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ABSTRACT. In this article, we introduce and study the concept of z-submodules
as a generalization of z-ideals. Let M be a module over a commutative ring
with identity R. A proper submodule N of M is called a z-submodule if for
any x € M and y € N such that every maximal submodule of M contain-
ing y also contains x, then z € N as well. We investigate the properties of
z-submodules, particularly considering their stability with respect to various
module constructions. Let Z(grM) denote the lattice of z-submodules of M
ordered by inclusion. We are concerned with certain mappings between the lat-
tices Z(rR) and Z(rM). The mappings in question are ¢ : Z(rR) — Z(rM)
defined by setting for each z-ideal I of R, ¢(I) to be the intersection of all z-
submodules of M containing IM and ¢ : Z(rM) — Z(rR) defined by ¥(N)
is the colon ideal (N : M). It is shown that ¢ is a lattice homomorphism,
and if M is a finitely generated multiplication module, then 1 is also a lattice
homomorphism. In particular, Z(gM) is a homomorphic image of R(rM),
the lattice of radical submodules of M. Finally, we show that if Y is a finite
subset of a compact Hausdorff P-space X, then every submodule of the C(X)-

module RY is a z-submodule of RY .
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1. Introduction

We assume all rings are commutative with identity and all modules are unitary.
In 1957, Kohls [11] was the first to use the concept of z-ideals in the study of the
ring of real-valued continuous functions C'(X) on a completely regular Hausdorff
space X. Nearly two decades later, Mason [13] extended the concept of z-ideals to
any commutative ring with identity. In recent years, the theory of z-ideals has been

developed in several directions (see, for example, [1,2,3,5,6,10,14]). In this article,
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we introduce the concept of z-submodules generalizing z-ideals. This article consists
of four sections. In section 2, we study the basic properties of z-submodules and
investigate their behavior under some standard operations in commutative algebra.
Let R be a ring and M an R-module. Also, let Max (M) denote the set of maximal

submodules of M. For each x € M, we set
M(z) :={K € Max(M) | =z € K}.

A proper submodule N of M is called a z-submodule if for any x € M and
y € N, M(z) O M(y) implies that x € N. If M(y) = 0 for some y € N, then N
is a z-submodule of M if and only if N = M. Evidently, z-submodules of the R-
module R coincide with the z-ideals of R. Maximal submodules of any R-module
M are z-submodules of M. For any two submodules N and L of M, we take
(N :L):={reR|rL C N} which is the colon ideal of L into N. It is shown
that if N is a z-submodule of M, then (N : M) is a z-ideal of R (Lemma 2.2). For
any submodule N of M, the z-taking of N, denoted N,, is the intersection of all
z-submodules of M containing N. It is clear that N is a z-submodule of M if and
only if N, = N.

Let M be an R-module. A proper submodule P of M is called a prime submodule
if for p = (P : M), whenever rm € P for r € R and m € M, we have r € p or
m € P. The radical of a submodule N of M, denoted rad NV, is the intersection
of all prime submodules of M containing N or, in case there are no such prime
submodules, rad N is M. For an ideal I of a ring R, we assume that VT denotes
the radical of I. A submodule N of M is called a radical submodule if rad N = N
(For more information on prime and radical submodules, the reader may consult
[12] for example). It is shown that every z-submodule of a multiplication module is
a radical submodule (Proposition 2.4). Tt is seen that the z-taking of submodules
enjoy analogs of many properties of radical submodules. For instance, it is shown
that for any ideal I of R, (IM), = (I,M), (Theorem 2.6). For any subset S of an
R-module M, let M(SS) denote the set of maximal submodules of M containing S.
As a generalization of z-submodules, any submodule N of M is called a strongly
z-submodule of M or briefly sz-submodule if for any two finite subsets S and T of
M such that S C N and M(S) C M(T), we have T C N. Also, an I of R is called
a sz-ideal if it is a z-submodule of the R-module R. It is shown that, if M is a
finitely generated faithful multiplication R-module and I is a sz-ideal of R, then
IM is a z-submodule of M (Theorem 2.7). Note that if R = C(X), then by [1,
p. 255 ] the concept of z-ideal coincides with the sz-ideal. Using this fact, it is
proved that if R = C'(X), then every sz-submodule of a finitely generated faithful



ON A GENERALIZATION OF z-IDEALS 299

multiplication R-module is an intersection of prime z-submodules (Corollary 2.9).
It is shown that if F' is a free R-module, then for any z-ideal I of R, I'F' is a z-
submodule of F' (Corollary 2.16) and in particular, (IF), = I, F' (Corollary 2.17).

