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Exoplanets are among the most studied and remarkable topics in astronomy. Over the years, 
various methods have emerged for exoplanet detection, allowing for the identification of 
numerous exoplanet types. In this context, remote sensing and machine learning, which are 
central to our research, have significantly accelerated the detection process by leveraging 
algorithms. Our study involved training several machine learning models, including XGBoost, 
Random Forest, Multilayer Perceptron, K-Nearest Neighbor, Logistic Regression, and Support 
Vector Classifier, to compare their performance in both habitability assessment and exoplanet 
detection. The research utilized machine learning models trained on space observation data 
obtained from NASA, with the Python programming language serving as the foundation for the 
system's infrastructure. Our hypothesis was that "The detection of exoplanets and their 
evaluation within the scope of the habitability criterion can be increased to high accuracy rates 
with machine learning." Unlike merely detecting exoplanets, this study specifically aimed to 
identify Earth-like exoplanets. The XGBoost algorithm emerged as the most successful model 
in determining habitability, achieving an accuracy rate of 97.46% and demonstrating high 
precision and sensitivity. For exoplanet detection, all models achieved a main test accuracy 
rate of 96%; however, when considering sensitivity and precision, XGBoost was again the most 
effective. This research, following the synthesis and analysis of these two parameters, achieved 
a very high success rate compared to previous studies and made a significant contribution to 
the astronomy/astrophysics literature. Additionally, a Graphical User Interface (GUI) was 
developed, making the tested models functional through an application. The study successfully 
reached its goal of contributing important findings to the field. 

EXOLIFE: Makine Öğrenmesi Kullanarak Ötegezegenlerin Tespit Edilmesi ve 
Yaşanabilirlik Tahmini Yapılması  

Anahtar Kelimeler: ÖZ 
Ötegezegen 
NASA 
Makine Öğrenmesi 
XGBoost 
Biyoimza 

 

Ötegezegenler, günümüzde astronomi alanında en çok çalışılan konular arasında yer 
almaktadır. Farklı türlerde oluşan ötegezegenlerin tespiti için çeşitli yöntemler geliştirilmiş ve 
bu sayede saptama mümkün hale gelmiştir. Bu araştırmada, ötegezegen tespiti için kullanılan 
uzaktan algılama ve makine öğrenmesi yöntemleri, algoritmalarla süreci hızlandırmaktadır. 
Projede, XGBoost, Rastgele Orman, Çok Katmanlı Algılayıcı, K-En Yakın Komşu, Lojistik 
Regresyon ve Destek Vektör Sınıflandırıcısı modelleri eğitilmiş ve hem yaşanılabilirlik hem de 
ötegezegen tespiti için karşılaştırmalar yapılmıştır. NASA verileriyle eğitilen bu makine 
öğrenmesi sistemi, Python yazılım diliyle oluşturulmuştur. Çalışma, “Ötegezegenlerin tespiti 
ve yaşanılabilirlik ölçütü kapsamında değerlendirilmesi makine öğrenmesi ile yüksek 
doğruluk oranlarına çıkarılabilir.” hipotezine dayanarak Dünya benzeri ötegezegenleri 
bulmayı hedeflemiştir. Sonuçlarda, yaşanılabilirlik saptamasında %97.46 doğruluk oranı ile 
XGBoost algoritması en başarılı model olarak öne çıkmıştır. Gezegen tespitinde de %96’lık 
doğruluk oranıyla XGBoost, en başarılı model olmuştur. Araştırma, yüksek başarı oranıyla 
astronomi/astrofizik literatürüne önemli katkılar sağlamıştır. Ayrıca, çalışmanın sonucunda 
bir Grafiksel Kullanıcı Arayüzü (GUI) oluşturulmuş ve test edilen modeller işlevsel hale 
getirilmiştir. 
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1. INTRODUCTION  
 
Exoplanets are planets that orbit stars outside 

the solar system. In recent years, scientists have 
carried out various studies on planets beyond the 
solar system and have planned long-term studies 
under this title (Patel, 2021). The idea of finding new 
habitable planets has been a topic of concern for 
researchers over the years, but as of today, 
exoplanets have made this issue a central issue 
again. It is predicted that exoplanets, which are also 
of great interest to the society, will become the 
center point of astronomy research in the coming 
years (Xin, 2022). When classifying exoplanets, 
scientists have divided them into four main 
categories based on their size: Terrestrial Planets, 
Super-Earths, Neptune-Like Planets, and Gas Giants 
(NASA, 2022). Terrestrial planets are rocky planets 
with Earth-like masses and iron-rich cores. Super-
Earths, as the name suggests, are planets that are 
much larger than Earth but smaller than Uranus or 
Neptune. Neptune-like planets often have 
atmospheres with density H 2/He similar to those of 
Neptune (Helled, 2020). Finally, gas giants are 
gaseous planets with a size similar to or much larger 
than Saturn or Jupiter.  

