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ABSTRACT

Functionally graded materials (FGMs) are advanced materials designed to achieve specific 
property gradients. The unique characteristic of these materials—variations in spatial dimen-
sions—allows for integrating the advantages of different materials within a single component, 
where a combination of properties, such as mechanical strength, thermal resistance, and oth-
ers, is needed. This paper utilizes finite element analysis to examine the deflection and stress re-
sponses of FGM rectangular plates with different material gradient profiles. Various boundary 
conditions, including clamped, simply supported, and free edges in different configurations, 
are considered. The plates are subjected to uniformly distributed, sinusoidally distributed, and 
concentrated loads. The study investigates the effects of boundary and loading conditions, 
along with the impact of the material gradient, on the deflections and stress responses of FGM 
rectangular plates. The results indicate variations in deflection and stress values for different 
material gradients, under varying boundary and loading conditions.
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1. INTRODUCTION

Functionally graded materials (FGMs) are advanced 
composite materials with structural characteristics that pro-
vide customized mechanical, thermal, and chemical prop-
erties. The gradual variation in the composition or micro-
structure of these materials across spatial dimensions makes 
it possible to manipulate their properties based on practical 
needs [1]. Although FGMs have attracted significant atten-
tion owing to their potential applications in diverse engi-
neering fields, including structural, aerospace, automotive, 
and biomedical engineering, future applications also de-
mand materials that are readily available at reasonable costs 
and do not compromise environmental concerns [2].

Torelli et al. [3] comprehensively analyzed Functionally 
Graded Concrete (FGC), focusing on structural applica-
tions, design methods, and production procedures. Keep-
ing in mind that the industrial production of cement, the 
critical constituent of concrete, accounts for approximately 
5% of global human-made carbon emissions, they showed 
through their results that material savings of up to 40% 
are possible through the functional gradation of concrete. 
In their sustainability analysis, Chan et al. [4] investigated 
FGC made of recycled aggregates reinforced with fibers. 
They concluded that a reduction in the total volume of steel 
fibers, resulting from a decreased ratio of reinforced layer 
height to total height, minimized the total embodied CO2 
and cost of concrete.
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Sustaining energy demands for the current generation 
can pose significant environmental challenges for upcom-
ing generations. Although progress in this field seems 
gradual, it aligns with innovations in materials, equip-
ment, and environmental considerations [5]. The concept 
of FGMs dates back to the late 20th century, with initial 
conceptualizations emerging during a space plane project 
in Japan in the 1980s [6]. Advancements in material pro-
cessing techniques during the 1990s and early 2000s, such 
as powder metallurgy and sol-gel methods, facilitated the 
manufacturing of FGM structures with greater control 
over material properties. Today, producing graded struc-
tures can be considered the next step in the development 
of composite materials [7].

Academic researchers have conducted comprehensive 
studies on the behavior of structural elements composed 
of FGMs in different applications, illustrating their me-
chanical, thermal, and chemical responses. Chaabani et 
al. [8] studied the buckling and post-buckling behavior 
of porous FGM plates using High Order Continuation 
based on the Asymptotic Numerical Method in conjunc-
tion with the Finite Element Method (FEM) to model the 
nonlinear behavior of a Porous Functionally Graded Ma-
terial (PFGM) plate. Several plates with different porosity 
distributions under various types of transverse loads were 
analyzed, and they concluded that an increase in the po-
rosity coefficient of PFGM plates causes more significant 
deflections, thereby diminishing plate stiffness and reduc-
ing critical buckling loads.

Moita et al. [9] investigated higher-order finite ele-
ment models for the static linear and nonlinear response 
of FGM plate-shell structures. Their study revealed that the 
gradient index can determine the mechanical behavior of 
FGM plates. They also highlighted the influence of high 
temperatures on the predictability of these responses. Afza-
li et al. [10] conducted a study to investigate the thermal 
buckling response of FGM plates with temperature-depen-
dent properties. Their findings revealed that using the ac-
tual temperature distribution instead of assumed ones can 
lead to more precise results in thermal buckling analysis. 
Kazemzadeh-Parsi et al. [11] analyzed the thermoelasticity 
of FGMs using Proper Generalized Decomposition (PGD), 
primarily focusing on material gradation in one, two, and 
three directions. They reduced high-dimensional problems 
to one-dimensional problems, contributing to the simplici-
ty of the solution and design procedure.

Kargarnovin et al. [12] investigated the thermal buck-
ling behavior of FGM rectangular plates using the Clas-
sical Plate Theory (CPT) and the Galerkin method. They 
concluded that plate geometry and material properties can 
influence the critical buckling temperature. Saad and Had-
ji [13] studied different parameters affecting the critical 
buckling temperature of thick FGM plates. They presented 
numerical results derived from thermal buckling analyses 
on FGM plates subjected to uniform, linear, and non-lin-
ear thermal loading conditions. Using the four-variable 
higher-order shear Deformation Theory (HSDT), they un-
derscored the validity of the proposed shear theory in re-

solving the buckling behavior of PFGM plates under varied 
thermal loading conditions.

Slimani et al. [14] used the seemingly 3D refined HSDT 
to investigate the static bending with two distinct types of 
porosity dispersal in FGM plates. The results showed that 
the E-FGM (exponential function) yielded larger deflection 
values, normal stresses, and shear stresses than the P-FGM 
(power-law function). Rebai et al. [15] investigated an ana-
lytical approach based on micromechanical models to ana-
lyze the static deflection behavior of sandwich FGM plates 
subjected to thermal loads. A comparative outcome stated 
that while various micromechanical models affect the de-
flection behavior, their overall impact on the deflection be-
havior is relatively small.

Hamza and Bouderba [16], using an efficient and 
straightforward refined plate theory, analyzed the buckling 
of FGM plates subjected to different load conditions. They 
explored the effects of uniaxial and biaxial compression 
loads, alongside simply supported boundary conditions, 
on rectangular FGM plates. Their results confirmed that 
the application of uniaxial and biaxial compressive loads, 
coupled with transverse shear loading, stabilizes the shear 
buckling phenomenon of FGM plates subjected to com-
bined shear and directional loading.