Let M be an R-module. The collection Z(zgM) consisting of all z-submodules
of M forms a lattice with the operations NVL = (N+L), and NAL = NNL, for
all z-submodules N and L of M. Recently, various properties of certain mappings
between different types of module lattices have been examined by the second author
and others (see [9,15,16,17,20]) whose motivation sterns back to P. F. Smith’s works
(see [23,24,25]). In section 3, we will deal with the mappings ¢ : Z(gR) — Z(rM)
defined by ¢(I) = (IM), and ¢ : Z(gM) — Z(rR) defined by ¥(N) = (N : M).
It is shown that ¢ is a lattice homomorphism (Lemma 3.1), but v is not in general
(Example 3.3). In particular, if M is a finitely generated multiplication R-module,
then Z(gM) is a homomorphic image of the lattice R(gM) consisting of all radical
submodules of M (Corollary 3.2). It is also shown that if R = C(X) and M is
a finitely generated multiplication R-module, then 1 is a lattice homomorphism
(Theorem 3.4). In particular, if M is a finitely generated faithful multiplication
R-module, then ¢ is a lattice isomorphism, and v is its inverse (Corollary 3.11).

Finally, in Section 4, we present a non-trivial example of a finitely generated
faithful multiplication module over the ring of continuous functions C(X), where
X is a compact Hausdorff P-space, all of whose submodules are z-submodules. In-
deed, if Y is a finite subset of a compact Hausdorff space X, then RY consisting of
all real-valued functions with domain Y is a multiplication C'(X)-module (Theorem
4.1), and if in addition X is a P-space, then RY is a flat C(X)-module (Theorem
4.2). In particular, RY is a finitely generated faithful multiplication C(X)-module
(Corollary 4.3), and therefore every submodule of it is a z-submodule of RY (Corol-
lary 4.4).

2. z-Submodules

Let M be an R-module and N be a submodule of M. Recall that M(z) denotes
the set of all maximal submodules of M containing x. To begin, let’s consider the

following lemma.

Lemma 2.1. Let R be a ring and M an R-module. If for any r,s € R, M(r) C
M(s), then M(rm) C M(sm) for allm € M.

Proof. Let m € M and K € M(rm). If m € K, then sm € K and so K € M(sm),
otherwise (K : Rm) is a maximal ideal of R and in particular, (K : Rm) € M(r)
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(note that if K is a maximal submodule of M, then M/K is a non-zero simple R-
module, and hence (K : M) = Ann(M/K) is a maximal ideal of R. In particular,
since (K : M) C (K : Rm) for all m € M, it follows that (K : Rm) is a maximal
ideal of R). So by the assumption (K : Rm) € M(s). Hence we have sm € K
which implies that K € M(sm). O

The next result relates the z-submodules of an R-module M to the z-ideals of
R.

Lemma 2.2. Let M be an R-module. If N is a z-submodule of M, then (N : M)
is a z-ideal of R.

Proof. Assume that M(r) C M(s) for r € (N : M) and s € R. By Lemma 2.1,
we have M(rm) C M(sm) for all m € M. Now, since N is a z-submodule of M,
we conclude that sm € N for all m € M, and so s € (N : M). O

The following lemma collects some frequently used facts on z-taking of submod-

ules.

Lemma 2.3. Let N and L be submodules of an R-module M and {N;};cr be a
collection of submodules of M. Then:

(1) NCN;

(2) If NC L, then N, C L,;
(3) N. = (N:)s;

(4) (MierNi)z € Nier(Ni)z;

(5) (ZiGI Ni)z = (ZiGI(Ni)Z)Z;
(6) (N: M), C(N,:M);

() /(N:M)C (N, : M).

