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Abstract

This paper investigates a fractional-order viral infection model with saturated infection rate and cellular immune response. The cellular
immunity will be represented by cytotoxic T-lymphocytes (CTL) cells. In order to study mathematically the infection model, we will suggest
five fractional differential equations describing the interaction between the uninfected cells, the latently infected cells, the infected cells, the
CTL cells and the free viruses. A saturated infection rate will be taken into consideration to represent the viral infection. First, the positivity
and boundedness of solutions for non-negative initial data are proved. Next, by constructing suitable Lyapunov functions, the global stability
of the disease free equilibrium and the endemic equilibria are established depending on the basic reproduction number R0 and the CTL
immune response reproduction number RCT L. Finally, numerical simulations are performed in order to show the dynamics behavior of the
viral infection and to support the theoretical results.
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1. Introduction

Infectious diseases are one of the major public health problems [1]. Accordingly, significant advances in this subject are deployed in
treatment and control of the diseases spread. Among the most dangerous, the human immunodeficiency virus (HIV) which is known as a
pathogen that attacks the immune system [2, 3], the hepatitis C virus (HCV) and the hepatitis B virus (HBV) that attack liver cells [4, 5, 6]
and the human papillomavirus (HPV) that infects basal cells of the cervix [7, 8] and is highly correlated with the risk of developing cervical
cancer and genital warts [9]. The modeling of viral infection becomes an important tool to predict and analyze the behavior of the infection
[10, 11, 12]. The first viral infection model presented by Nowak and Bangham in 1996 studied the interaction between the uninfected cells,
the infected cells and the free virus [10]. In 2012, Buonomo and Vargas-De-Leon decompose the infect class into two classes that represent
the infected cells in latent stage and one other in active phase [13]. Recently, Sun et al. [14] suggested a modified model of Buonomo and
Vargas-De-Leon by considering a saturated infection rate, this rate is more realistic than the mass action one since it describes the virus
crowd near the uninfected cell [15, 14, 16]. On the other hand, it is well known that the cellular immune response plays an essential role to
control the viral infection by killing the infected cells [16, 17, 18, 19, 20, 21, 22]. For instance, in a recent work, Allali et al. [16] add the
component that represents the cellular immunity into the model already presented by Sun et al. [14] and show how the immunity participates
in reducing viral replication.
Nowadays, fractional calculus is one of the better mathematical tools to characterize the memory of many complex systems [23, 24]. Indeed,
hereditary and memory in several evolutionary problems need to be modeled via fractional derivatives. In particular, the mathematical
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modeling in biological systems requires time-fractional derivative since the dynamics of each biological component depends on the
previous history of its proper evolution [25, 26, 27]. Therefore, fractional order differential modeling is better than the integer order one
to describe the dynamics of many natural phenomena that can happen in physics, chemistry and biochemistry, hydrology, medicine and
finance [28, 29, 30, 31, 32, 33, 34]. Recent studies have shown that fractional derivatives play a significant role in accurately modeling the
propagation and dynamics of infectious diseases. Unlike classical integer-order models, fractional-order models incorporate memory and
hereditary properties, which are essential for capturing the complex behavior of real-world epidemiological systems. These models have
proven particularly effective in describing the long-term behavior of disease spread, latency periods, and immune responses. The use of
fractional calculus enables researchers to better fit empirical data and account for anomalous diffusion and sub-exponential growth patterns
often observed in real outbreaks. Furthermore, fractional models provide deeper insights into the effectiveness of control strategies, such
as vaccination and quarantine, by reflecting how past states influence current dynamics. As a result, the inclusion of fractional derivatives
enhances the predictive power and realism of infectious disease models, offering valuable tools for public health planning and response
[35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. Motivated by the previous works, we extend in this study the recent work presented in [16] by
using the fractional order derivatives in each model component. The model that we suggest is given by the following nonlinear system:



Dα x = λ −d1x− k1xv
x+ v

,

Dα s =
k1xv
x+ v

−d2s− k2s,

Dα y = k2s−d3y− pyz,

Dα v = ay−d4v,

Dα z = cyz−bz.

