

Lithium-Iron Phosphates as Cathode Active Materials for Lithium-Ion Batteries

Ahmet Örnek^{1*}, Emrah Bulut² and Mahmut Özacar²

¹Sakarya University, Institute of Sciences and Technology, 54187 Sakarya, Turkey ²Sakarya University, Department of Chemistry, 54187 Sakarya, Turkey

The transition metal ions connect the diphosphate anions forming a three-dimensional network with channels filled by Li+ cations expected to exhibit high mobility. All compounds order magnetically at low temperatures due the Fe-Fe interactions. Lithium iron phosphate (LiFeP2O7) as cathode active material was synthesized by sol-gel method. Synthesized LiFeP2O7 was characterized by XRD, SEM and EDS.

Key words: EDS, SEM, XRD, Lithium-iron phosphate, Lithium-ion

1. Introduction

The use of layered transition-metal oxides as positive electrode materials for lithium secondary batteries has been studied extensively. Recently, there has been considerable interest in compounds built with phosphate anions such as PO_4^{3-} or $P_2O_7^{4-}$ species because they undergo frameworks where tunnels are accessible for mobile cations such as alkali (Na⁺, Li⁺) ions. They belong to the wide class of insertion compounds which can be used as positive electrode materials in advanced lithium-ion cells. Also, lithium-ion oxide conductors based on phosphate framework offer some advantages in practical applications due to lower cost, safety, environmental benignity, stability and low toxicity [1-3].

Among them, lithium pyrophosphates LiMP_2O_7 (M: transition metal) have been subjected to intense research for the past few years, mainly due to the high mobility of lithium ions which promotes the insertion/extraction reactions. Indeed, there are a large number of crystalline materials containing P₂O₇ groups in the literature with the general formula LiMP₂O₇. These phosphates exist in different structures: LiVP₂O₇, LiFeP₂O₇, LiCrP₂O₇ crystallize in the space group P21. In the case of LiFeP₂O₇, lithium could be inserted (Fe³⁺ reduction) at 2.95 V against Li/Li⁺. Nevertheless, the extraction of lithium from LiFeP₂O₇ takes place at high potentials as a result of the high oxidizing power of the Fe³⁺/Fe²⁺ redox couple [1].

2. Methods and Results

The diphosphate LiFeP₂O₇, in which the PO₄ tetrahedra are linked by bridging oxygen to give P₂O₇ groups, crystallizes in the monoclinic system ($P2_1$ space group). The P₂O₇ groups are connected to the FeO₆ octahedron by sharing two oxygen corners, each belonging to a PO₄ unit (Fig. 1).

Figure 1. Structure of $LiFeP_2O_7$. Lithium ions are located in tunnels delimited by FeO6 octahedra and PO₄ tetrahedra [1]

This induces a 3D framework in which channels collinear to the $[0\ 0\ 1]$ direction are formed and where the lithium ions are located. Moreover, these compounds may present interesting magnetic properties, as iron atoms are connected through super-super exchange paths, involving diphosphate groups (made of two corner-sharing PO₄ tetrahedra). Furthermore, all distances and angles in the studied diphosphates are in good agreement with many other condensed phosphates reported before [1, 3, 4].

The crystallinity of $LiFeP_2O_7$ was assessed from both the SEM and XRD patterns as shown in Figs. 2 and 3, respectively.

Figure 2: The SEM image of LiFeP₂O₇

Figure 3: The XRD pattern of LiFeP₂O₇

4. Conclusions

The crystallinity of $LiFeP_2O_7$ was assessed from both the SEM and XRD patterns as shown in Figs. 2 and 3, respectively.

*Corresponding author: ahmetornek0302@hotmail.com

References

[1] H. Bih et al., J. Solid State Chem. 182, 821 (2009).

[2] A.A. Salah et al., Spectrochim. Acta Part A 65, 1007 (2006).

[3] G. Rousse et al., Solid State Sci. 4, 973 (2002).

[4] A.A. Salaha et al., J. Power Sources 140, 370 (2005).