Proof. (1)-(5) are straightforward.

(6) It is clear that for any submodule N of M, (N : M) C (N, : M). Thus by

Lemma 2.2, (N : M), C (N, : M), = (N, : M).

(7) Since every z-ideal is radical, we conclude by Lemma 2.2 that \/m C
(N, : M)=(N,:M). O

An R-module M is called a multiplication R-module, if for every submodule N
of M, there exists an ideal I of R such that N = IM. It is easy to see that M is a
multiplication R-module if and only if for each submodule N of M, N = (N : M)M.
Cyclic modules, ideals of Dedekind domains, and ideals of regular rings are well-

known examples of multiplication modules. It is noted that by Lemma 2.2 and [5,
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Corollary 1], every z-submodule of a multiplication R-module M is of the form nM
for some square-free integer n.
As shown in [13, p. 281], every z-ideal of a ring R is a radical ideal of R. Using

this fact, we give a similar result for z-submodules of multiplication modules.

Proposition 2.4. Every z-submodule of any multiplication R-module M 1is a rad-
ical submodule of M .

Proof. Let N be a z-submodule of M. Then by [7, Theorem 2.12] and Lemma
2.2, we haverad N = /(N : M)M = (N : M)M = N. O

As stated in [12, Proposition 3.1], for each radical ideal I of a ring R and any
finitely generated R-module M, we have (IM : M) =TI if and only if I O Ann(M).

This fact is used in the following proposition.

Proposition 2.5. Let M be a finitely generated R-module and let I be an ideal of
R. Then (IM : M), = (I + Ann(M)),.

Proof. Let J be a z-ideal of R containing (IM : M). Then Ann(M) C J and
IC (IM: M) C J which implies (I + Ann(M)) C J. Therefore (I + Ann(M)), C
(IM : M),. For the revers inclusion, let J be a z-ideal of R containing (/+Ann(M)).
Then since J is a radical ideal of R, (IM : M) C (JM : M) = J. Hence we have
(IM:M), C I+ Ann(M)),. O

Theorem 2.6. Let M be an R-module. For any ideal I of R, (IM), = (I,M),.
In particular, if M is a multiplication R-module, then for each submodule N of M,
N,=(N:M),M),.

Proof. Assume that K is a z-submodule of M containing IM. Since (K : M)
is a z-ideal of R, I, C (K : M) and hence I, M C (K : M)M C K. It follows
that (I,M), C (IM),. The reverse inclusion is obvious. The “in particular” part
follows by taking I = (N : M). O

Let M be an R-module. For any subset S of M, we recall that M(S) is the set
of maximal submodules of M containing S. Let Mg denote the intersection of all
elements of M(S). Evidently, N is a sz-submodule of M iff for any finite subset S
of N, Mg C N (see for example [1,2] for more details about sz-ideals).

Theorem 2.7. Let R be a ring and M be a finitely generated R-module. Then:
(1) If M is a faithful multiplication R-module and I is a sz-ideal of R, then

IM is a sz-submodule (and therefore a z-submodule) of M ;
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(2) If M is a faithful R-module and IM is a z-submodule of M, then I is a
z-ideal of R.

Proof. (1) Let M = Rxy + Rxy + -+ - + Rxy,. Moreover, let S = {y1,--- ,ys} and
T = {z1,---,2} be two subsets of M such that S C IM and M(S) C M(T).
Since S C IM, there exist 7;; € I such that for any 1 < i <'s, y; = Z?Zl TijTj.
Also, since T C (RT : M)M, there exist s;; € (RT : M) such that for any
1§i§t,zizzyzlsijxj. Weset U ={r;, |1 <i<s, 1<j<n}and
V={s;; |1 <i<t 1<j<n} and show that M(U) € M(V)(x). For this,
we assume that m € M(U). It follows that S € UM C mM. Now, since by
[7, Theorem 2.5] mM is a maximal submodule of M, we have mM € M(S) and
so mM € M(T). Therefore V. C (RT : M) C (mM : M) = m, which yields
that m € M(V). Thus () holds and since I is a sz-ideal, we have V' C I. Then
T C IM, as desired.