Various techniques have been developed for the 
detection of exoplanets and different areas such as 
remote sensing have become available through 
advancing technology. In this context, the four main 
known techniques are; the transition method is the 
radial velocity method, microlensing, and direct 
imaging (Dai, 2021). The transition method is 
currently the most useful technique. When a planet 
passes in front of a star, some of the starlight that is 
emitted bounces off that planet's atmosphere and 
reaches the earth. Through the transit method, as 
shown in Figure 1, the use of radiated light and 
gravitational force helps provide information about 
the planet's atmospheric chemical compositions and 
habitability. In the radial velocity method, velocity 
changes are used as determined by the changing 
direction of the gravitational force that any 
exoplanet receives from an outer planet as it rotates 
on the axis of another star (Huang, 2017). The 
microlensing method is a technique in which 
reproducible measurements cannot be made due to 
the fact that the measured event occurs very rarely, 
and therefore it is not used much. Finally, the direct 
imaging technique is a method that can detect 
exoplanets with an inclination of 90 degrees in their 
entirety, but this rarely happens due to the 
combination of the planet's small size and proximity 
to its star (Dai, 2021). Of the 5523 exoplanets 
confirmed by NASA so far, 1895 are marked as 
Neptune-like, 1748 as Gas Giants, 1674 as Super-
Earths, 199 as Terrestrial, and the remaining 7 as 
unknown. Of the detected planets, 74.6% were 
determined using the transit method, 19.3% using 
the radial velocity method, 3.7% using the 
microlensing method, and the remaining 1.3% using 
the direct imaging method. (Brennan, 2020) 

 

Figure 1. Transit Method 
 
A biosignature is defined as a characteristic that 

provides scientific evidence for the existence of life 
and can be detected by remote sensing. These 
signatures are; gases in the atmosphere have several 
variations, such as chemical compounds and physical 
properties (Schwieterman, 2018). The habitable 
zone, on the other hand, is characterized when the 
conditions around a star can create a suitable 
environment for the existence of water. Since water 
is a critical component for life, determining the 
habitable zone is extremely important for assessing 
potential habitability (Ramirez, 2018). In this 
context, biological signature is processed under 
three basic subheadings. Among the biosignatures, 
gases in the atmosphere play a very important role. 
The presence of certain gases in the atmosphere, 
such as oxygen, methane, can be considered a 
biosignature when it is not in balance with the 
geology and chemistry of the planet. Among the 
gases in the Earth's atmosphere, there are gases such 
as N2, Ar, CO2, H2O, which are associated with living 
life and are directly related to biological activity 
(Yung, 2015). "Bioindicators" refer to the fact that 
atmospheric signatures can be produced by life or 
non-biotic processes. For example, although water 
(H2O) is not a bioindicator, it is an important raw 
material and greenhouse gas for life. Other potential 
bioindicators include gases such as SO2, H2S. These 
gases can be considered biosignatures when they are 
produced by volcanic activity or when they are 
present in the atmosphere under certain conditions 
(Meadows, 2018). The presence of plants and plant 
pigments on the planet's surface can be detected by 
a spectrum feature called the "Red Edge". This trait 
is unique to vegetation and indicates the presence of 
organisms that carry out photosynthesis (Seager, 
2005). These observations were made with the aim 
of investigating potential biosignatures by remotely 
detecting the atmospheres and surfaces of Earth-like 
planets. The NASA Astrobiology Program has led 
efforts to search for biosignatures of exoplanet 
atmospheres. These studies were carried out by 
studying spectral models of the planet's surface and 
testing the concentration of biogenic gases (NASA, 
2022). 
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Humanity's exoplanet exploration process has 
been going on for more than 30 years and is 
considered one of the most interesting branches of 
space exploration. At the very beginning of the 
process, in April 1984, the 2.5-metre du Pont 
telescope in Chile produced the original discovery 
image of the disc of dust and gas around the star Beta 
Pictoris (Hale, 2020). Following ongoing studies, the 
first exoplanets were discovered in January 1992, 
but they were unable to support organic life because 
they were bombarded with radiation from dead 
neutron stars in their orbits. In 1995, the first 
exoplanet orbiting a star similar to the Sun was 
discovered using the radial velocity technique. 
Subsequently, the use of technology became active; 
On April 4, 2001, the first planet in the "habitable 
zone" was found. Then, in October 2001, the first 
measurement of the atmosphere of a planet outside 
the solar system was made, and the first data were 
entered into the scientific world. As a result of 
subsequent studies, in 2005, the first detection of 
light from a planet outside the Solar System was 
made using the Spitzer Space Telescope. This event 
showed that Spitzer, designed to observe objects in 
the infrared spectrum, is a revolutionary tool in the 
characterization of exoplanets, and was an 
innovation that excited researchers (NASA, 2022). 
Then, in May 2007, the Spitzer Space Telescope was 
used to create the first map of an exoplanet's surface. 
In 2016, the Small Telescope for Transiting Planets 
and Planetesimals in Chile announced that it had 
found an exoplanet system containing at least seven 
planets. NASA's Kepler and K2 studies have 
discovered almost more than 2,600 new exoplanets 
using the transit method (Betz, 2023). Kepler played 
a crucial role in the discovery of these planets, many 
of which could be suitable places for life from outside 
our solar system. The James Webb Space Telescope, 
which is known as the most up-to-date and equipped 
telescope today and over which the most 
comprehensive studies have been carried out, has 
the ability to characterize the atmospheres of Earth-
sized exoplanets as a large infrared telescope. One of 
the most important instruments that provide the 
telescope's qualities is the 'Large Binocular 
Telescope Interferometer', a NASA-funded 
instrument used to make high-resolution 
measurements and measure the absorption of dust 
orbiting stars (Brennan, 2021).  