Hong [17] studied static bending and free vibration anal-
ysis of bidirectional FGM plates using FEM and third-order 
shear deformation theory. He concluded that increased de-
formation and load intensity applied to the structure leads to 
conflicts arising from linear and nonlinear problems. Talha 
and Singh [18] conducted free vibration and static analysis of 
square and rectangular FGM plates based on HSDT in con-
junction with FEM. A special modification was made to the 
transverse displacement. An increase in frequency param-
eter was observed and confirmed, resulting from increased 
plate aspect ratio and smaller side-to-thickness ratio.

Singh and Gupta [19] used HSDT to investigate the 
effects of porosity integration and geometric flaws on the 
vibrational frequency of sandwich functionally graded 
material (SFGM) plates under both usual and unusual 
boundary conditions. They found that due to a reduction 
in metallic content, the non-dimensional frequency pa-
rameter (NDFP) decreases as the volume fraction index (n) 
decreases from metal to ceramic, reducing the overall stiff-
ness of the SFGM plate. While HSDT can be more accurate 
than the four-variable shear deformation theory (FVSDT), 
FVSDT strikes a balance between accuracy and computa-
tional efficiency, making it suitable for various applications 
involving moderate thicknesses and shear deformation ef-
fects. Alghanmi and Aljaghthami [20] utilized FVSDT to 
investigate the effects of nonuniform heterogeneous param-
eters, aspect ratios, side-to-thickness ratios, and changing 
porosities on the sandwich plates’ static bending behavior. 
They found that higher porosity leads to greater deflections. 
This may also be known as the elasticity modulus deterio-
ration resulting from excessive porosities, which causes the 
plate’s bending stiffness to decline. Because the plate bend-
ing stiffness is reduced at greater side-to-thickness and low-
er aspect ratio, the center deflection is amplified even more.
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Nguyen et al. [21] investigated the buckling prop-
erties of variable thickness functionally graded porous 
(FGP) plates with sinusoidal porosity distribution. They 
achieved this by integrating ES-MITC3 with First Order 
Shear Deformation Theory (FSDT). They discovered that 
since the ES-MITC3 is built on traditional triangular ele-
ments, meshing elements with complicated geometries is 
simpler. The FGP plate rigidity decreases with a rise in the 
power-law index, which lowers the critical load. Elkafrawy 
et al. [22] investigated the elastic buckling of FGM thin 
plates with circular, square, and diamond-shaped open-
ings using FEM. Their analysis revealed that enlarging the 
opening and adjusting the aspect ratio reduced the critical 
buckling load for the FGM plate.

Alashkar et al. [23] studied the buckling analysis of FGM 
thin plates with various circular cutout arrangements using 
FEM. They concluded that the critical buckling load in-
creases as the plate thickness decreases and the circular cut-
out diameter increases. In a separate study, they investigated 
the elastic buckling characteristic of skew FGM thin plates 
with a circular opening using FEM. They found that the crit-
ical buckling load also increases as the skew angle rises. Fur-
thermore, the critical buckling load declines as the opening 
moves from the plate’s border toward its center [24].

Kumar et al. [25] presented the modified Radial Basis 
Function (RBF)-based mesh-free method for the initial 
buckling analysis of elastically supported rectangular FGM 
plates subjected to various in-plane loading conditions. A 
thin plate spline RBF method was implemented. They found 
that the critical buckling load generally decreases as the as-
pect ratio increases for all loading arrangements. Shehab 
et al. [26] investigated the free vibration analysis of intact 
and cracked FGM plates using experimental and numerical 
methods. The results showed that when the FGM gradient 
index is less than 3, it significantly affects the plate’s natural 
frequency, while higher gradient indexes have no signifi-
cant effect on both cracked and intact plates.

Hu et al. [27] proposed the Symplectic Superposition 
Method (SSM) as an analytical method to solve the free 
vibration problem of non-Lévy type porous FGM rectan-
gular plates. Their study highlighted that SSM doesn’t need 
pre-defined solution forms, paving the way for obtaining 
rapidly convergent frequency results with high accuracy. 
Peng et al. [28] found that the fundamental frequency of 
the stiffened FGM plates resting on the Winkler foundation 
varies with variations in the power-law exponent. Lim et 
al. [29] investigated a sophisticated, multilayered model-
ing approach, likely based on FEM, for the static analysis 
of porous FGM cooling plates with cutouts. By considering 
various conventional and unconventional boundary condi-
tions, they discovered that the location of clamped edges 
significantly impacts the deflection, with a specific config-
uration (BC3) exhibiting the lowest deflection. Ramu and 
Mohanty [30] coded an FGM plate program in MATLAB 
to determine its natural frequencies and mode shapes using 
FEM. It was observed that increasing the power-law index 
value (n) reduced the first five natural frequencies under 
various boundary conditions in their study.

In their study, Srivastava et al. [31] analyzed Radial Ba-
sis Functions (RBFs) with modified radial distance for the 
vibration analysis of FGM rectangular plates using HSDT. 
Their findings showed that increasing grading and porosity 
indexes causes a decrease in normalized natural frequen-
cy. Kumar [32], in his free transverse vibration analysis of 
a thin isotropic FG rectangular plate with porosity effects 
based on CPT, concluded that the frequencies of isotropic 
simply supported plates are proportional to those of mere-
ly supported homogeneous isotropic plates. Kumaravelan 
[33], in his thesis, studied the axisymmetric bending of 
FGM circular plates under uniformly distributed transverse 
mechanical, thermal, and combined mechanical-thermal 
loads using the Element Free Galerkin (EFG) method. 
He concluded that adding a metal or ceramic plate to one 
face of a tapered FGM plate decreases the induced stress-
es. Therefore, in cases where the FGM plate does not have 
sufficient strength for a particular application, a metal or 
ceramic plate can be bonded to the FGM plate.