(2) Since I is a radical ideal of R, we have (IM : M) = I by [12, Proposition 3.1].

Thus, the result follows from Lemma 2.2. O

Let M be an R-module. For any submodule N of M, we let N, denote the
intersection of all sz-submodules of M containing N. Note that, since any sz-

submodule is a z-submodule, we have N, C Ng,.

Corollary 2.8. Let R be a ring and M be a finitely generated faithful multiplication
R-module and N a submodule of M. Then (N : M), C(N,: M) C (N : M)s,. In
particular, if R = C(X), then (N: M), = (N, : M) =(N:M)s,.

Proof. By Lemma 2.3(6), (N : M), C (N, : M). To establish the reverse inclu-
sion, we assume that I is a sz-ideal of R containing (N : M). Then N C IM, and
hence by Theorem 2.7(1), we have N, C IM, and so (N, : M) C I. Therefore
(N, : M) C(N: M), as required. The “in particular part” follows from the pre-
vious part and a fact given in [1, p. 225] which follows that the concept of z-ideal
coincides with the sz-ideal in C'(X). O

Corollary 2.9. Let R = C(X) and M be a finitely generated faithful multiplication
R-module. Then every sz-submodule of M is an intersection of prime z-submodules
of M.

Proof. Let N be a sz-submodule of M. Then N is a z-submodule of M and so (N :
M) is a radical ideal of R. Thus (N : M) =0 _ . v P- Since (N : M) is a 2-ideal
of R, it is also a sz-ideal of R, and hence by [1, Theorem 3.13], every p € Min(N :
M) is a sz-ideal of R. Thus by [7, Lemma 2.10 and Corollary 2.11] pM € Min(V)
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for all p € Min(N : M), and by Theorem 2.7(1), these pM’s are z-submodules of M.
Now, since N = (N : M)M = (N YM = 0, pinnaary PM by [7, Theorem

1.6], we conclude that N is an intersection of prime z-submodules of M. (]

peMm(N:M)p

Theorem 2.10. If I and J are two ideals in R, then
(IJM)Z = ((ImJ)M)z = (IM)Z N (JM)Z'
In particular, for any positive integer n, (I"M), = (IM),.

Proof. To establish the given equality, it suffices to show that (IM), N (JM),
is the smallest z-submodule containing IJM. For this, let K be a z-submodule
of M containing IJM. Then (K : M) is a z-ideal of R containing I.J, and so
(K:M)= ﬂpeMm(K:M)
or J Cp. In any case, I, M C pM or J,M C pM. Thus for any p € Min(K : M),
we have (I,M), C (pM), or (J,M), C (pM), which implies that (IM), C K or
(JM), C K. Therefore (IM),N(JM), C K, as required. The “in particular” part

is obtained easily by induction on n. O

p. Consequently, for every p € Min(K : M), we have I C p

Theorem 2.11. Let M and M’ be R-modules. Let f : M — M’ be a surjective
R-module homomorphism, and Ker f is contained in each mazimal submodule of
M. Then:

(1) If M is a finitely generated R-module and N' is a z-submodule of M’, then
f~YN') is a z-submodule of M ;

(2) If M’ is a finitely generated R-module and N is a submodule of M such
that N +Ker f is a z-submodule of M, then f(N) is a z-submodule of M'.

Proof. (1) Suppose that N’ is a z-submodule of M’, and M(a) C M(b) for a €
S7HN’) and b € M. We show that M(f(a)) € M(f(b)). For this, we let K’ €
Max(M) and f(a) € K'. Since M is finitely generated and f~(K’) # M, there
exists a maximal submodule K of M containing f~1(K"). Note that if f(K) = M’,
we get M = K 4+ Ker f = K, which is a contradiction. Hence, we have f(K) = K.
Then, by hypothesis, f~1(K’) = K. Since a € f~1(K’), we have f~}(K') € M(a).
So, b e f~YK'), and f(b) € K'.