The discovery and characterization of 
extraterrestrial planets requires precise 
instrumentation and complex statistical methods. 
This process involves detecting weak planetary 
signals and modeling orbital and atmospheric 
features in detail. But the difficulties of sampling 
make it even more difficult to understand the 
characteristics of planetary populations derived 
from misleading or incomplete samples. The 
habitable zone does not only describe a certain 
distance at which a planet like Earth can be 
habitable, and it does not refer to the only location 
where habitable planets can exist. For example, the 

moons of giant planets in our own solar system can 
host habitable environments. However, while 
assessing the habitability of such regions in our own 
solar system is a difficult task, it is almost impossible 
to assess the habitability of similar environments in 
other star systems, and biosignatures in these 
specific regions may lose their perceptibility. 
However, with the advancement of technology, the 
detection of exoplanets by remote sensing systems 
has become a very popular method. Various studies 
conducted in this context have contributed to the 
literature in different fields. For example, in a study, 
he developed a new variational autoencoder 
algorithm to detect anomalies in exoplanet 
properties (Patel, 2023). This algorithm aimed to 
identify possible habitable exoplanets based on a 
broad set of features using unsupervised learning 
techniques. In another study, the proposed 
ASTRONET was carried out to analyze large and 
complex astronomical datasets using the deep 
learning architecture (Jagtap, 2021). Ishaani 
Priyadarshini and his team detect exoplanets by 
evaluating light intensity data using artificial 
intelligence and machine learning algorithms 
(Priyadarshini, 2021). Another study has developed 
an automated classification system to distinguish 
exoplanet transit signals using deep learning 
techniques (Mathur, 2020). Using data from the 
Kepler space telescope, Rajeev Mishra has developed 
a machine learning model that can classify 
exoplanets based on planet and star characteristics 
(Mishra, 2017). These studies show that machine 
learning and deep learning can provide great 
advantages when used in studies of the habitability 
of exoplanets. These techniques make it possible to 
process large and complex data sets produced by 
space telescopes and analyze properties associated 
with many planets and stars at the same time. These 
models help categorize planets as habitable or 
uninhabitable by detecting complex patterns and 
relationships. This supports the use of machine 
learning and deep learning as important tools for the 
search for habitability on exoplanets and increases 
our knowledge of potentially habitable worlds 
beyond our solar system. 

 
2. METHOD  

 
Within the scope of this research, research was 

first conducted using different machine learning 
models for the classification of habitable exoplanets. 
In addition, by analyzing the performance of each 
model, a comparative study was created on their 
efficiency (Kong et al., 2017). Although the study 
highlights both machine learning and deep learning 
as powerful tools, only machine learning techniques 
were applied in this research. Deep learning models 
were not employed, focusing instead on efficient, 
interpretable machine learning methods. The 
process followed in the research is shown in Figure 
2. Accordingly, the system is divided into (1) 
database, (2) data preprocessing, (3) training 
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models, and (4) accuracy evaluation. Second, 
exoplanet detection was performed using different 
machine learning algorithms, as shown in Figure 3. 
The main programming language used in the 
research is Python. In addition, Pandas, Matplotlib, 
Scikit-Learn libraries were used. 

 

Figure 2. EXOLIFE exoplanet habitability model 
workflow diagram 

 
Figure 3. EXOLIFE exoplanet detection model 
workflow diagram. 
 
2.1. The Data Collection 

 
At the beginning of the research, data collection 

was carried out from different archives. In this 
context, data were collected from the NASA 
Exoplanet Archive, Kepler Mission Data and TESS 
(Transiting Exoplanet Survey Satellite) archives. 
While the NASA archive provides a wide range of 
data, the Kepler Mission and TESS data are 
particularly focused on observing transits (NASA, 
2022). The dataset includes variables such as 
planetary mass, radius, distance from the host star, 
and atmospheric composition indicators where 
available. These data points are instrumental in 
detecting exoplanets and evaluating their potential 
habitability. Specific features—such as planetary 
mass and radius—aid in categorizing planets by 
type, while the orbital distance and stellar 
luminosity of host stars are critical for determining 
habitability zones. 