(1.1)

With the initial conditions x(0) = x0, s(0) = s0, y(0) = y0, v(0) = v0 and z(0) = z0. The Caputo fractional derivative of order α > 0 is
defined as follows :

Dα
ψ(t) =

1
Γ(1−α)

∫ t

0

ψ ′(s)
(t− s)α

ds, (1.2)

where Γ(.) is Gamma function.
In this model, x, y, s, v and z denote the concentration of uninfected cells, infected cells, exposed cells, free virus and CTL cells, respectively.

Susceptible host cells are produced at a rate λ , die at a rate d1x and become infected by virus at a rate
k1xv
x+ v

. Exposed cells die at a rate

d2s and become infected at a rate of k2s. Infected cells increase at rate k2s, die at rate d3y and are killed by the CTL response at a rate pyz.
Free virus is produced by infected cells at a rate ay and decays at a rate d4v. Finally, CTLs expand in response to viral antigen derived from
infected cells at a rate cyz and decay in the absence of antigenic stimulation at a rate bz. In this paper, we will study this new fractional
derivative model (1.1) taking into account the memory in each viral infection component. We will check the impact of the fractional
derivative order on the stability of viral infection equilibria.
The rest of the paper is organized as follows. In Section 2, deals with some basic proprieties of the solution and the steady states result. In
Section 3, the global stability of each steady states is established. Numerical simulations are presented in Section 4 to support the theoretical
findings. Concluding remarks are given in the last section.

2. Positivity, boundedness and equilibria

2.1. Positivity and boundedness

For the problems dealing with biological cell dynamics, the cell densities should remain non-negative and bounded. In this subsection, we
will establish the positivity and boundedness of solutions of the model (1.1). First of all, for biological reasons, the parameters x0, s0, y0, v0
and z0 must be larger than or equal to 0. For the existence, positivity and boundedness of the problem solution, we have the following result:

Proposition 2.1. For any non-negative initial conditions (x0,s0,y0,v0,z0), the system (1.1) has a unique solution. Moreover, this solution is
non-negative and bounded for all t ≥ 0.

Proof. First, the model (1.1) can be rewritten as follows:

Dα X = B+A1X + yA2X +
v

x+ v
A3X , (2.1)

where

X =


x
s
y
v
z

 , B =


λ

0
0
0
0

 ,

A1 =


−d1 0 0 0 0

0 −(d2 + k2) 0 0 0
0 k2 −d3 0 0
0 0 a d4 0
0 0 a 0 b

 ,
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A2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 −p
0 0 0 0 0
0 0 0 0 c


and

A3 =


−k1 0 0 0 0
k1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

From (2.1), we have

‖ Dα X ‖≤‖ B ‖+(‖ A1 ‖+ ‖ y ‖‖ A2 ‖+ ‖ A3 ‖) ‖ X ‖ .

Hence, the conditions of Lemma 4 in [27] are satisfied. Therefore, the system (1.1) has a unique solution on [0,+∞).
Now, we will prove the nonnegativity of solution. First, we have

Dα x |x=0= λ ≥ 0,

Dα s |s=0=
k1xv
x+ v

≥ 0,

Dα y |y=0= k2s≥ 0,

Dα v |v=0= ay≥ 0

and

Dα z |v=0= 0≥ 0,

this shows that the solution of system (1.1) is non-negative.
About the boundedness of the solutions; if we assume that

N = x+ s+ y+
p
c

z,

then, we will have

Dα N(t) = λ −d1x−d2s−d3y− bp
c

z,

≤ λ −ρN(t),

with ρ = min{d1,d2,d3,b}. Therefore

N(t) ≤ N(0)Eα (−ρtα )+
λ

ρ
((1−Eα (−ρtα )) ,

where Eα (u) = ∑
+∞

j=0
u j

Γ(α j+1)
is the Mittag-Leffler function of parameter α .

