization alg Adam 

Conv_layer_number 1 

Conv_Filters (32) 

Conv_kernel_size (3) 

Conv_activation ('tanh') 

Conv_kernel_initializer ('he_normal') 

BiGru_layer_number 3 

BiGru_units (128, 128, 96) 

BiGru_activation ('gelu', 'LeakyReLU') 

BiGru_kernel_initializer ('normal', 'he_normal', 'uniform') 

Dense_layers_number 4 

Dense_neuron_number (64, 96, 96,96) 

Dense_activation ('relu', 'relu', 'tanh', 'tanh') 

Dense_kernel_initializer ('lecun_uniform', 'he_uniform', 'normal', 'he_uniform') 

CNN+BiLSTM 

Optimization alg Adamax 

Conv_layer_number 3 

Conv_Filters (32, 96, 128) 

Conv_kernel_size (3, 5, 5) 

Conv_activation ('tanh', 'swish', 'swish') 

Conv_kernel_initializer ('he_normal', 'uniform', 'he_normal') 

BiLstm_layer_number 3 

BiLstm_units (32, 96, 64) 

BiLstm_kernel_initializer ('he_uniform', 'he_normal', 'he_uniform') 

Dense_layers_number 3 

Dense_neuron_number (32, 32, 64) 

Dense_activation ('relu', 'tanh', 'tanh') 
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Dense_kernel_initializer ('lecun_uniform', 'normal', 'he_uniform') 

According to the results of Table 10, it can be concluded 

that the results obtained by the hyperdization of deep 

learning with XGBoost outperform the results of deep 

learning models alone. This finding underscores the 

significance of adopting a combined approach, 

demonstrating that machine learning models achieve more 

effective results when leveraged together. 

Furthermore, it was observed that model performance 

improved as the number of epochs increased. This 

indicates that additional learning phases allowed the model 

to better capture patterns within the dataset, resulting in a 

more generalizable representation. The increase in epochs 

positively impacted classification performance by 

improving the model’s ability to capture complex patterns 

in the data. However, to prevent overfitting—where the 

model memorizes rather than generalizes—the number of 

epochs was capped at 150. The BiLSTM+XGBoost 

method achieved a remarkable 99.33% accuracy and 

97.30% F1-score after 150 epochs, demonstrating the 

hybrid model's strong performance. Additionally, 

comparisons in Table 1 show that these results surpass the 

benchmarks of other state-of-the-art studies. The 

integration of deep learning and machine learning 

algorithms effectively complements each method’s 

limitations, resulting in enhanced classification accuracy. 

These results suggest that combining the strengths of deep 

learning and traditional machine learning approaches can 

yield more robust and generalizable models for complex 

datasets. This hybrid methodology demonstrates 

considerable promise for advanced classification tasks, 

offering valuable applications in both academic research 

and industry. 

5. CONCLUSION 

This paper presents a novel approach to Android malware 

detection by integrating machine learning and deep 

learning methods, validated through an extensive 

experimental study. In malicious application detection, a 

critical risk lies in misclassifying malicious applications as 

benign, potentially allowing harmful software to infiltrate 

the system. This integrated approach aims to mitigate such 

risks by enhancing detection accuracy and robustness. One 

of the most important steps to solve this problem is to 

ensure a balanced distribution of the dataset. For this 

reason, this study first uses unbalanced data sampling 

techniques to balance the dataset. Then, eight different 

deep learning methods were used to classify the original 

dataset, and the data organized using unbalanced data 

sampling techniques. At this stage, a rigorous examination 

of the different training and test set distributions was 

performed while maintaining a constant epoch value to 

identify the methods that gave the most favourable results. 

These initial findings demonstrated the effectiveness of 

deep learning models on different datasets, especially 

when supported by unbalanced data sampling techniques. 

In the next phase, the deep learning methods that showed 

the most promising results from the first phase were 

selected and the hybrid approach combining deep learning 

with XGBoost was applied. The analysis of the results 

showed that this hybrid approach improved the 

classification performance by 3-4%, with a significant 

increase especially as the epoch value increased. 

The proposed hybrid model achieved an impressive 

accuracy of 99.33%. When compared to results from other 

benchmark studies, our approach consistently outperforms 

existing methods, showcasing its superior effectiveness in 

detecting Android malware. This highlights the potential of 

the hybrid model in delivering more accurate and reliable 

outcomes in malware detection. 

A limitation of the proposed method is the potential 

increase in computational complexity resulting from the 

integration of deep learning with traditional machine 

learning algorithms. This integration may require 

significant computational resources and time, especially in 

the training phase. Furthermore, the performance of the 

combined model may be sensitive to hyperparameter 

settings and may require extensive tuning to achieve 

optimal results. 

In addition, it is essential that such systems prevent privacy 

violations when processing and storing users' personal 

data. Therefore, the development of transparent and 

accountable AI systems should not only enhance security 

but also protect users' rights and privacy. 

To address these limitations, future work will include the 

evaluation of different machine learning algorithms 

withdifferent deep learning constructs. Furthermore, an 

ablation study will be conducted to investigate the impact 

of hyperparameter tuning on both machine learning and 

deep learning models to improve overall performance. In 

addition, the use of automated hyperparameter tuning 

techniques such as grid search, random search or Bayesian 

optimisation will be investigated to efficiently search the 

hyperparameter space and identify optimal configurations, 

thus minimising the computational overhead. 
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