 
2.2. Data Pre-Processing 

 
It is very important to pre-process the data 

before introducing it to the models used. This 
process results in high-quality data or precise 
information, which has a direct impact on the 
model's ability to learn. Data pre-processing 
involved multiple stages to ensure high-quality 
inputs for model training. Initially, missing data 

points were managed using imputation. Outliers 
were identified and handled. Normalization was 
applied to rescale features to a 0-1 range, 
standardizing inputs across different measurement 
scales. Figure 4 shows the first version of the data 
set. 

 

 

Figure 4. Raw data set 
 

2.2.1. SMOTE 
 

SMOTE is an acronym for 'Synthetic Minority 
Oversampling'. It is a method used to address data 
imbalances. This method is used to minimize 
dependency on majority-class values. As visualized 
in Figure 5, the data became more stable after this 
stage. 

 

Figure 5. Post-SMOTE phase dataset 
 

2.2.2. Normalization 
 
The input dataset contains many features with 

different ranges, and normalization is helpful in 
bringing them to a similar scale. Values in the range 
[0, 1] are rescaled. 

 
2.2.3. Feature selection 

 
Feature selection is the process of identifying 

the most important and meaningful features in a data 
set (Mishra, 2017). This process ensures that the 
most appropriate features are selected for data 
analysis or machine learning models. The goal of 
feature selection is to improve model performance, 
reduce unnecessary or excess information, and 
prevent overfitting. In Figure 6, the mass-
temperature relationship is visualized.  
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Figure 6. Temperature-mass relationship and 
habitability 

 
2.2.4. Data clustering 

 
Data clustering is a critical step that is often 

used in machine learning or data analysis processes. 

This step is done by dividing the dataset into three 

main sections: training, validation, and testing sets. 

The training set is used in the learning process of the 

model, while the validation set is used to evaluate the 

performance of the model and set hyperparameters. 

Finally, the test set is used to assess how well the 

model adapts to real-world data. By ensuring that 

the model is trained correctly and adapts to real data, 

data clustering helps us better understand the 

predictive ability of the model. 

 
2.3. Models 

 
2.3.1. Data exoplanet habitability prediction 

models 
 
In this study, XGBoost, KNN, RF and LGR 

algorithms were used to predict the habitability of 
exoplanets (Jara-Maldonado et al., 2020). 

XGBoost: It is a decision tree-based algorithm. 
This algorithm, which is based on the scikit-learn 
library, divides the data set into layers and makes 
optimal predictions. Based on the Gradient Boosting 
model, it minimizes errors and optimizes results. 

K-Nearest Neighbor (KNN): It is a simple 
supervised learning algorithm. It makes predictions 
by placing nearby data points in the same class. 
Methods of calculating distances, such as Euclid or 
Minkowski, and optimization of the number of 
neighborhoods are important. 

Random Forest (RF): It can be used for 
classification and regression purposes by combining 
various decision trees. For each data set, specific 
data is pulled and parameters are determined to 
improve the accuracy of the model. 

Logistic Regression (LGR): It is an easy-to-apply 
classification method. With the Maximum Likelihood 
technique, a line is drawn separating the two classes, 
and this provides high accuracy rates overall. 

 
2.3.2. Exoplanet detection models 

 
In this research, the process of choosing among 

various classification models and the stages of 
training are detailed to predict the states of 
candidate planets and false positives. Model 
selection is based on the specific characteristics of 
each algorithm and the specific requirements of this 
study. 

The Random Forest (RF) model represents an 
effective batch learning approach in capturing 
complex data relationships. This model has the 
potential to perform superiorly, especially when 
working with imbalanced datasets. 

Support Vector Classification (SVC), on the 
other hand, offers a powerful alternative, especially 
for nonlinear classification tasks. SVC improves 
generalization by maximizing classification limits, 
which increases the stability and accuracy of the 
model. 

Multilayer Perceptron (MLP) can effectively 
model nonlinear relationships using a deep learning 
structure. This multi-layered artificial neural 
network stands out for its ability to process complex 
data structures. 

Finally, the XGBoost model both improves 
performance and has the capacity to deal with 
imbalanced datasets by using the gradient boosting 
technique. 

By combining these models, it is aimed to 
increase the accuracy and reliability of predicting 
candidate planet states. This approach is intended to 
make significant contributions to the fields of 
astronomy and astrophysics. 
  
2.4. Accuracy Assessment 

 
The skicit-learn library used has allowed the 

work to be facilitated through various modules. The 
main modules and functions in the coding section are 
as follows: 
• cross_val_score and KFold are both cross-

validation methods. 
• Metrics such as accuracy_score, 

balanced_accuracy_score, precision_score, 
recall_score, f1_score, and fbeta_score are used to 
measure the performance of classification 
models. 