Smaine et al. [34] investigated the volumetric propor-
tion of the FGM concept in the Fiber-Matrix mixing laws 
in UD composites using the ABAQUS calculation code and 
FEM. They noticed that the suggested graded composite ex-
hibited overcapacity of resistance as indicated by the grad-
ing index (n) or their locations. The fibers C1 and C2 con-
tributed to optimizing this capacity. Asemi and Salami [35] 
extended a numerical approach for the low-velocity impact 
analysis of rectangular FGM plates based on the 3D theory 
of elasticity. They concluded that applying 3D-graded ele-
ments to analyze the plates eliminates the discontinuities 
in the stress distribution that are present in conventional 
FE results. Rani et al. [36] developed the Extended Finite 
Element Method (XFEM) and the level set method for 
modeling and analyzing stresses around rounded rectangu-
lar inclusions enclosed with an FGM layer. They demon-
strated that the FGM layer significantly reduces the stress 
concentration and identified optimal FGM properties for 
minimizing it.

Yildirim [37] investigated hydrogen-induced stresses in 
FGM circular members using the two-dimensional theory 
of elasticity. Through his simple and efficient procedure, he 
concluded that radial stress is more affected by the material 
model selection than hoop stress. Feri et al. [38] studied the 
3D bending behavior of an intelligent plate consisting of a 
viscoelastic FGM layer sandwiched between piezoelectric 
layers under electric field and pressure. The analysis used a 
state-space technique and Fourier series expansion to solve 
the governing equations in the Laplace domain. Based on 
the numerical results, it was demonstrated that the visco-
elastic properties strongly affect the bending behavior of 
the FGM plate.

Bendenia et al. [39] studied the static and free vibration 
behavior of nanocomposite sandwich plates reinforced with 
carbon nanotubes. It was found that functionally graded 
carbon nanotube face sheet-reinforced sandwich plates have 
high resistance against deflections compared to other rein-
forcements. Several other structural elements, such as beams, 
arches, columns, domes, etc., composed of functionally 
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graded materials, have also been investigated by researchers, 
shedding light on various behavioral aspects of FGMs in di-
verse applications [40–48]. Researchers have utilized a wide 
range of analytical models to solve these problems.

Menasria et al. [49] ensured the zero-shear stress-
es at the free surfaces of functionally graded sandwich 
plates without introducing any correction factor by pro-
posing a refined shear deformation theory with fewer 
unknowns. Through verification studies, Rabhi et al. 
[50] confirmed that their three-unknown shear defor-
mation theory is comparable with other higher-order 
shear deformation theories in solving problems related 
to the buckling and vibration responses of exponentially 
graded sandwich plates.

Matouk et al. [51] investigated the free vibration re-
sponses of functionally graded nano-beams using integral 
Timoshenko beam theory. Their model has three variable 
unknowns and requires the introduction of a shear cor-
rection factor due to uniformly varied shear stress in the 
thickness direction. In finite element analysis, mesh density 
is an essential concept that closely relates to the accuracy 
of finite element models while directly determining their 
complexity level.

Hassan and Kurgan [52] modeled and analyzed the 
buckling of rectangular plates using the ANSYS software 
package, emphasizing selecting an appropriate number of 
elements in FEM. A large number of elements leads to more 
computational time without a significant gain in accuracy, 
while too few elements can produce incorrect solutions. 
Extensive research studies have been conducted to explore 
the impact of mesh refinement in both static and dynamic 
analyses. A consensus is present among all the conducted 
studies that the fineness of the mesh can significantly influ-
ence the obtained results [53, 54].

This paper analyzes FGM plates with various material 
gradients in the thickness direction using the finite element 
package program ANSYS Mechanical APDL [55]. The ef-
fects of material gradients, boundary conditions, and load 
types on the deflection and stress responses of FGM plates 
are investigated. The study aims to illustrate how increasing 
the power-law index, which introduces more steel constitu-
ents into the mix, can affect the bending and stress respons-
es of FGM plates. Additionally, the influence of constraints 

at the edges of the plates on bending and stress formation 
within the FGM plates is studied. A convergence study also 
discusses the optimal number of layers and mesh density 
for discretizing these plates.

2. MATERIALS AND METHODS

In this paper, an FGM rectangular plate, as shown in 
Figure 1, with various types of boundary conditions sub-
jected to three distinct load forms, is studied using the 
FEM. For this study, the dimensions of the rectangular plate 
were arbitrarily selected without any specific rationale. The 
length and width of the plate are considered to be 10 and 6 
meters with a thickness (h) of 20 centimeters. The Cartesian 
coordinate system Oxyz, where O is the origin of the coor-
dinate system, is located at the left corner of the mid-plane 
of the plate, in which x, y, and z are the planer in-plane and 
vertical out-of-plane coordinates, respectively. Functionally 
gradation of materials in the thickness direction of the plate 
is shown in Figure 1.

Young's modulus of elasticity E is assumed to be a func-
tion of spatial coordinate z in the thickness direction and 
can vary linearly or non-linearly. Thus, the material proper-
ties of the FGM plate can be obtained by the rule of mixture 
as follows [56]:

Vc+Vm=1 (1)
E(z)=EcVc+EmVm=(Ec–Em) Vc+Em (2)
Vc and Vm are volume fractions, and Ec and Em are Young's 

modulus of elasticity for the FGM ceramic and metal com-
ponents, respectively. The volume fraction of ceramic as a 
function of the thickness z coordinate can be determined by 
a power-law function [56]:

 (3)
Where z is the dimensionless coordinate in the thick-

ness direction, h is the total thickness of the plate, and 
n is the power-law index, which indicates the material 
variation profile in the thickness direction. At the top ce-
ramic-rich layer (z=h/2), n=0 leads Eq. 2 to E(z)=Ec, and 
at the bottom metal-rich layer (z=-h/2), n=∞ leads Eq. 
2 to E(z)=Em. Delale and Erdogan investigated the effect 
of Poisson's ratio on the deformation of plates [57]. They 
concluded that Poisson's ratio had a much lower impact 
on deformation than Young's modulus. Thus, the Pois-

Figure 1. (a) FGM rectangular plate; (b) Cross section of FGM rectangular plate.