Since 0≤ Eα (−ρtα )≤ 1, then

N(t) ≤ N(0)Eα (−ρtα )+
λ

ρ
.

This fact, implies that x, s, y and z are bounded.
Using the fourth equation of system (1.1), we will have

v(t)≤ v(0)+
a
d4
‖y‖∞.

then the last variable of the problem v is also bounded.
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2.2. Disease free equilibrium and endemic equilibria

The system (1.1) has a disease-free equilibrium E f = (
λ

d1
,0,0,0,0), corresponding to the maximal level of healthy cells. The basic

reproduction number of our model is given as follows:

R0 =
ak1k2

d3d4(d2 + k2)
, (2.2)

In addition to the disease-free equilibrium, the system (1.1) admits three endemic equilibria. The first of them is E1 = (x1,s1,y1,v1,0) called
the free-immune endemic equilibrium, where

x1 =
λ

d1 + k1(1− 1
R0
)
,

s1 =
k1λ (R0−1)

(d2 + k2)(R0d1 + k1(R0−1))
,

y1 =
d4λ (R0−1)

ad1 +ak1(1− 1
R0
)
,

v1 =
λ (R0−1)

d1 + k1(1− 1
R0
)
.

The second endemic steady state is E2 = (x2,s2,y2,v2,z2) called the infection equilibrium with immunity, where

x2 =
−abd1−abk1 +λcd4 +

√
A

2cd1d4
,

s2 =
d3R0

k2

b(−abd1−abk1 +λcd4 +
√

A)
c(abd1−abk1 +λcd4 +

√
A)

,

y2 =
b
c
,

v2 =
ba
cd4

,

z2 =
d3((R0−1)(−ak1b+λcd4 +

√
A)−abd1(R0 +1))

p(abd1−ak1b+λcd4 +
√

A)
.

The third infection steady state is E3 = (x3,s3,y3,v3,z3), where

x3 = −abd1 +abk1−λcd4 +
√

A
2cd1d4

,

s3 =
k1x3v3

(k2 +d2)(x3 + v3)
,

y3 =
b
c
,

v3 =
ba
cd4

,

z3 =
k2s3−d3y3

py3
,

with A = (abk1−λcd4)
2 +a2b2d2

1 +2a2b2d1k1 +2λabcd1d4.

• Since x3 < 0, the last infection steady state E3 will not be taken into consideration.
• From the components of E1, it is clear that when R0 > 1, this endemic point exists.
• In order to classify the dynamics of our model, we define the following CTL immune response reproduction number

RCT L =
cy1

b
=

cd4λR0(1− 1
R0
)

abd1 +abk1(1− 1
R0
)
.

It is clear that the second endemic state E2 exists when RCT L > 1.

3. Global stability results

In this subsection, we study the global stability of each equilibrium. To this end, we will construct an appropriate Lyapunov functional for
each case.
Fist, we will study the global stability of the disease-free equilibrium.

Proposition 3.1. The free-infection equilibrium E f is globally stable when R0 ≤ 1.
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Proof. Let’s consider the following Lyapunov function:

L (x,y,s,v,z) = s+
d2 + k2

k2
y+

d3(d2 + k2)

ak2
v+

p
c

d2 + k2

k2
z.

Then,

DαL (x,y,s,v,z) = Dα s+
d2 + k2

k2
Dα y+

d3(d2 + k2)

ak2
Dα v+

p
c

d2 + k2

k2
Dα z.

