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1. Introduction 
The author has published a number of articles using torus 
representation (Kuman, 2019a; Kuman, 2019b). Since the 
electromagnetic fields of our Sun (and the planets orbiting it) 
have the shape of a torus (donut), their simplest and most 
elegant mathematical description is in torus coordinates, 
which offer a graphical representation enabling us to see what 
is happening. Nonlinear mathematical model was used in 
this article to explain why the axes of all stars in the Milky 
Way were found to be tilted and wobbling.   
 
2. Nonlinear Mathematical Model 
We are trying to describe mathematically the wobbling of the 
stars, which are periodic functions. They will be solutions of 
our equation of evolution. Since the solutions are periodic, 
according to the nonlinear theory (Iooss and Joseph, 1980), 
the equation of evolution will be non-autonomous, which 
means the function F describing the evolution will depend 
directly on the time t. 

dU/dt = F(t, µ, U) = F(t+nT, µ, U) (1) 
 
where U(t) = U(t+nT) 
 
If perturbation v is present, the evolution equation will be. 
 

d(u+v)/dt = f(t, µ, u (µ, t) + v (t)) (2) 
 
where u (µ, t) + v (t)) = u (µ, t + nT) + v (t + nT)) is the new 
equilibrium solution. 
 
Let expand the function u in a series around the initial point 
u=0. 
 

du/dt = f(t,µ,u)=fu(t,µ│u)+½fuu(t,µ│u)+1/3!fuuu (t,µ│u)+… (3) 
 
Let us write this as 
 

du/dt = fu (t,µ│u) + N(t,µ,u) (4) 
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Our galaxy is warped because it had swallowed a smaller galaxy in the past - the 
Sagittarius Dwarf Galaxy, which we can still see in our telescopes orbiting around the 
center of our Galaxy while being gradually assimilated. As the Sagittarius Dwarf Galaxy 
orbits around the central Black Hole of our galaxy, the powerful magnetic field (which 
its central Black Hole cranks) makes the axes of all stars in the galaxy tilted and wobbling 
in synchrony with the Sagittarius Dwarf orbiting. Also, the presence of this smaller galaxy 
(with a Black Hole weighting millions of Solar masses) is the factor that elongated the 
circular orbits of all planets in our galaxy into ellipses. Before our galaxy swallowed the 
Sagittarius Dwarf Galaxy, the earth’s orbit was a circle and the earth’s year was 360 days, 
after our galaxy swallowed the Sagittarius Dwarf Galaxy, the Earth’s orbit became 
elliptical and the Earth’s year became 365 days 6 hours and 42 minutes. The Aztecs and 
Mayas called the 5 additional days in the year ‘unlucky days’ because the presence of the 
Sagittarius Dwarf Galaxy into our galaxy brought a lot of misfortunes on Earth. 
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where N(t,µ,u) includes all nonlinear terms. 
 

N(t,µ,u) = f(t,µ,u) – fu(t,µ│u) (5) 
 
Let u = ε + v. Then 
 

dv/dt = f(µ(ε), ε + v) – f(µ(ε), ε) (6) 
 
After representing f(µ(ε), ε + v) as 
 

f(µ(ε), ε + v) = f(µ(ε), ε) + fε (µ(ε), ε)v + R(ε, v) (7) 
 
Assuming the perturbation is small and neglecting all 
nonlinear terms R(ε, v), we are getting. 
 

dv/dt = fε (µ(ε), ε)v (8) 
 
Assuming now that fε (µ(ε), ε) does not depend on t and 
replacing it with  
 

σ(ε) = fε (µ(ε), ε)  (9) 
 
We are getting for v the expression. 
 

v (t) = v0 e σ(ε)t (10) 
 
where v(0) = v0 and σ(ε) is called exponent of Flock (Iooss and 
Joseph, 1980). 
 
In the common case 
 

σ(ε) = ξ(ε) + iη(ε) (11) 
 
This allows us to substitute v(t) with 
 

v(t) = e σ(ε)t ζ (10’) 
 
The equation  
 

dv/dt = fu(t, µ(ε),u(t, ε) │v) = fu(t + nT, µ(ε),u(t, ε) │v) (11) 
 
Can be also written as 
 

dv/dt = A(µ)v (12) 
 
or 
 

dvi/dt = Aijvj (12’) 
 
Let us introduce the operator.  
 

J(ε) = -d/dt + fu (t, µ(ε), 0 │v) (13) 
 
Then 
 

J(ε) ζ= σ(ε) ζ (13’) 
 
And σ(ε) are the eigenvalues of the operator J(ε), where ε is 
the amplitude of change on the torus in torus representation. 
ε is proportional to the intensity of perturbation. 
  

              2π 

ε = 1/2π ∫ ρ(θ, μ)dθ.    
             0 

(14) 

In our case, the amplitude of change ε determines the 
deviation of the wobbling  stars’ axes of spinning with 
eccentricities ε of their wobbling (Kuman, 2019a). 
 