(b)(a)
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son's ratio of the plate is assumed to be constant. Alumina 
and steel are considered ceramic and metal materials in 
this study, and their properties are presented in Table 1. 
Variations of Young's modulus of elasticity in the thick-
ness direction of the plate for different power-law indexes 
(n) are shown in Figure 2.

The plates were analyzed using the finite element 
package program ANSYS Mechanical APDL, and a 3D 
element SHELL281 [58] was selected for discretization. 
SHELL281 is appropriate for the analysis of thin to mod-
erately thick shell structures. This element is based on 
first-order shear deformation theory, which governs the 
accuracy of modeling composite or sandwich structures. 
It is also well-suited for linear applications involving large 
rotations and/or strain nonlinearities. This finite element 
has eight nodes, each with six degrees of freedom: transla-
tions along the x, y, and z axes and rotations around the x, 
y, and z axes. The geometric configuration of SHELL281 
is shown in Figure 3.

Shape functions of 3D 8-node SHELL281 element are 
presented through Eqs. (4–9) [58].

Where u, v, and w are displacement components, θx, θy, 
and θz are rotation components in x, y, and z directions, 
respectively, and s and t are local coordinates within the 
finite element.

2.1. Convergence Study
A convergence study was conducted to model the FGM 

plates in ANSYS Mechanical APDL and determine the ap-
propriate number of layers and mesh size for discretiza-
tion. Singha et al. [56] used a high-precision plate bending 
element based on first-order shear deformation theory to 
analyze the deflection and stresses of FGM plates under 
distributed transverse load. In their study, the formula-
tion realistically accounted for the neutral surface position 
and the shear correction factors. Different boundary con-
ditions with uniformly and lateral sinusoidal distributed 
loads were examined. For this study, only the results ob-
tained in their research for the non-dimensional central 
displacement of clamped thin square alumina/aluminum 
FGM plates with power law indexes 0, 1, 2, 3, 4, 5, 10, and 
∞ under uniformly distributed load were selected and 
compared with the results of the present study. The results 
of the present study and their study exhibit substantial 
agreement, affirming the reliability of the findings and val-
idating the methodology used in this research. Compar-
isons of non-dimensional central displacement values of 
FGM plates with varying numbers of layers and mesh sizes 
are tabulated in Table 2 and Table 3, respectively.

As presented in Table 2, one layer is qualifying enough 
to obtain reliable results in the case of isotropic homoge-

Figure 2. Young's modulus of elasticity in the thickness di-
rection for different values of n.

Figure 3. SHELL281 geometry [58].

Table 1. Material properties

Material Young's modulus Poisson 
 (GPa) ratio

Ceramic - Alumina (Al2O3) 380 0.3
Steel 200 0.3
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neous thin plates. In the FGM plates, the results converged 
as the number of layers in the thickness direction was in-
creased. No significant change was observed in non-di-
mensional central displacement values of FGM plates 
after adding more than 201 layers. In Table 3, the values 
of non-dimensional central displacements for all plates 
were the same for finer meshes after 20 x 20. Although 
the non-dimensional central displacements of an isotropic 
homogeneous ceramic plate are the same after a 10 x 10 
mesh size, in the case of an isotropic homogeneous metal 
plate, the results converged after a 20 x 20 mesh size. These 
findings suggest the sufficiency of 201 layers and 20 x 20 
mesh size in solving thin to moderately thick FGM plates, 
yielding acceptable results while minimizing computa-
tional time. They also indicate a high degree of consisten-

cy and validation across both studies. The modeling and 
analyzing procedure of the present study is shown through 
a flowchart in Figure 4.

3. RESULTS AND DISCUSSION

This paper investigates deflections and stress responses 
of FGM plates with different boundary conditions subject-
ed to three types of loads. All FGM plates have 201 layers in 
the thickness direction, with each layer having its distinct 
material properties calculated by using Eq. 2. The variations 
of these material properties are based on the considered 
power-law indexes (0, 0.1, 0.25, 0.5, 0.75, 1, 2, 5, 10, 15, and 
20). A mesh size of 20 x 20 is used for discretization. Seven 
different boundary conditions are taken into account. The 

Table 2. Non-dimensional central displacement of FGM plates with varying number of layers

Number of layers     Power-law index (n)

 0 1 2 3 4 5 10 ∞

1 0.001267 – – – – – – 0.006890
11 – 0.002638 0.003229 0.003480 0.003584 0.003654 0.003828 –
21 – 0.002589 0.003243 0.003515 0.003654 0.003758 0.004002 –
31 – 0.002575 0.003250 0.003549 0.003689 0.003793 0.004071 –
41 – 0.002565 0.003250 0.003549 0.003689 0.003793 0.004106 –
51 – 0.002561 0.003254 0.003549 0.003723 0.003793 0.004141 –
61 – 0.002558 0.003254 0.003549 0.003723 0.003828 0.004141 –
71 – 0.002558 0.003254 0.003549 0.003723 0.003828 0.004176 –
81 – 0.002554 0.003257 0.003584 0.003723 0.003828 0.004176 –
91 – 0.002554 0.003257 0.003584 0.003723 0.003828 0.004176 –
101 – 0.002551 0.003257 0.003584 0.003723 0.003828 0.004176 –
201 – 0.002547 0.003257 0.003584 0.003723 0.003828 0.004211 –
Singha et al. [56] 0.001267 0.002542 0.003258 0.003580 0.003746 0.003854 0.004233 0.006881