DαL (x,y,s,v,z) =
k1xv
x+ v

− (d2 + k2)s+
d2 + k2

k2
(k2s−d3y)− d2 + k2

k2
pyz+

d3(d2 + k2)

ak2
(ay−d4v)+

p
c

d2 + k2

k2
(cyz−bz)

DαL (x,y,s,v,z) =
k1xv
x+ v

− d3d4(d2 + k2)

ak2
v− bp

c
d2 + k2

k2
z

DαL (x,y,s,v,z) ≤ k1v− d3d4(d2 + k2)

ak2
v

≤ d3d4(d2 + k2)

ak2
(R0−1)v.

So DαL ≤ 0 when R0 < 1. Moreover, DαL ≤ 0 when v = 0. The largest compact invariant is

E = {(x,y,s,v,z)|v = 0}.

So, lim+∞ v(t) = 0, the limit system of equations is 
Dα x = λ −d1x,
Dα s =−d2s− k2s,
Dα y = k2s−d3y− pyz,
Dα z = cyz−bz.

We define another Lyapunov function (for simplicity, we will use the same notation)

L (x,s,y,z) =
1
x0

(
x− x0− x0 ln

x
x0

)
+ s+

d2 + k2

k2
y+

p
c

d2 + k2

k2
z.

Since x0 =
λ

d1
, we have

DαL (x,s,y,z) ≤ d1

(
2− x

x0
− x0

x

)
− d3(d2 + k2)

k2
y− pb

c
z,

Using the fact that, the arithmetic mean is greater than or equal to the geometric mean, we have

2− x
x0
− x0

x
≤ 0,

then DαL ≤ 0 and the equality holds if x = x0 and s = y = z = 0, which prove the global stability of E f .
About the global stability of the free-immune endemic equilibrium E1, we have the following result

Proposition 3.2. If R0 > 1 and RCT L ≤ 1, then the free-immune endemic equilibrium E1 is globally stable.

Proof. First, we use the following Lyapunov function:

L1(x,y,s,v,z) = x− x1−
∫ x

x1

(d2 + k2)s1
k1uv1

u+ v1

du+ s− s1− s1 ln
s
s1

+
d2 + k2

k2
(y− y1− y1 ln

y
y1

)+
d3(d2 + k2)

ak2
(v− v1− v1 ln

v
v1

)+
p
c

d2 + k2

k2
z.

Then,

DαL1(x,y,s,v,z) ≤ Dα x− (d2 + k2)s1
x+ v1

k1xv1
Dα x+Dα s− s1

s
Dα s+

d2 + k2

k2

(
1− y1

y

)
Dα y+

d3(d2 + k2)

ak2

(
1− v1

v

)
Dα v+

p
c

d2 + k2

k2
Dα z.

This fact implies that

DαL1(x,s,y,v,z) ≤
(

λ −d1x− k1xv
x+ v

)(
1− (d2 + k2)s1

x+ v1

k1xv1

)
+

k1xv
x+ v

− (d2 + k2)s−
s1

s

(
k1xv
x+ v

− (d2 + k2)s
)

+
d2 + k2

k2
(k2s−d3y− pyz)− d2 + k2

k2

y1

y
(k2s−d3y− pyz)+

d3(d2 + k2)

ak2
(ay−d4v)− d3(d2 + k2)

ak2

v1

v
(ay−d4v)

+
p
c

d2 + k2

k2
(cyz−bz).

Since, 
λ = d1x1 +(d2 + k2)s1,
k1x1v1

x1 + v1
= (d2 + k2)s1,

s1

v1
=

d3d4

ak2
,

y1

v1
=

d4

a
,

s1

y1
=

d3

k2
.
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We have

DαL1(x,s,y,v,z) ≤ λ −d1x− (d2 + k2)s1
x+ v1

k1xv1

(
λ −d1x− k1xv

x+ v

)
− s1

s

(
k1xv
x+ v

)
+(d2 + k2)s1 +

d2 + k2

k2
py1z

+
(d2 + k2)d3

k2
y1− (d2 + k2)s

y1

y
− d3d4(d2 + k2)

ak2
v+

d3d4(d2 + k2)

ak2
v1−

d3(d2 + k2)

k2

v1y
v
− d2 + k2

k2

bp
c

z.