• make_scorer is used to create a custom score 
function. 

• precision_recall_fscore_support function returns 
the classification report. 

• The roc_curve, auc, and roc_auc_score functions 
are used for ROC curve analysis. 

• The confusion_matrix function is used to evaluate 
the performance of a classification model. 

 
These functions are taken as a basis when 

evaluating accuracy. While determining the extent to 
which the created software failed, the modules given 
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above were used and the result evaluation was 
carried out as a result of the results obtained from 
these modules. 

In order to create a detailed confusion matrix, it 
is vital to apply 3 accuracy evaluation methods: 
sensitivity, precision and F-score. To begin with, 
sensitivity (D) was calculated by dividing the 
number of true positives within a class prediction by 
the total number of actual class instances, as shown 
in Eq. 1.  

 

                     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         (1) 

 
Precision (K), on the other hand, is applied by 

dividing the actual number of positive pixels by the 
total estimated number of pixels of a class, as seen in 
Eq. 2.  

 

                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                   (2) 

 
The F measure (F1), which is used to evaluate 

Sensitivity and Precision in the same criterion, is 
used to provide the harmonic mean of them as given 
in Eq. 3. True Positive (DP) and False Negative (YN) 
variables used in sensitivity and precision 
calculations are values in the confusion metric that 
allow data sets to be tested for accuracy in different 
ways and show the accuracy of the classification 
made. 

  

                    𝐹1 =
2 ×(𝐷 × 𝐾)

(𝐷 + 𝐾)
                                           (3) 

 
2.5. GUI 

 
The Graphical User Interface (GUI) developed 

within the scope of this research serves as an 
accessible platform that enables interaction with the 
machine learning model that performs the 
prediction of extraplanetary habitability. Built using 
Python's Tkinter library, the GUI provides an 
interface that includes input fields for off-planet 
parameters, a prediction trigger button, and an 
output screen that provides the model's habitability 
predictions. In the appendices section, there are 
interface images of the EXOLIFE application.  

The GUI allows users to input planetary 
parameters and receive habitability predictions. This 
user-friendly interface is designed to make machine 
learning accessible for researchers and astronomers 
interested in real-time habitability assessments. 

 
3. RESULTS & FINDINGS  

3.1. Evaluation of the EXOLIFE Habitability 
Classification Model 

 

Table 1 shows the performance evaluation of 
the EXOLIFE habitability classification model using 
different machine learning algorithms. This 
evaluation includes various metrics that are used to 
understand the performance of the model. The 
XGBoost algorithm has the highest training accuracy 
rate. The model is able to learn the data with 99.32% 
accuracy during the training phase. At the same time, 
it has an accuracy rate of 97.46% during the testing 
phase. The sensitivity metric measures how accurate 
the model's positive predictions are, and the 
XGBoost model achieved a good result in this regard 
at 0.62%. In addition, metrics such as recall and F1 
score are also high, indicating that the model 
provides a good balance of both true positive 
predictions and false positive predictions. Figure 7 
shows the confusion matrix of the XGBoost model. 

 
Figure 7. XGBoost confusion matrix 

 
Looking at the results in Table 1, the KNN (K-

Nearest Neighbor) algorithm also has high training 
and test accuracy rates (98.15% and 95.36%). 
However, the sensitivity and F1 score are lower, 
indicating that the model can make false positive 
predictions in some cases and has the potential to 
make improvements to the correct positive 
predictions. 

The logistic regression model has lower training 
and test accuracy rates than the other two models 
(82.60% and 81.63%). The sensitivity and certainty 
values are moderate, indicating that there is 
potential to increase the model's accurate positive 
estimates. 

The Random Forest algorithm achieved an 
excellent result in the training accuracy rate 
(100.00%) and the test accuracy rate is also high 
(98.34%) as given in Table 1. The sensitivity and 
precision values show a more balanced performance 
than other models, indicating that the model 
provides a good balance of true positive predictions 
and false positive predictions. 

So, the study results indicate a high overall 
accuracy of 97.46% for XGBoost in classifying 
exoplanets with potential habitability. Factors such 

as planetary size, mass, and orbital distance were 
critical in habitability estimation, supporting 
XGBoost’s strength in handling diverse feature sets. 
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This high accuracy and sensitivity (0.90) suggest a 
significant correlation between these parameters 

and the habitability criteria established, confirming 
the efficacy of machine learning in exoplanet studies.