Table 3. Non-dimensional central displacement of FGM plates with different mesh sizes

Power-law index (n)   Mesh sizes    Singha et al. [56]

 5 x 5 10 x 10 20 x 20 30 x 30 40 x 40 50 x 50

0 0.000936 0.001267 0.001267 0.001267 0.001267 0.001267 0.001267
1 0.001837 0.002544 0.002547 0.002547 0.002547 0.002547 0.002542
2 0.002380 0.003250 0.003257 0.003257 0.003257 0.003257 0.003258
3 0.002666 0.003584 0.003584 0.003584 0.003584 0.003584 0.003580
4 0.002822 0.003723 0.003723 0.003723 0.003723 0.003723 0.003746
5 0.002930 0.003828 0.003828 0.003828 0.003828 0.003828 0.003854
10 0.003243 0.004211 0.004211 0.004211 0.004211 0.004211 0.004233
∞ 0.005081 0.006855 0.006890 0.006890 0.006890 0.006890 0.006881

Table 4. Transitional and rotational restraints of supports

Type of support Restraints

Clamped (C) Ux = Uy = Uz = Rotx = Roty = Rotz = 0
Simply supported (S) At x = 0 and 10, Uy = Uz = 0, At y = 0 and 6, Ux = Uz = 0
Free (F) –
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transitional and rotational restraints of the supports are 
presented in Table 4. The configuration of the boundary 
conditions is such that from the left side, the first two letters 
represent the bottom and top, and the last two letters rep-
resent the left and right edges of the plate. Figure 5 shows 
meshed FGM rectangular plates with CCCC and CCFF 
boundary conditions.

10 FGM plates with distinct material properties are 
modeled and analyzed with seven boundary conditions 
and three different load types. A concentrated point load 
is assigned at the center point of the top ceramic-rich face. 
Uniformly and sinusoidal distributed loads were assigned 
on the top ceramic-rich face of the plate. The function of 
sinusoidal load is presented in Eq. 10.

 (10)

Where P is the sinusoidal load, a and b represent the 
length and width of the plate, respectively, and p0 The mag-
nitude of uniformly distributed load is assumed to be 10 
kN per square meter. It is worth mentioning that there is 

no specific reason for assigning this magnitude of load on 
the plate, and it is selected completely arbitrarily for this 
study. Maximum deflections of different FGM plates under 
uniformly distributed load, sinusoidal distributed load, and 
concentrated point loads with various boundary conditions 
are obtained and tabulated in Tables 5–7 and are compared 
in Figures 6–8, respectively. The results corresponding to the 
isotropic homogeneous ceramic and metal plates are includ-
ed only in the tables to provide a wider scope of comparison.

As is evident from Figures 6–8, the smallest deflections 
were obtained in the case of sinusoidal and uniformly dis-
tributed loads, respectively, while the highest deflections 
were observed when the plates were subjected to concen-
trated point load. This is a result of the nature of the load-
ing. Sinusoidal load varies smoothly and gradually across 
the plate, peaking at the center and reducing towards the 
edges in an illustrative manner, which paves the way for a 
more evenly spread out of stress and strain over the surface 
of the plate. This smooth distribution causes minimum local 
stress concentration and deflection. Uniformly distributed 

Figure 4. Modeling and analyzing procedure.

Figure 5. Meshed FGM rectangular plates with (a) CCCC and (b) CCFF boundary conditions.

(b)(a)
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Table 5. Maximum deflections (m) of isotropic homogeneous and FGM rectangular plates under uniformly distributed load

Power-law index (n)    Boundary conditions

 CCCC SSSS CCSS CSCS CCCF SSSF CCFF

0 0.000112 0.000412 0.000121 0.000206 0.000139 0.000702 0.000139
0.1 0.000119 0.000439 0.000128 0.000220 0.000148 0.000747 0.000148
0.25 0.000127 0.000469 0.000137 0.000235 0.000159 0.000800 0.000158
0.5 0.000138 0.000509 0.000149 0.000255 0.000172 0.000868 0.000172
0.75 0.000145 0.000538 0.000157 0.000269 0.000182 0.000916 0.000181
1 0.000151 0.000558 0.000163 0.000279 0.000188 0.000950 0.000188
2 0.000162 0.000598 0.000175 0.000300 0.000202 0.001019 0.000202
5 0.000173 0.000638 0.000187 0.000320 0.000216 0.001086 0.000215
10 0.000182 0.000672 0.000197 0.000337 0.000227 0.001144 0.000226
15 0.000188 0.000693 0.000203 0.000347 0.000234 0.001180 0.000234
20 0.000192 0.000708 0.000207 0.000354 0.000239 0.001205 0.000238
∞ 0.000212 0.000783 0.000229 0.000392 0.000265 0.001333 0.000264

Table 6. Maximum deflections (m) of isotropic homogeneous and FGM rectangular plates under sinusoidal distributed load

Power-law index (n)    Boundary conditions

 CCCC SSSS CCSS CSCS CCCF SSSF CCFF

0 0.0000819 0.000263 0.0000863 0.000139 0.0000844 0.000306 0.0000867
0.1 0.0000872 0.000280 0.0000919 0.000148 0.0000899 0.000326 0.0000923
0.25 0.0000934 0.000299 0.0000983 0.000158 0.0000962 0.000349 0.0000988
0.5 0.0001010 0.000325 0.0001070 0.000171 0.0001040 0.000379 0.0001070
0.75 0.0001070 0.000343 0.0001130 0.000181 0.0001100 0.000400 0.0001130
1 0.0001110 0.000355 0.0001170 0.000188 0.0001140 0.000415 0.0001170
2 0.0001190 0.000381 0.0001250 0.000201 0.0001230 0.000445 0.0001260
5 0.0001270 0.000406 0.0001340 0.000215 0.0001310 0.000474 0.0001340
10 0.0001340 0.000428 0.0001410 0.000226 0.0001380 0.000499 0.0001410
15 0.0001380 0.000442 0.0001450 0.000233 0.0001420 0.000515 0.0001460
20 0.0001410 0.000451 0.0001480 0.000238 0.0001450 0.000526 0.0001490
∞ 0.0001560 0.000499 0.0001640 0.000264 0.0001600 0.000582 0.0001650