(2) Suppose that N + Ker f is a z-submodule of M, M(f(a)) € M(f(b)) for
f(a) € f(N) and b € M. We show that M(a) C M(b). For this, we assume that
K € Max(M) and a € K. It is noted that if f(K) = M’, since f is surjective, we
have M = K +Ker f = K, a contradiction. Thus since M’ is finitely generated and
f(K) # M’, there exists L' € Max(M') such that f(K) C L'. Letting L' = f(L),
we conclude that K C L 4+ Ker f C M. Consequently, K = L + Ker f (note that
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if L+ Ker f= M, then we get L' = f(L) = f(M) = M’ which is a contradiction).
Hence we have f(K) € Max(M’) and f(K) € M(f(a)). It follows that f(b) €
f(K) and so b € K + Ker f = K, we are done. Now, since M(a) C M(b) and
a € N +Ker f, we have b € N + Ker f. Thus f(b) € f(N), as required. O

The following example illustrates Theorem 2.11.

Example 2.12. Let Z be the ring of integers and M,, = Z/p"Z be the Z-module
of integers modulo p"Z. Since M, is cyclic, it is clear that every proper submodule
of M, is of the form (p¥) for some 1 < k < n. In particular, (p) is the only maximal
submodule of M,,, and so M(pF) C M(p). It follows that if & > 1, then (p¥) is not
a z-submodule of M,,. Now, for any two positive integers m, n with m > n, we
consider the mapping f : M,, — M,, defined by f(x+p™Z) = x+p"Z. Evidently,
f is a surjective non-isomorphism whose kernel is contained in (p), and Theorem
2.11 holds by considering N = (p) modulo p"Z and N’ = (p) modulo p™Z.

Corollary 2.13. Let M be a finitely generated R-module and L be a submodule
of M contained in each mazximal submodule of M. If N is a z-submodule of M
containing L, then N/L is a z-submodule of M/L.

Proof. Consider the natural projection 7 : M — M/L and apply Theorem 2.11(2).
O

As usual, Spec(M) denotes the set of prime submodules of M.

Proposition 2.14. Let R be a ring, M a multiplication R-module and S = R\
Upespecm)(P : M). If N is a z-submodule of M, then S™'N is a z-submodule of
S—IM.

Proof. Suppose that N is a z-submodule of M, M(%) - M(%) and g € S7IN.

Then & = ﬁ/ for some n € N and s’ € S. It follows that us’z = usn € N for
some uSE S.S We first show that M(us'z) C M(y). For this, we let P € Max(M)
and us’z € P. Now since us’ ¢ (P : M), then we get * € P. This implies that
g € S~!P. Since M is a multiplication R-module, S~ M is clearly a multiplication
S~1R-module, and thus by [7, Theorem 2.5], S~!P C S~1Q for some maximal
submodule S7'Q of S™*M. In particular, by [18, Theorem 3.1], @ is a prime
submodule of M and (Q : M) NS = (). Therefore P C @ and so by maximality of
P, P = Q. It follows that S~!P = S71Q, and so S™!P € M(%) Hence we have

% € S~1P which implies that y € P, and therefore P € M(y). Now, since N is a

z-submodule of M we have y € N, and so % € S7IN, as required. O
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Theorem 2.15. Let {M;}icr be a non-empty collection of R-modules and M =
@®ierM;. If N; is a z-submodule of M; for each i € I, then N = ®;c1N; is a
z-submodule of M.

Proof. Let {x;} € N, {y;} € M, and assume that M({z;}) C M({y;}). We first
show that M(z;) € M(y;) for all ¢ € I. For this, we let K € M(z;) for fixed
j€lI. Thus {z;} € K ® (®;x;M;). Now since K & (®;x;M;) € M({x;}), we have
{yi} € K & (®i2;M;). Consequently, we can conclude that y; € K, which means
that M(z;) € M(y;). Now, since N;’s are z-submodules and z; € N;, we have
y; € N;. Therefore {y;} € N, as desired. ]

Corollary 2.16. Let F be a free R-module and I be a z-ideal of R. Then IF is a

z-submodule of F'.

Proof. It is clear that for any ideal I, the R-module I F' is isomorphic to a direct

sum of I’s. Now the result follows from Theorem 2.15. O

Corollary 2.17. Let F be a free R-module and I be an ideal of R. Then (IF), =
I F.