However, we know that
λ −d1x = d1x1 +(d2 + k2)s1−d1x,

λ −d1x− (d2 + k2)s1
x+ v1

k1xv1

(
λ −d1x− k1xv

x+ v

)
= d1x1

(
1− x

x1
− x1

x
x+ v1

x1 + v1
+

x+ v1

x1 + v1

)
+(d2 + k2)s1

(
1− x1

x
x+ v1

x1 + v1
+

v
v1

x+ v1

x+ v

)
,

− s1

s

(
k1xv
x+ v

)
+(d2 + k2)s1 =−

s1

s
xv

x1v1

x1 + v1

x+ v
(d2 + k2)s1 +(d2 + k2)s1,

then,

DαL1 ≤ d1x1

(
1− x

x1
− x1

x
x+ v1

x1 + v1
+

x+ v1

x1 + v1

)
+(d2 + k2)s1

(
1− x1

x
x+ v1

x1 + v1
+

v
v1

x+ v1

x+ v

)
+ (d2 + k2)s1

(
1− s1

s
xv

x1v1

x1 + v1

x+ v

)
+(d2 + k2)s1

(
1− sy1

s1y
− v

v1

)
+ (d2 + k2)s1

(
1− v1y

y1v

)
+ pz

d2 + k2

k2
(y1−

b
c
).

Therefore,

DαL1 ≤ − d1v1

x(x1 + v1)
(x− x1)

2 +(d2 + k2)s1

(
−1− v

v1
+

v
v1

x+ v1

x+ v
+

x+ v
x+ v1

)
+ (d2 + k2)s1

(
5− x1

x
x+ v1

x1 + v1
− s1

s
xv

x1v1

x1 + v1

x+ v
− sy1

s1y
− yv1

y1v
− x+ v

x+ v1

)
+ pz

d2 + k2

k2
(y1−

b
c
),

As a result

DαL1 ≤ − d1v1

x(x1 + v1)
(x− x1)

2− (d2 + k2)s1

(
x(v− v1)

2

v1(x+ v1)(x+ v)

)
+ (d2 + k2)s1

(
5− x1

x
x+ v1

x1 + v1
− s1

s
xv

x1v1

x1 + v1

x+ v
− sy1

s1y
− yv1

y1v
− x+ v

x+ v1

)
+ p

d2 + k2

k2

b
c
(RCT L−1)z,

since the arithmetic mean is greater than or equal to the geometric mean, then

5− x1

x
x+ v1

x1 + v1
− s1

s
xv

x1v1

x1 + v1

x+ v
− sy1

s1y
− yv1

y1v
− x+ v

x+ v1
≤ 0.

When RCT L ≤ 1, we have DαL1 ≤ 0, and the equality holds when x = x1, y = y1, s = s1 and v = v1. The free-immune endemic equilibrium
E1 is globally stable when R0 > 1 and RCT L ≤ 1.
Finally, the global stability result concerning the endemic equilibrium with immunity E2 is given as follows

Proposition 3.3. The endemic equilibrium with immunity E2 is globally stable, when R0 > 1 and RCT L > 1.

Proof. First, we define the following Lyapunov function

L2(x,s,y,v,z) = x− x2−
∫ x

x2

(d2 + k2)s2
k1uv2

u+ v2

du+ s− s2− s2 ln
s
s2

+
d2 + k2

k2
(y− y2− y2 ln

y
y2

)+
d3(d2 + k2)+(d2 + k2)pz2

ak2

× (v− v2− v2 ln
v
v2

)+
p
c

d2 + k2

k2
(z− z2− z2 ln

z
z2
).

Then

DαL2(x,y,s,v,z)≤ Dα x− (d2 + k2)s2
x+ v2

k1xv2
Dα x+Dα s− s2

s
Dα s+

d2 + k2

k2
(Dα y− y2

y
Dα y)

+
d3(d2 + k2)+(d2 + k2)pz2

ak2
(Dα v− v2

v
Dα v)+

p
c

d2 + k2

k2
(Dα z− z2

z
Dα z).

