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ABSTRACT 
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generating function, Binet-like formula, and some identities are represented. In addition, some 
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the sequence are studied. Finally we define a quaternion sequence formed by the terms of Gaussian 

quadra Fibona-Pell sequence.  
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I. INTRODUCTION 

 
When it comes to number sequences, Fibonacci and others naturally come to mind. The Fibonacci 

number sequence and various sequences, such as Lucas, Pell, Jacobsthal, and Horadam similar to this 

number sequence, have found applications in many branches, not only in mathematics. When the 

literature is examined, there are many studies on number sequences. For detailed information, you 

review Koshy’s book [1]. 

There are also Gaussian forms of some number sequences with recurrence relation in the literature. 

Here, too, the terms forming these number sequences are complex numbers. Again, many works in the 

literature involve Gaussian forms of number sequences. 𝑧 is a Gaussian integer such that 𝑧 =  𝑎 +
 𝑖𝑏,  with 𝑖2 = −1 , where   𝑎 and   𝑏  are arbitrary integers. Gauss [2], in 1832, such numbers were 

first published and also mentioned the properties of the set of complex integers. 

Horadam [3], in 1963, introduced the concept the complex Fibonacci numbers called the Gaussian 

Fibonacci numbers as follows:  

 

𝐺𝐹𝑛 =  𝐺𝐹𝑛−1 + 𝐺𝐹𝑛−2, for 𝑛 ≥  2  

 

where 𝐺𝐹0  = 𝑖 and 𝐺𝐹1  = 1 are initial values. 

 

Note that 𝐹𝑛  + 𝑖𝐹𝑛−1  = 𝐺𝐹𝑛   for all 𝑛 >  0 and  𝐺𝐹−𝑛  = 𝐹−𝑛  + 𝑖𝐹−𝑛−1   where 𝐹𝑛  , 𝑛 − 𝑡ℎ 

Fibonacci number. The table below gives the first few values of Gaussian Fibonacci numbers with 

positive and   negative subscripts. 

 
Table 1. Gaussian Fibonacci numbers with positive and negative subscripts. 

 

𝒏 𝑮𝑭𝒏   𝑮𝑭−𝒏   

0 𝑖 𝑖 

1 1 1 − 𝑖 

2 1 + 𝑖 −1 + 2𝑖 

3 2 + 𝑖 2 − 3𝑖 

4 3 + 2𝑖 −3 + 5𝑖 

5 5 + 3𝑖 5 − 8𝑖 

6 8 + 5𝑖 −8 + 13𝑖 

7 13 + 8𝑖 13 − 21𝑖 

8 21 + 13𝑖 −21 + 34𝑖 

. . . 

. . . 

. . . 

   

 

And then, Jordan [4], expanded the knowledge on the subject for Fibonacci sequences. If  

γ and δ are the roots of the characteristic equation of the Gaussian Fibonacci sequence, Binet-like 

formula of the Gaussian Fibonacci sequence can be given as follows: 

 

𝐺𝐹𝑛  =
γ𝑛 − δ𝑛

γ − δ
+ 𝑖

γδ𝑛−δγ𝑛

γ − δ
 

 

 

where γ =
1+√5

2
  and δ =

1−√5

2
. Generating function of 𝐺𝐹𝑛  is  
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𝐺𝐹(𝑡) =
𝑖 + 𝑡 − 𝑖𝑡

1 − t − t2. 

 
(1.1) 

Halıcı and Öz [5], in 2016, introduced the Gaussian Pell numbers as follow: 

 

𝐺𝑃𝑛 =  2𝐺𝑃𝑛−1 + 𝐺𝑃𝑛−2, for 𝑛 ≥  2    

 

where 𝐺𝑃0  = 𝑖 and 𝐺𝑃1  = 1. 

 

Note that 𝐺𝑃𝑛  = 𝑃𝑛  + 𝑖𝑃𝑛−1   and 𝐺𝑃−𝑛  = 𝑃−𝑛  + 𝑖𝑃−𝑛−1   where 𝑃𝑛  , 𝑛 − 𝑡ℎ Pell number. The 

table below gives the first few values of Gaussian Pell numbers with positive and   negative subscripts. 

 
Table 2. Gaussian Pell numbers with positive and negative subscripts. 

 

𝒏 𝑮𝑷𝒏   𝑮𝑷−𝒏   

0 𝑖 𝑖 

1 1 1 − 2𝑖 

2 2 + 𝑖 −1 + 5𝑖 

3 5 + 2𝑖 5 − 12𝑖 

4 12 + 5𝑖 −12 + 29𝑖 

5 29 + 12𝑖 29 − 70𝑖 

6 70 + 29𝑖 −70 + 169𝑖 

7 169 + 70𝑖 169 − 408𝑖 

8 408 + 169𝑖 −408 + 985𝑖 

. . . 