Table 7. Maximum deflections (m) of isotropic homogeneous and FGM rectangular plates under concentrated point load

Power-law index (n)    Boundary conditions

 CCCC SSSS CCSS CSCS CCCF SSSF CCFF

0 0.000576 0.001269 0.000585 0.000787 0.000581 0.001347 0.000585
0.1 0.000613 0.001351 0.000662 0.000838 0.000618 0.001434 0.000623
0.25 0.000656 0.001445 0.000666 0.000896 0.000661 0.001534 0.000666
0.5 0.000712 0.001568 0.000722 0.000972 0.000717 0.001665 0.000723
0.75 0.000751 0.001655 0.000762 0.001026 0.000757 0.001757 0.000763
1 0.000779 0.001717 0.000791 0.001065 0.000786 0.001823 0.000792
2 0.000838 0.001844 0.000850 0.001144 0.000844 0.001957 0.000851
5 0.000895 0.001967 0.000908 0.001221 0.000902 0.002087 0.000909
10 0.000943 0.002072 0.000957 0.001286 0.000950 0.002198 0.000957
15 0.000972 0.002137 0.000987 0.001326 0.000980 0.002266 0.000987
20 0.000992 0.002181 0.001007 0.001353 0.001000 0.002314 0.001007
∞ 0.001095 0.002411 0.001112 0.001495 0.001104 0.002559 0.001112
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load resulted in slightly higher deflections due to the con-
stant magnitude over the entire face of the plate. Point Load, 
on the other hand, exhibited the highest deflections in FGM 
plates due to high-stress concentration at the point of appli-
cation. The effect of boundary conditions on the deflection 

values of the FGM plates can be observed, too. In all three 
cases, SSSF, SSSS, and CSCS-type boundary conditions re-
sulted in higher deflections than the others. Plates with SSSF 
boundary conditions have higher deflections because the 
free edge allows maximum movement, and simply support-

Figure 6. Maximum deflections of FGM rectangular plates 
under uniformly distributed load.

Figure 7. Maximum deflections of FGM rectangular plates 
under sinusoidal distributed load.

Figure 8. Maximum deflections of FGM rectangular plates 
under concentrated point load.

Figure 9. Maximum 1st principle stresses of FGM rectangu-
lar plates under uniformly distributed load.

Figure 10. Maximum 1st principle stresses of FGM rectan-
gular plates under sinusoidal distributed load.

Figure 11. Maximum 1st principle stresses of FGM rectan-
gular plates under concentrated point load.



J Sustain Const Mater Technol, Vol. 9, Issue. 3, pp. 239–254, September 2024248

ed edges allow rotation, contributing to more considerable 
deflections than the clamped conditions. The effect of free 
edge in maximizing the deflections is more evident when 
the results are compared with SSSS boundary condition.

The smallest maximum deflection values are obtained 
in the case of CCCC. They are very close to results ob-
tained from CCSS, CCCF, and CCFF, which indicates the 
effect of clamped boundary conditions in minimizing the 
deflections in FGM plates. In the case of CSCS, although 
it also has two clamped and two simply supported edges 
like CCSS, the positions of the clamped edges can affect 
the deflection values. In CSCS, the two clamped edges are 
adjacent, while in CCSS, the clamped edges are opposed. 
It is also worth mentioning that in CCSS boundary condi-
tions, one of the clamped edges is longer than the clamped 
edges in CSCS, which makes the plate more constrained, 
decreasing deflections. Maximum 1st principle stresses of 
FGM plates are presented similarly in Tables 8–10 and are 
compared in Figures 9–11.

As can be observed in Figures 9–11, FGM plates with SSSS 
boundary conditions have the lowest values of maximum 1st 
principle stress under both distributed loads. In contrast, the 
case of concentrated point load has the highest values after 
SSSF. This is because of the localized nature of the point load, 
which adds steepness to the trends in lower values of n and 
causes an overall increase in stress values compared to both 
distributed loads. Results corresponding to CCCF and CCFF 
boundary conditions are very close to each other in the case 
of uniformly distributed and concentrated point loads. By 
observing all three figures, it is apparent that the trends of 
stress values for CCCC, CCSS, CCCF, and CCFF boundary 
conditions converged as the load type changed from uni-
formly to sinusoidal distributed load and then to concentrat-
ed point load. This indicates that the two clamped edges take 
most of the stress. CSCS boundary condition exhibited the 
highest results of 1st principle stress in the plates under both 
distributed loads but had lower stress values than SSSF and 
SSSS in the case of concentrated point load.

Table 8. Maximum 1st principle stresses (MPa) of isotropic homogeneous and FGM rectangular plates under uniformly distributed load

Power-law index (n)    Boundary conditions

 CCCC SSSS CCSS CSCS CCCF SSSF CCFF

0 4.27 4.91 4.50 5.98 4.94 7.01 4.92
0.1 4.44 3.56 4.68 6.22 5.14 4.02 5.13
0.25 4.64 3.71 4.89 6.49 5.37 4.40 5.35
0.5 4.88 3.91 5.15 6.83 5.67 4.91 5.64
0.75 5.06 4.04 5.33 7.07 5.85 5.26 5.83
1 5.18 4.14 5.46 7.25 6.00 5.51 5.98
2 5.48 4.37 5.78 7.67 6.33 5.97 6.31
5 5.98 4.75 6.30 8.36 6.89 6.24 6.87
10 6.51 5.18 6.86 9.10 7.50 6.39 7.48
15 6.83 5.44 7.20 9.56 7.88 6.50 7.86
20 7.04 5.62 7.42 9.85 8.13 6.57 8.10
∞ 4.27 4.91 4.50 5.98 4.94 7.01 4.92