So,

DαL2(x,y,s,v,z)≤ λ −d1x− x2

x
x+ v2

x2 + v2
(λ −d1x)+((d2 + k2)s2)

v
v2

x2 + v2

x+ v
− (d2 + k2)s

− s2

s

(
k1xv
x+ v

− (d2 + k2)s
)
+

d2 + k2

k2
(k2s−d3y− pyz)

−d2 + k2

k2

y2

y
(k2s−d3y− pyz)+

d3(d2 + k2)+(d2 + k2)pz2

ak2

×(ay−d4v)− d3(d2 + k2)+(d2 + k2)pz2

ak2

v2

v
(ay−d4v)

+
p
c

d2 + k2

k2
(cyz−bz)− pz2

cz
d2 + k2

k2
(cyz−bz).
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On the other hand, we have

s2

y2
=

d3

k2
+

pz2

k2
,

y2

v2
=

d4

a
,

s2

v2
=

d3d4

ak2
+

d4 pz2

ak2
,

λ −d1x = d1x2 +d2 + k2)s2−d1x,

λ −d1x− (d2 + k2)s2
x+ v2

k1xv2

(
λ −d1x− k1xv

x+ v

)
= d1x2(1−

x
x2
− x2

x
x+ v2

x2 + v2

+
x+ v2

x2 + v2
)+(d2 + k2)s2(1−

x2

x
x+ v2

x2 + v2
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Therefore, we have
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Also, since the arithmetic mean is greater than or equal to the geometric mean, we have
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≤ 0,

which means that DαL2 ≤ 0, and the equality holds when x = x2, s = s2, y = y2, v = v2 and z = z2. The endemic equilibrium with immunity
E2 is globally stable.

4. Numerical simulations

In this section, we will perform some numerical simulations of the system (1.1) by using the parameters values from Table 1. The purpose of
our numerical simulations will be to support our theoretical findings and to observe the impact of the fractional derivative order on the steady
states stability.
Indeed, the first Fig. 4.1 shows the behavior of the viral dynamics during the first 80 days of the infection, for the parameters corresponding
the stability of the free-disease equilibrium. We can see that all the curves corresponding to exposed cells, infected cells, virus and CTL
cells vanish. However, the amount of the uninfected cells increases to reach its maximal level. This situation corresponds to the case of
the disease-free equilibrium stability. More precisely, for the used parameters in this figure, we have the basic reproduction number is
less than unity R0 = 0.2209 < 1; we clearly see that, in this case, the solution of the system converge to the disease-free equilibrium point
E f = (827.22,0,0,0,0). This numerical result is consistent with the theoretical result concerning the stability of the disease-free equilibrium
E f .
About the numerical simulations concerning the stability of the two endemic equilibria, we have the following results: First, Fig. 4.2 shows
the behavior of the infection for the first 100 days of observation for the problem parameters corresponding to the immune-free equilibrium
stability. The chosen parameters in this figure ensure that the basic reproduction number is greater than unity (R0 = 11.049 > 1) and the
immune response reproduction number is less than unity (RCT L = 3.596×10−1 < 1). It is clearly seen that, in this case, all the solutions
converge towards the immune-free endemic equilibrium E1 = (19.96,5.98×10−1,1.14,199.78,0) which agrees with our theoretical finding
concerning the stability of the first endemic equilibrium E1. This absence of effective CTL activity can lead to uncontrolled viral replication,
persistent infection, and increased pathogenicity. Finally, Fig. 4.3 illustrates the disease dynamics when both the basic reproduction
number and the immune response reproduction number are greater than unity. Indeed, for the chosen parameters in this figure, we have
R0 = 11.049 > 1 and RCT L = 4.13 > 1. It can be seen that the infection persists and the convergence towards the infection steady state
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Table 1: Parameters, their symbols and default values used in the suggested viral model