Proof. First note that for any ideal I, we have I, = (IF : F), C ((IF), : F)
which shows I,F C (IF),. For the reverse inclusion, let J be a z-ideal of R
containing I. By Corollary 2.16, JF' is a z-submodule of F containing (I'F), and
so (IF), C n{JF | J is a z-ideal of R}. Thus, by [21, p. 51], ({F), C (NJ)F
where J runs through the set of z-ideals containing I, namely (IF), C I, F, as
required. (I

3. Mappings between lattices of z-submodules

Let R be a ring and M be an R-module. We recall that the collection of z-
submodules of M forms a lattice with respect to inclusion order for which NV L =
(N+ L), and NAL= NN L are respectively the supremum and infimum of any
two element set {N, L} of z-submodules of M. We shall denote the lattice of z-
submodules by Z(gM). It should be noted that by [3, Example 2.3], the finite
sum of z-ideals of a ring R is not necessarily a z-ideal, and so Z(gM) is not in
general a sublattice of the usual lattice L(rM) consisting of all submodules of M.
(Of course, if R = C(X) is the ring of continuous functions on a completely regular
Hausdorff space X, then by [8, p. 198], any finite sum of z-ideals is a z-ideal.)

For lattices L and L', a map f : L — L’ is a homomorphism of lattices, if
flxVy) = f(z)V fly) and f(z Ay) = f(z) A f(y). Note the following result.
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Lemma 3.1. Let R be a ring and M an R-module. Then
(1) The mapping ¢ : Z(rR) — Z(grM) defined by ¢(I) = (IM), is a lattice
homomorphism;
(2) The mapping ¢ : Z(rgM) — Z(rR) defined by Y(N) = (N : M) is a lattice
homomorphism if and only if (N + L), : M) = ((N: M)+ (L:M)), for
all z-submodules N and L of M.

Proof. (1) First, we verify that ¢ preserves the operation V. For this, let I,J €
Z(rR). Using Lemma 2.3(5) and Theorem 2.6, we have

oIV JI) = oI+ J).)=((I+J]).M). = (I +J)M).
= (IM+JM)ZZ((IM)Z+ JM)z)z
= (UM); Vv (JM); =¢(I)V¢(J).

Moreover, by Theorem 2.10, we have
PINT)=o(INJT)=(INJ)M), = (IM). N (M), = ¢(I) A p(J).
(2) Clearly for any N, L € Z(zM) we have
G(NAL)Y=(NNL:M)=(N:M)N(L:M)=9(N)Ap(L).

Thus ¢ is a lattice homomorphism if and only if ¥(N V L) = ¢(N) vV ¢(L) if and
only if ((N+1L),: M)=((N:M)+(L:M)),. O

Let M be an R-module. It is easy to see that the set R(grM) consisting of
radical submodules of M is a lattice with the operations N V L = rad(N + L)
and N AL = NN L for all radical submodules N and L of M. As shown in
[15, Theorem 2.11], if M is a finitely generated multiplication R-module, then
0 :R(rR) = R(rM) given by o(N) = (N : M) is a lattice homomorphism. Also,
as stated in [10, page 5], k : R(rR) — Z(rR) defined by x(I) = I, is a lattice
homomorphism. Considering these lattice homomorphisms, we have the following

result:

Corollary 3.2. Let M be an R-module. If M is a finitely generated multiplication
R-module. Then the assignment N — N, is a lattice epimorphism from R(gM) to
Z(rM).

Proof. Considering the composition R(rM) = R(rR) = Z(rR) 2, Z(gM) of

lattice homomorphisms ¢, o and x, and by using Theorem 2.6, we get that

(9ro)(N) = ¢r((N : M)) = (N : M);) = (N : M) M), = (N : M)M), = N,
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which indicates the rule of ¢xo. Moreover, by Proposition 2.4, the lattice homo-

morphism ¢ko is surjective. (I

Note that 1 is not generally a lattice homomorphism, as the following example

shows.