Table 1. Training and test results of habitability models 
Model Training Accuracy Test Accuracy Precision Susceptibility F1 

XGBoost 99.32 97.46 0.62 0.90 0.69 
KNN 98.15 95.36 0.57 0.84 0.49 
Logistic Regression 82.60 81.63 0.52 0.82 0.49 
Random Forest 100.00 98.34 0.62 0.68 0.64 

 
3.2. Training Cross-Validation and Planet 
Detection Classification Model 

 
The present study analyzes the performance of 

various classification models based on the results of 
instructional cross-validation. This analysis focuses 
specifically on the evaluation of Random Forest, 
XGBoost, Multilayer Perceptron (MLP), and Support 
Vector Classifier (SVC) models. These models were 
examined, especially in terms of 'sensitivity', 
'precision', F1 score, and general accuracy 
parameters. 

Random Forest (RF): This model demonstrated 
high sensitivity, recall, and an F1 score for both 
classes, achieving an overall accuracy of 96%, 
revealing that it had the capacity to effectively 
distinguish between "CANDIDATE" and "FALSE 
POSITIVE" samples. 

XGBoost: In line with the Random Forest model, 
the XGBoost model also demonstrated consistent 
high sensitivity, precision, and an F1 score for both 
classes, demonstrating a strong performance with an 
accuracy rate of 96%. 

Multilayer Sensor (MLP): This model was noted 
for its high sensitivity, precision, and F1 score for 
both classes, and was among the top-of-the-line 
models with an accuracy rate of 96%. 

Support Vector Classifier (SVC): The SVC model 
achieved 96% accuracy, exhibiting high sensitivity, 
precision, and an F1 score for both classes. 

As a result, the Random Forest, XGBoost, and 
Multilayer Detector models were identified as the 
best performing models with high sensitivity, 
precision, F1 score, and overall accuracy values, as 
shown in Figure 8. These findings suggest that these 
models are reliable options for classification tasks. 

 
 

Figure 8. Training learning outcomes of detection 
models 

 
3.3. Test Verification 

 
This research on machine learning models 

evaluated the performance of the models, especially 
in the detection of candidate exoplanets. In the 
evaluation of the models, an analysis was made 
primarily on the sensitivity metric based on the 
research question. In this analysis, the XGBoost 
model, as shown in Table 2, stands out with a 
remarkable performance of 96.13%. This model 
showed a 96.50% sensitivity rate in detecting 
candidate exoplanets and a 95.64% success rate in 
identifying false positives, demonstrating its high 
competence in identifying true positive outcomes. In 
addition, with a precision of 96.62% and an accuracy 
of 95.48%, the XGBoost model has also shown an 
effective performance in minimizing false positive 
results. On the other hand, the Random Forest (RF) 
and Support Vector Classifier (SVC) models also 
achieved strong results, with high overall accuracy 
scores of 96.20% and 95.83%. These models have 
also shown impressive performance in accurately 
identifying true positives and reducing false 
positives. 

Table 2. Exoplanet detection model results 
Model Test Accuracy Susceptibility Precision 

Random Forest 0.962 [0.9559 
0.9698] 

[0.9761 
0.9445] 

MLP 0.955 [0.9507 
0.9614] 

[0.9695 
0.9379] 

SVC 0.958 [0.9520 
0.9664] 

[0.9734 
0.9397] 

XGBoost 0.959 [0.9649 
0.9514] 

[0.9624 
0.9546] 
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In this context, based on the habitability 
criterion, the most successful study obtained after all 
data sets were trained and tested separately for each 
algorithm belonged to the XGBoost algorithm. The 
main test accuracy rate of 97.46% is seen as 
extremely high when studies on exoplanets are 
evaluated. In addition, the training accuracy rate of 
99.32% obtained in the XGBoost algorithm appears 
to be a difficult rate to achieve. On the other hand, the 
XGBoost algorithm was well ahead of other 
algorithms in values such as sensitivity and F1 score, 
but it showed a result equivalent to the second most 
successful algorithm, Random Forest (RF), in terms 
of precision. RF, on the other hand, achieved 100% 
success by achieving an excellent rate in training 
accuracy, well above other compared algorithms. RF 
also stood out as the most successful algorithm in 
test accuracy rate with 98.34%. However, although 
the failure of the sensitivity score adversely affected 
the success of the RF algorithm, it remained constant 
at an average level in values such as precision and F1 
score. On the other hand, KNN and Logistic 
Regression (LGR) algorithms were successful in a 
lower class than the other two algorithms. Although 
KNN did not perform poorly in the training set and 
main test accuracy rates, its failure in other metrics 
drew an incomplete image in the general scope. LGR, 
the most unsuccessful algorithm, was found to be 
around 80% in accuracy rates and was far away from 
the other three algorithms.  

When the studies of S. Matheur et al. were 
evaluated, the Random Forest model reached 90%, 
the SVM model 88% and the KNN model 75%. This 
2021 study 92 is seen as one of the leading current 
planetary detection studies. However, the accuracy 
rates obtained were well below the accuracy rate 
realized by us, and were even found to be in the same 
plane as the LGR model, which was described as the 
most unsuccessful. Therefore, the success shown in 
the study is seen at an advanced level considering the 
overseas studies and it seems that the research has 
successfully passed the livability determination 
accuracy rate test. 