Table 9. Maximum 1st principle stresses (MPa) of isotropic homogeneous and FGM rectangular plates under sinusoidal distributed load

Power-law index (n)    Boundary conditions

 CCCC SSSS CCSS CSCS CCCF SSSF CCFF

0 2.92 3.32 3.03 3.92 2.97 3.70 3.02
0.1 3.03 1.97 3.15 4.08 3.09 2.12 3.14
0.25 3.17 2.08 3.29 4.25 3.22 2.32 3.28
0.5 3.33 2.32 3.46 4.48 3.39 2.59 3.45
0.75 3.45 2.49 3.58 4.64 3.51 2.78 3.57
1 3.54 2.61 3.67 4.75 3.60 2.91 3.66
2 3.74 2.83 3.89 5.03 3.81 3.15 3.87
5 4.08 2.95 4.24 5.48 4.15 3.29 4.22
10 4.44 3.03 4.61 5.97 4.52 3.37 4.60
15 4.66 3.08 4.84 6.27 4.74 3.43 4.82
20 4.81 3.11 4.99 6.46 4.89 3.47 4.97
∞ 2.92 3.32 3.03 3.92 2.97 3.70 3.02
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Table 10. Maximum 1st principle stresses (MPa) of isotropic homogeneous and FGM rectangular plates under concentrated point load

Power-law index (n)    Boundary conditions

 CCCC SSSS CCSS CSCS CCCF SSSF CCFF

0 37.5 43.5 37.6 39.3 37.5 44.2 37.6
0.1 21.5 25.0 21.5 22.5 21.5 25.4 21.6
0.25 23.5 27.4 23.6 24.7 23.6 27.8 23.6
0.5 26.2 30.5 26.3 27.5 26.3 31.0 26.3
0.75 28.1 32.7 28.2 29.5 28.2 33.2 28.2
1 29.5 34.3 29.6 30.9 29.5 34.8 29.6
2 31.9 37.1 32.0 33.5 32.0 37.7 32.0
5 33.3 38.8 33.4 35.0 33.4 39.4 33.4
10 34.2 39.7 34.3 35.9 34.2 40.3 34.3
15 34.8 40.4 34.9 36.5 34.8 41.0 34.9
20 35.2 40.9 35.3 36.9 35.2 41.5 35.3
∞ 37.5 43.5 37.6 39.3 37.5 44.2 37.6

Table 11. Maximum Von Mises stresses (MPa) of isotropic homogeneous and FGM rectangular plates under uniformly distributed load

Power-law index (n)    Boundary conditions

 CCCC SSSS CCSS CSCS CCCF SSSF CCFF

0 3.80 6.51 4.00 5.31 4.39 7.02 4.37
0.1 3.95 6.78 4.16 5.53 4.57 7.30 4.55
0.25 4.12 7.08 4.34 5.77 4.77 7.62 4.75
0.5 4.34 7.45 4.57 6.07 5.02 8.03 5.01
0.75 4.49 7.71 4.74 6.29 5.20 8.31 5.18
1 4.61 7.90 4.85 6.44 5.33 8.52 5.31
2 4.87 8.34 5.13 6.81 5.63 9.01 5.61
5 5.31 9.08 5.60 7.43 6.12 9.83 6.11
10 5.78 9.89 6.10 8.09 6.67 10.7 6.65
15 6.07 10.4 6.40 8.49 7.00 11.2 6.98
20 6.26 10.7 6.60 8.76 7.22 11.6 7.20
∞ 3.80 6.51 4.00 5.31 4.39 7.02 4.37

Table 12. Maximum Von Mises stresses (MPa) of isotropic homogeneous and FGM rectangular plates under sinusoidal distributed load

Power-law index (n)    Boundary conditions

 CCCC SSSS CCSS CSCS CCCF SSSF CCFF

0 2.59 3.44 2.69 3.48 2.64 3.59 2.68
0.1 2.70 3.58 2.80 3.62 2.47 3.74 2.79
0.25 2.81 3.74 2.92 3.78 2.86 3.90 2.91
0.5 2.96 3.94 3.08 3.98 3.01 4.11 3.07
0.75 3.07 4.08 3.19 4.12 3.12 4.26 3.17
1 3.14 4.18 3.27 4.22 3.20 4.36 3.25
2 3.33 4.41 3.45 4.47 3.38 4.60 3.44
5 3.63 4.80 3.77 4.87 3.69 5.01 3.75
10 3.95 5.23 4.10 5.30 4.02 5.45 4.08
15 4.14 5.49 4.30 5.57 4.22 5.73 4.29
20 4.27 5.66 4.44 5.74 4.35 5.91 4.42
∞ 2.59 3.44 2.69 3.48 2.64 3.59 2.68
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Moreover, the trends show an increase in stress values 
for all boundary conditions as the power-law index increas-
es. This is a result of the transition of materials from alumi-
na to steel, affecting the stiffness of the plate. At higher val-
ues of n, the ductile nature of steel decreases the steepness 
of the trends. Figure 12 shows the formation of 1st principle 
stresses in the FGM plates (n=1) subjected to uniformly dis-
tributed load with CCCC and CCFF boundary conditions.

Maximum Von Mises stresses of the FGM rectangu-
lar plates with different boundary conditions for all three 
types of loads are tabulated in Tables 11–13 and are com-
pared in Figures 13–15.

As can be seen in Figures 10–12, FGM plates with SSSF 
and SSSS boundary conditions have higher maximum 
Von Mises stress values under all types of loads compared 
to other boundary conditions, except plates subjected to 
sinusoidal distributed load, where stress values of CSCS 
boundary condition surpassed those of SSSS. In the case of 
CCCF and CCFF, when the plates are subjected to uniform-
ly distributed load, there is a very small difference in stress 
values, and their trends are nearly coincident. Under sinu-

soidal distributed load, these trends diverged enough to be 
observed. The maximum Von Mises stress values for FGM 
plates subjected to concentrate point load with CCCC, 

Figure 12. 1st Principle stresses in FGM rectangular plates with (a) CCCC and (b) CCFF boundary conditions.