Example 3.3. Let V be a vector space with a dimension greater than one over a
field ', and N and L be two proper subspaces of V' such that V = N @& L. Then
(N+L),:V)=(V:V)=F, while (N : M)+ (L:M)), =(0)), =(0). Thus
by Lemma 3.1, ¢ : Z(rM) — Z(rR) is not a lattice homomorphism.

It will be convenient for us to call an R-module M a t-module if the mapping

1, given in Lemma 3.1, is a homomorphism.

Theorem 3.4. Let R = C(X) and M a finitely generated multiplication R-module.

Then M is a p-module. In particular, every cyclic module is a p-module.

Proof. Let N and L be submodules of M. Now by Proposition 2.5 and Corollary

2.8, we have

(N: M)+ (L:M)),

( +(0: M/L)).

( (M/L): M/L).
((N M)M +L)/L: M/L),
(N:M)M+L: M),

= (N+L),: M).
Thus by Lemma 3.1, M is a ¢p-module. The first part obtains the “in particular”
part. O

Corollary 3.5. Let R = C(X) and M be an R-module. If every finitely generated
submodule of M is a 1p-module, then R = (Rx : Ry) + (Ry : Rx) for all elements

x,y € M. If, in addition, every submodule of M is multiplication, then the converse
holds.

Proof. For the first part, let x,y € M. Since Rx + Ry is a ¥-module, we have

R = ((Rz+ Ry).:Rx+ Ry)

= ((Rx Rx—!—Ry) (Ry : Rz + Ry)).
(
(

(Rz: Rx)N (Rx: Ry) + (Ry : Rx) N (Ry : Ry)).

(Rx : Ry) + (Ry : Rx)),.

Thus R = (Rx : Ry) + (Ry : Rz). For the converse, M is a ¢-module by Theorem
3.4 and [23, Corollary 3.9]. O
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Theorem 3.6. Let ¢ and ¥ be a before. Then, the following hold.
(1) Yo =1p.
(2) ¢vo =o.
Proof. (1) Let N be a z-submodule of M. Then
BOU(N) = Go((N : M)) = (N = MYM).) = (N : M)M). : M).

Now since N is a z-submodule of M, we have (N : M)M), C N, and so (((IV :
MYM), : M) C (N : M). Moreover, (N : M) C (N : M\)M : M) C (((N :
M)M), : M). Therefore (N : M) = ((N : M)M), : M) = 4(N) which shows that
YoP(N) = ¢(N).

(2) Let I be a z-ideal of R. Then

ovo(l) = o((IM).) = ¢(((IM), : M)) = (IM). : M)M)..
Now, ((IM), : M)M C (IM),, implies that ((IM), : M)M), C ((IM),), =

(IM),. Also, IM C (IM), implies that I C ((IM), : M) which gives (IM), C
((IM), : M)M),. Thus ((IM), : M)M), = (IM), = ¢(I), and hence ¢1p¢p =
&, 0

The next two results are obtained immediately.

Corollary 3.7. Let M be an R-module. Then the following statements are equiv-
alent:

(1
(2
(3
(

18 a surjection.
W =1.
= ((N: M)M), for every z-submodule N of M.

1 is an injection.

¢
¢

)
)
) N
4)

Corollary 3.8. Let M be an R-module. Then the following statements are equiv-

alent:

(1) ¢ is an injection.

(2) vo=1.

(3) I=(IM),: M) for every z-ideal I of R.
(4)

4) 1 is a surjection.

Corollary 3.9. If ¢ is an injection, then ((0): M), = ((0), : M).

Proof. By Corollary 3.8(3) and Theorem 2.6, we have
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Corollary 3.10. Let M be an R-module. Then the mapping ¢ is a bijection if
and only if ¥ is a bijection. In particular, if ¢ is a bijection, then ¢ is a lattice

isomorphism and 1 is its inverse.

Proof. The first part follows from Corollary 3.7 and Corollary 3.8. These and

Lemma 3.1 conclude the “in particular” part. O

Corollary 3.11. Let R = C(X) and M be a finitely generated faithful multiplica-

tion R-module. Then, ¢ is a lattice isomorphism.