Parameters Meaning Value References

λ Source rate of uninfected cells [0,10] [16]
k1 Average of infection [2.5×10−4,0.5] [16]
d1 Decay rate of healthy cells 0.0139 [16]
d2 Death rate of exposed cells 0.0495 [16]
k2 The rate that exposed become infected

cells
1.1 [16]

d3 Death rate of infected cells, not by CTL
killing

0.5776 [16]

a The rate of production the virus by in-
fected cells

[2,1250] [16]

d4 Clearance rate of virus [0.3466,2.4] [16]
p Clearance rate of infection 0.0024 [16]
c Activation rate CTL cells 0.15 [16]
b Death rate of CTL cells 0.5 [16]
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Figure 4.1: The dynamics of the viral infection when λ = 10, d1 = 0.0139, k1 = 0.04, d2 = 0.0495, k2 = 1.1, d3 = 0.5776 , a = 2, d4 = 0.6, p = 0.0024,
c = 0.15, b = 0.5.

E3 = (285.12,6.55,3.33,555.55,660.86) is observed. We note that from the three previous numerical results, the order of the fractional
derivative α has no effect on the stability of the three equilibria. However, for higher values of α , which describes the long memory behavior,
the solutions converge more quickly to the steady states. The presence of a robust cytotoxic T lymphocyte (CTL) response is crucial for
controlling viral infections. An effective CTL response helps limit viral replication, facilitates the clearance of infected cells, and reduces
the likelihood of persistent infection and disease progression. This immune activity is a key factor in the resolution of many acute viral
infections and contributes significantly to the overall antiviral defense. Enhancing CTL responses remains a central goal in the development
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Figure 4.2: The evolution of the viral infection for λ = 1, d1 = 0.0139, k1 = 0.04, d2 = 0.0495, k2 = 1.1, d3 = 0.5776 , a = 100, d4 = 0.6, p = 0.0024,
c = 0.15, b = 0.5.

of vaccines and immunotherapies.

5. Conclusion

In this paper, the dynamics of the viral infection model is studied by taking into account the memory effect. The Caputo fractional derivative
and the cellular immunity are taken into consideration in the mathematical formulation of the model. The positivity and boundedness of
solutions are proved. Moreover, it has been established that the proposed model has three steady states, namely, the disease-free equilibrium
E f , the infection steady state without cellular immunity E1 and the infection steady state with cellular immunity E2. The global stability of
the disease-free equilibrium and the endemic equilibria are established. Finally, some numerical simulations are presented in order to support
the theoretical findings. Both the theoretical and the numerical results reveal that the order of the fractional derivative α has no effect on the
steady states stability. Moreover, for higher values of α , which describes the long memory behavior, the solutions converge more quickly to

the steady states. This result can be explained by the memory term
1

Γ(1−α)(t−u)α
included in the fractional derivative which represents

the time needed for the interaction between cells and viral particles and the time needed for the activation of the cellular immune response.
These findings highlight the usefulness of incorporating fractional-order calculus into infectious disease modeling. The ability of the model
to reflect memory-dependent biological processes, such as delayed immune responses or prolonged infection stages, provides a more realistic
framework compared to classical models. Furthermore, the proposed numerical simulations offer valuable insights into how memory effects
influence the system’s dynamic behavior over time. They also demonstrate the flexibility and robustness of the fractional-order model in
simulating different scenarios of viral dynamics under varying immune conditions. Such insights can be instrumental in guiding therapeutic
strategies and improving understanding of immune system-virus interactions.
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Figure 4.3: The behavior of the viral infection for λ = 10, d1 = 0.0139, k1 = 0.04, d2 = 0.0495, k2 = 1.1, d3 = 0.5776 , a = 100, d4 = 0.6, p = 0.0024,
c = 0.15, b = 0.5.
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