3. Torus Representation with a Different Set of Parameters 
Instead of the torus variables used in §2: ρ - radius of the torus, 
0 ≤ θ ≤ 2 π - angle describing the thickness of the torus, and 0 
≤ φ ≤ 2 π - angle measured at the center of the torus, let us 
use the variables of Action I and angle 0 ≤ θ ≤ 2 π used by 
Michael Barnsley in Barnsley (1986).  
 
Instead of the equations 
 

p = ∂H/∂q; q = ∂H/∂p (15) 
 
Used in Decart coordinates, let us use in torus representation 
the equations. 
 

ω = dθ/dt = ∂H/∂ I; I = - ∂H/∂ θ (16) 
 
In this representation the energy is no longer divided to 
kinetic and potential. Systems that can be represented in this 
form are by definition integrable. Each integrable system 
with L degrees of freedom has L independent constants of 
motion. The motion is: 
 

θ (t) = θ (0) + ω t = θ0 + ωt (17) 
 
Generally, the motion is multiply periodic, thus admitting 
Fourier expention. 
 

q(t) = Σ qm (t)exp (θ0 + ωt); p(t) = Σ pm (t)exp (θ0 + ωt); (18) 
 
L-irreducible circuits represent each L-dimensional torus. 
Then the L-variables can be associated with the symplectic 
(linear) area of the L-irreducible circuits of the l-dimensional 
torus, as long as all possible deformations of a given 
irreducible loop have the same action. 
 
This condition is satisfied by invariant tori of an integrable 
system because all the deformations of an irreducible circuit 
are obtained by adding to it a reducible loop of zero action. 
If so, we can define the action variable as: 
 

Ij = (1/2π) ∫ p dq (19) 
 
Taken over the j-th irreducible circuit.    
 
It is not difficult to show that the variables θ are canonically 
conjugated to I. The existence of a generating function S(p, 
q)= ∫p(q)dq follows the Lagrangean property of the torus. The 
function S takes multiple values because the plane q = const 
intersects the L-dimensional torus in a discrete number of 
points within the 2L-dimensional phase space.  
By choosing S as a generating function for the canonical 
transformation (p,q) -> (I, θ), we can define the 
transformation as; 
 

∂S/∂q = p -> ∂S/∂I = θ’ (20) 
 
For an irreducible circuit ΩI of the torus, the change of the 
angle θj’ is simply. 
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Δ θj’ = ΔΩ ∂S/∂Ij = ∂ΔS/∂Ij = ∂/∂Ij (2π Ij) = 2πδij (21) 
 
The conjugate angles θj = θj’ are privileged angle coordinates 
of the torus (Ozorio de Almeida, 1988). 
 
Let the unperturbed Hamiltonian is H0 (I). Let us consider 
perturbation v that changes the unperturbed Hamiltonian H0 
(I) to H(I). 
 

H (I) = H0 (I) + ε H’ (I, θ) (22) 
 
Let the perturbation be a multiple periodic function. Thus, let 
 

H’ (I, θ) = Σ H’m (I) eimθ (23) 
 
Where m is adequate of the magnetic quantum number and 
reflects the projection of the magnetic influence of Sagittarius 
Dwarf Galaxy on our Galaxy.  
 
Then the function that generates the transformation 
 

S (I’, θ) = I’. θ + ε S’ (I’, θ) (24) 
 
where;  
 

S’ (I’, θ) = Σ S’m (I’) eimθ (25) 
 
From the transform definition (38) 
 

θ’ = ∂S/∂I’ = θ + ε ∂S’(I’, θ) /∂ I’;  
I = ∂S/∂ θ = I’ + ε ∂S’(I’, θ) /∂ θ; (26) 

 
or 
 

θ = θ’ - ε ∂S’(I’, θ) /∂ I’+ O (ε2); 
I = I’ + ε ∂S’(I’, θ) /∂ θ + O (ε2) (27) 

Since the Hamiltonian is invariant to this transformation, 
with accuracy up to O (ε2) we should have. 
 

∂S’(I’, θ) /∂ θ = im Σ S’m (I’) eimθ 

ω ∂S’(I’, θ) /∂ θ = imω Σ S’m (I’) eimθ =imω S’(I’,θ)= -Σ H’m (I’) eimθ 
(27) 

  
4. Conclusion 
The presence of the Sagittarius Dwarf Galaxy in our Galaxy 
perturbs gravitationally and magnetically (through the 
powerful magnetic field of its Black Hole) the movement of 
all stars in the Milky Way making their axes of spinning to 
be tilted and wobble in synchrony with the orbiting (of the 
Black Hole and the leftover stars) of the Sagittarius Dwarf 
Galaxy around the center of our galaxy. It also elongated the 
circular orbits of the planets orbiting the stars to ellipses. 
Before the Sagittarius Dwarf Galaxy was swallowed, the 
earth orbited the Sun in a circular orbit for 360 days. Now 
(when the Sagittarius Dwarf Galaxy is present) our earth 
orbits the Sun in elliptical orbit for 365 days 6 hours and 42 
minutes. 
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