Proof. Firstly by Corollary 2.8 and Proposition 2.5, we have (IM), : M) = (IM :
M), = I, = I for all z-ideals I of R which implies that ¢ is an injection by Corollary
3.8. On the other hand, since M is multiplication, we have (N : M)M), = N, = N
for every z-submodule N of M which shows that ¢ is a surjection by Corollary 3.7.
Thus, the assertion holds by Corollary 3.10. O

4. A finitely generated multiplication module over C(X)

Let m be a maximal ideal of R. An R-module M is called m-cyclic provided
there exist x € M and a € m such that (1 — a)M C Rz. By [7, Theorem 1.2],
every m-cyclic module is a multiplication module. Assume that Y is a subset of a
topological space X. Then RY consisting of all functions from Y to R is a C(X)-
module with the usual multiplication of functions as the scalar multiplication. If Y
is a finite subset of a compact Hausdorff space X and m, := {f € C(X) | f(z) = 0}
for each fixed point z € X, we show that the C'(X)-module RY (consisting of all
functions from Y to R) is mg-cyclic (see [4, Exercise 26, p. 14] for that m, is a

maximal ideal of C(X)). In particular, we have the following result:

Theorem 4.1. IfY is a finite subset of a compact Hausdorff space X, then RY is
a multiplication C(X)-module.

Proof. Since X is Hausdorff, the finite subset Y is closed in X, and the subspace
topology of Y is discrete. Therefore C(Y) = RY. Now if f € m, and g € RY,
then (1 — f)g = (1 — f)|, g, where (1 — f)|, denotes the restriction of (1 — f) to YV’
and g is the Tietze extension of g [19, Theorem 3.2]. It implies that (1 — f)RY C
C(X)(1 - f)|y, as required. Thus RY is an m,-cyclic C(X)-module, and so by [7,
Theorem 1.2], RY is a multiplication C(X)-module. O

Recall that any completely regular space X is said to be a P-space if every prime

ideal of C(X) is a maximal ideal. If X is a compact Hausdorfl P-space, then by [8,
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4J] and [13, Theorem 1.2], C(X) is a regular ring. This fact is used in the following

result.

Theorem 4.2. IfY is a finite subset of a compact Hausdorff P-space X, then RY
is a flat C(X)-module.

Proof. First, we consider the mapping ¢ : RY — [[.cy C(X)/m, defined by
#(g9) = (Cyz) + mg)zey, where Cy(,) is the constant function which maps the
whole of X to g(z). Clearly, ¢ is a C'(X)-module homomorphism and its inverse is
the mapping ¢ : [[,cy C(X)/m; — RY defined by 9((fz + ma)zey)(y) = fy(¥),
i.e., ¢ is a C(X)-module isomorphism. Now, since C'(X) is regular and C'(X)/m,
is a simple C'(X)-module, we conclude that C(X)/m, is an injective C'(X)-module
by [26, Theorem 2]. But by [22, Proposition 1.4], the injectivity of C'(X)/m, is
sy C(X)/m, is a flat C(X)-module

and so is RY . O

equivalent to its flatness. Consequently, []

It is clear that for any non-empty finite subset Y of a compact Hausdorff P-space
X and for any z € X, the submodule m,RY of the C(X)- module RY dose not
contain the non-zero constant functions from Y to R, and so (m,RY : RY) = m,
for all z € X. Now, by Theorem 4.1, RY is a multiplication C'(X)-module, and so
the flatness of the C(X)-module RY (Theorem 4.2) implies that RY is a finitely
generated C(X)-module by [12, Propositions 2.4 and 3.8]. Thus, we have the

following without further proof.

Corollary 4.3. IfY is a finite subset of a compact Hausdorff P-space X, then RY
is a finitely generated faithful multiplication C (X )-module.

Corollary 4.4. Let X be a compact Hausdorff P-space and Y be a finite subset of
X. Then every submodule of the C(X)-module RY is a z-submodule of RY .

Proof. Let N be a submodule of RY. By Theorem 4.1, N = IM for some ideal I
of C(X). But, since X is a P-space, I is a z-ideal of C(X) by [8, 4J], and so by
[3, page 1], I is a sz-ideal of C(X). Hence N is a z-submodule by Theorem 2.7(1)
and Corollary 4.3. (]
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