In another training, exoplanet detection was 
taken as a basis and the spectra of false positives and 
true positives were evaluated. In this context, the 
algorithms included in the study were RF, XGBoost, 
Multilayer Sensor and Support Vector Classifier. 
Although each of these has achieved an accuracy 
success rate of 96%, differences can be observed 
when examined in detail. The most successful 
algorithm at the overall level is the XGBoost 
algorithm. The XGBoost model seems to be quite 
successful with sensitivity and precision values of 
0.95. The Random Forest algorithm, on the other 
hand, showed positive data with a sensitivity of 
0.969 and a precision of 0.944. Although the SVC and 
MLP models do not seem to be low in general scope, 
they are below the other two algorithms, with a 
sensitivity of 0.96 and a precision of 0.93. 

Table 3. Comparison of results with literature 
Year and Author Research Method/Parameters Results 
Mislis et al. (2018) Traversal of exoplanet light 

curves 
Machine Learning Data Rejection 
Algorithm 

Detection Efficiency ~ 80% 

Zucker & Giryes 
(2018) 

Detecting periodic transits of 
exoplanets 

Deep Learning Sensitivity = 0.94 

Amin et al. (2018) Detecting Exoplanet Systems Adaptive Neuro-Fuzzy Systems Accuracy~81% 
Zingales & 
Waldmann (2018) 

Reclaiming the Extraplanetary 
Atmosphere 

Deep Convolutional Generative 
Adversarial Networks 

300x speed increase over 
traditional buybacks 

Ansdell et al. (2018) Improvised Exoplanet Transit 
Classification 

Deep Learning 2.0%–2.5% increase in 
model accuracy and average 
accuracy 

Chintarungruangcha
i & Jiang (2019) 

Detecting exoplanet transits Machine Learning and CNN Accuracy ~98% 

Jara-Maldonado et al. 
(2020) 

Research on Transiting 
Exoplanet Discovery 

Machine Learning Highest Accuracy achieved 
by Random Forests: 97.82 
 

Sara Cuellar et al. 
(2022) 

Exoplanet Detection with a 
Combination of Real and 
Synthetic Data 

Deep Learning Accuracy: 0.95 
 

 
Exoplanet detection studies are followed closely 

at home and abroad and the number of researches is 
increasing. As can be seen in Table 3, the main 
studies that serve as examples for the general 
determination are in the 80% band, and the 
maximum rate is 98%, which is almost equivalent to 
the rate reached in this research. This clearly shows 
that the research is at a level that can compete with 
and even surpass the studies in the professional field 
and proves how comprehensive the research is.  

 

Our research demonstrates an innovative 
approach that integrates machine learning 
approaches with traditional methods used in 
exoplanet data analysis. This is especially important 
in the context of processing and analyzing large data 
sets. The use of machine learning models speeds up 
the data analysis process and provides more 
accurate results. This allows for rapid and efficient 
progress in exoplanet research. In addition, the study 
shows the limitations of the methods used in 
exoplanet research and how machine learning 
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models can be applied to overcome these limitations. 
Analyses of the models' performance have 
demonstrated the potential of machine learning to 
overcome the challenges of exoplanet exploration. In 
particular, the use of these models to assess the 
habitability potential of exoplanets opens up new 
avenues for future research. Our research also takes 
an interdisciplinary approach to exoplanet science, 
offering a new perspective at the intersection of 
astrobiology, astronomy and computer science. 
Taking into account the complexity and 
multidisciplinary nature of exoplanet research, in 
particular, it contributes to the unification of 
knowledge and techniques in these areas. Transiting 
Exoplanet Survey Satellite (TESS) data were used in 
the data set of the study. TESS is a NASA-launched 
space mission that aims to scan most of the sky to 
detect thousands of new exoplanet candidates. The 
use of this data in our research significantly 
increases the innovative and up-to-date nature of the 
study. 

The fact that the models used have many 
limitations has made it difficult to train the data sets 
throughout the process. Although the advantages of 
the models are more prominent when evaluated in 
general, some difficulties have prolonged the 
research process. XGBoost, for example, is a model 
that stands out for its high performance and fast 
training times, but it can be susceptible to a tendency 
to overfit. The Random Forest, on the other hand, is 
notable for its resistance to overlearning and feature 
importance, but it may require long training periods 
in large data sets. Logistic Regression can be effective 
in linear classification problems, but it can struggle 
to capture nonlinear relationships. KNN captures the 
local structure well and provides a clear model, but 
the cost of computation can increase with large data 
sets. SVC is useful in nonlinear classification 
problems, but large data sets may require long 
training times and correct parameter selection. MLP 
can learn complex relationships as a deep learning 
model, but it can be susceptible to overfitting, and 
hyperparameter tuning is important. Outliers and 
missing data should be managed in data collection 
and pre-processing processes. Model selection 
should be made depending on the characteristics of 
the data set, and methods such as cross-validation 
should be used in the accuracy evaluation process. 