(a) (b)

Table 13. Maximum Von Mises stresses (MPa) of isotropic homogeneous and FGM rectangular plates under concentrated point load

Power-law index (n)    Boundary conditions

 CCCC SSSS CCSS CSCS CCCF SSSF CCFF

0 35.6 41.1 35.6 37.3 35.6 41.4 35.6
0.1 37.0 42.8 37.0 38.8 37.0 43.1 37.0
0.25 38.6 44.6 38.7 40.5 38.6 44.9 38.7
0.5 40.7 47.0 40.7 42.7 40.7 47.3 40.7
0.75 42.1 48.7 42.2 44.2 42.1 49.0 42.1
1 43.2 49.9 43.2 45.3 43.2 50.2 43.2
2 45.7 52.8 45.7 47.9 45.7 53.2 45.7
5 49.8 57.6 49.9 52.3 49.8 58.0 49.9
10 54.2 62.7 54.3 56.9 54.2 63.1 54.3
15 56.9 65.8 57.0 59.7 56.9 66.2 56.9
20 58.7 67.8 58.7 61.5 58.7 68.3 58.7
∞ 35.6 41.1 35.6 37.3 35.6 41.4 35.6

Figure 13. Maximum Von Mises stresses of FGM rectangu-
lar plates under uniformly distributed load.
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CCSS, CCCF, and CCFF are very close and have small dif-
ferences that can be neglected. The common factor between 
these four boundary conditions is the presence of clamped 
supports at the two long edges of the plate. CSCS boundary 
conditions also have two clamped edges, but one of them is 
the short edge of the plate, resulting in higher stress values 
than others. This indicates the clamped boundary condi-
tion's significance and position around the plate. In the case 
of point load, the maximum Von Mises stress values corre-
sponding to SSSF and SSSS were very close at small values 
of n, but the trends diverged smoothly at greater values of n. 
Across all load types, the power-law index n influenced the 
maximum Von Mises stress values similarly, with an initial 
increase due to higher deflections from introducing steel-
like properties. At higher n values, the rate of increase in 
stress values decreased as the plate gained more ductility 
due to the high content of steel in the composition. Fig-
ure 16 shows the formation of Von Mises stresses in FGM 
rectangular plates (n=1) subjected to uniformly distribut-
ed load with CCCF boundary condition and concentrated 
point load with CCCC boundary condition.

4. CONCLUSIONS

This paper investigates the effect of the material proper-
ty gradient on the deflection and stress responses of FGM 
plates with various boundary conditions, subjected to three 
different types of loads, using the finite element method. 
Ten FGM plates, whose top and bottom layers are composed 
of alumina and steel, respectively, have intermediate layers 
with material properties varying based on the power-law 
indexes considered in this study. After obtaining numeri-
cal results from ANSYS Mechanical APDL and comparing 
them, the following conclusions can be drawn:
• The number of layers and mesh size significantly influ-

ence the actual behavior of FGM plates. While an in-
crease in the number of layers and mesh size leads to 
more precise and accurate numerical results, no signif-
icant change in results was observed when the number 
of layers increased from 101 to 201 or when the mesh 
size was refined beyond 20 x 20.

• The type of load plays a crucial role in determining the 
deflections and stress formation within the FGM plates. 

Figure 16. Von Mises stresses in FGM rectangular plates; (a) Subjected to uniformly distributed load with CCCF bound-
ary condition (b) Subjected to concentrated point load with CCCC boundary condition.

(a) (b)

Figure 15. Maximum Von Mises stresses of FGM rectangu-
lar plates under concentrated point load.

Figure 14. Maximum Von Mises stresses of FGM rectangu-
lar plates under sinusoidal distributed load.
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A sinusoidally distributed load resulted in the least de-
flections and stress values compared to uniformly dis-
tributed and concentrated point loads.

• Boundary conditions have a significant impact on de-
flections in FGM plates. Under all types of loads, plates 
with CCCC (all clamped) boundary conditions exhibit-
ed the least maximum deflection, while plates with SSSF 
(three simply supported, one free) boundary conditions 
showed the highest maximum deflection.

• The highest values of maximum first principal stress 
were observed in plates with CSCS (clamped-simply 
supported-clamped-simply supported) boundary condi-
tions when subjected to distributed loads. These highest 
values shifted to plates with SSSF boundary conditions 
under concentrated point loads. In the case of distrib-
uted loads, the lowest stress was recorded in plates with 
SSSS (all simply supported) boundary conditions, while 
the lowest values under concentrated point loads were 
seen in plates with CCCC boundary conditions.

• For all types of loads, the highest maximum von Mises 
stress values in all FGM plates were recorded under SSSF 
boundary conditions. The lowest maximum von Mises 
stress values were observed in plates with CCCC boundary 
conditions when subjected to uniformly distributed and 
concentrated point loads. Under sinusoidal distributed 
loads, the lowest stress value was observed in plates with 
CCCF (three clamped, one free) boundary conditions.

• The positioning of clamped edges greatly influences the 
deflections and stress formation within FGM plates.

• Generally, increasing the steel content in the compo-
sition of the plates, thereby increasing the power-law 
index (n), resulted in higher deflections and maximum 
first principal and von Mises stresses in all the plates.

• At smaller values of n, the rate of increase in deflections, 
maximum first principal stress, and von Mises stress is 
higher than at larger values of n, where the plates exhibit 
more steel-like properties.
The results of this study are in strong agreement with 

the existing literature consensus, emphasizing the impact 
of the material gradient index and boundary conditions on 
the bending and stress responses of FGM plates.
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