Apart from these, since exoplanets are a very 
current subject, it is very difficult to find a data set 
and reach the desired results. However, this can help 
to obtain more accurate results by increasing the 
data. Although the increase is possible with the 
addition of chemical data, the low number of 
scientists working on this subject today can be seen 
as a challenge. However, in this way, the quality of 
model training can be increased by using more data 
and accuracy rates can be kept constant in a 
successful plane. 

The results of our study are important both 
scientifically and practically. Understanding the 
effectiveness of machine learning models in 

exoplanet classification and habitability assessment 
opens up new horizons in astrophysics and 
astrobiology. While the comprehensive analysis of 
the models contributes to the development of the 
methods used in exoplanet research, the applications 
of these models, especially on large data sets, allow 
data analysis processes to be accelerated and more 
accurate results to be obtained. Using data from 
innovative observational tools such as TESS provides 
an excellent opportunity to test the effectiveness and 
applicability of these models on real-world data. 

 
4. CONCLUSION 

 
This study investigates the use of various 

machine learning models to enhance the accuracy of 
exoplanet classification and predict habitability 
probabilities. The research compares the 
performance of different algorithms, including 
XGBoost, Logistic Regression, Random Forest, 
Multilayer Perceptron (MLP), and K-Nearest 
Neighbor (KNN), in the context of exoplanet 
classification. The models were evaluated on a 
variety of metrics such as training and test accuracy, 
sentiment, and F1 scores. This comparative analysis 
is crucial for understanding the potential and 
limitations of machine learning models in exoplanet 
research. Our research aims to contribute to the 
development of machine learning applications in 
exoplanet science, providing a solid foundation for 
further work in this area. 

Evaluation of the findings obtained on the basis 
of different algorithms is very important in order to 
reach the most accurate and comprehensive result. 
Four different algorithms used in line with the 
method carried out drew separate conclusions from 
each other and facilitated concrete determinations in 
evaluating the processing of the data set specific to 
exoplanets. 

In practical terms, this research helps to speed 
up and increase the efficiency of exoplanet 
exploration and assessment. In particular, the rapid 
and effective detection of habitable exoplanet 
candidates is critical for future space exploration and 
potentially humanity's efforts to colonize space. The 
findings of the research could provide important 
decision-making tools on issues such as space 
mission planning and prioritization of exoplanet 
observations. Furthermore, this interplay between 
machine learning and astrophysics could inspire 
innovative research in both fields and shape the 
direction of future scientific discoveries. The study 
can be considered as an important step in shaping 
the future of exoplanet science. 

 
4.1 Recommendations 

 
We suggest several ways to enhance the use of 

machine learning in discovering exoplanets. Firstly, 
employing a variety of machine learning algorithms 
can lead to more accurate and thorough 
classifications of exoplanets and assessments of their 
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habitability. While our study focused on models like 
XGBoost, Random Forest, Multilayer Perceptron 
(MLP), and K-Nearest Neighbor (KNN), we believe 
that more advanced techniques, such as deep 
learning, could offer additional benefits. Specifically, 
convolutional neural networks and recurrent neural 
networks could be particularly effective in analyzing 
visual and time-series data. These algorithms are 
likely to be key in better understanding and 
managing the complex and varied data associated 
with exoplanets. 

Second, the inclusion of data from next-
generation space telescopes such as the James Webb 
Space Telescope (JWST) will broaden the scope of 
the research and provide more detailed information. 
The high-resolution spectroscopic data provided by 
the JWST will allow for more detailed analysis of 
exoplanet atmospheres and offer new perspectives 
on habitability assessments. This data could allow 
machine learning models to make more precise and 
accurate predictions, helping usher in a new era of 
exoplanet research. 

A third proposal is to estimate the chemical data 
on the atmospheric and surface compositions of 
exoplanets. Machine learning models can play a vital 
role in habitability analyses by analyzing 
spectroscopic data to predict the presence and 
concentrations of components in exoplanet 
atmospheres. This approach will contribute to a 
faster and more accurate detection of potentially 
habitable exoplanets. It is also possible for these 
models to simulate atmospheric and surface 
conditions to determine whether the conditions 
necessary for life exist. 

Finally, considering that limited data sources on 
exoplanets pose a challenge, it is recommended to 
use data augmentation techniques. In addition to 
real data sets, synthetic data generation or 
diversification of existing data sets will allow 
machine learning models to be trained and tested on 
larger and more diverse data sets. This approach 
could provide significant benefits, especially in the 
classification and analysis of rare or little-known 
exoplanet species. 

The implementation of these recommendations 
will maximize the potential of machine learning 
applications in exoplanet research and contribute to 
significant advances in this field. These 
developments will make valuable contributions to 
both the scientific community and humanity's effort 
to understand space. 
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