. . . 

. . . 

   

 

For this new sequence, [5] has the following. If Ψ and Ω are the roots of the characteristic equation of 

the Gaussian Pell sequence, the Binet-like formula of the Gaussian Pell sequence can be given as 

follows: 

 

𝐺𝑃𝑛  =
Ψ𝑛 − Ω𝑛

Ψ − Ω
+ 𝑖

ΨΩ𝑛 − ΩΨ𝑛

Ψ − Ω
 

 

 

 

where Ψ = 1 + √2 and Ω = 1 − √2. Generating function of 𝐺𝑃𝑛  is  

 

𝐺𝑃(𝑡) =
𝑖 + 𝑡 − 2𝑖𝑡

1 − 2t − t2. 

 

(1.2) 

Looking at the literature, there are studies similar to these, such as [6–8], and more. As for the present 

day, in [9], the author introduced the Gaussian Mersenne numbers and also gave the matrix form and 

various identities. The same author, in [10], studied the Gaussian numbers for Padovan and Pell-

Padovan numbers, which are integer sequences with a recurrence relation of the third order. 

 

 

In [11], the author gave linear summation for the Gaussian generalized Pentanacci numbers he 

introduced. In [12], also the author focuses on the Gauss form of (𝑝, 𝑞) −Jacobsthal and 

(𝑝, 𝑞) −Jacobsthal Lucas numbers. Some identities are presented for the relevant new sequences. In 

[13], the authors obtained various identities for Gauss Leonardo numbers such as the Binet formula, 
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Cassini identity, and generating function. Earliest, we remind some properties of about quadra Fibona-

Pell sequence. The information in this section is taken from [14]. The quadra Fibona-Pell numbers are 

defined by fourth-order recurrence relation as 

 

W𝑛 = 3W𝑛−1 − 3W𝑛−3 − W𝑛−4 , for 𝑛 ≥ 4 (1.3) 

 

with the beginning conditions  W0 = W1 = 0, W2 = 1, and W3 = 3.  
 

The characteristic equation of (1.3) and the roots of this equation are 

 

𝑥4 − 3𝑥3 + 3𝑥 + 1 = 0  

 

and   

 

γ =
1+√5

2
, δ =

1−√5

2
 , Ψ = 1 + √2, and Ω = 1 − √2. 

 

(1.3) can be extended to negative subscripts as follows: 

 

W𝑛 = 3W𝑛−1 − 3W𝑛−3 − W𝑛−4 , for all 𝑛 ≥ 4.  

 

Note that for convenience throughout the paper, we use the abbreviation 𝑞FP for quadra Fibona-Pell. 

The first few 𝑞FP numbers with positive subscripts and negative subscript are given in the table 

below: 

 

Table 3. 𝑞FP numbers with positive and negative subscripts. 

 

𝒏 𝑾𝒏    𝑾−𝒏   

0 0  0 

1 0  0 

2 1 −1 

3 3   3 

4 9 −9 

5 24  24 

6 62 −62 

7 156 156 

8 387 −387 

. . . 

. . . 

. . . 

   

 

One of the different applications of the 𝑞FP sequence can be seen in the article [15]. 

 

 

II. GAUSSIAN QUADRA FIBONA-PELL NUMBERS 
 

In this part of the study, inspired by some of the works mentioned in the references, we introduce the 

iteration relation of the Gaussian 𝑞FP sequence, which is used to construct the Binet formula and 

derive some identities, etc. 
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Definition 2.1. Gaussian 𝑞FP numbers can define 𝐺𝑊𝑛   recursively: 
 

GW𝑛 = 3GW𝑛−1 − 3𝐺W𝑛−3 − GW𝑛−4 , 𝑛 ≥ 4  (2.1) 

 

with the initial conditions   

 
GW0 = 0  

 
GW1 = 0  

 
GW2 = 1  

 
GW3 = 3 + 𝑖.  

 
Moreover, take note of that  

 

GW𝑛 = W𝑛 + 𝑖W𝑛−1 .  

 
The first few Gaussian 𝑞FP numbers with positive subscripts and negative subscript are given in the 

table below: 

 
Table 4. Gaussian 𝑞FP numbers with positive and negative subscripts. 

 

𝒏 𝑮𝑾𝒏        𝑮𝑾−𝒏   

0 0 0 

1 0 −𝑖 

2 1 −1 + 3𝑖 

3 3 + 𝑖 3 − 9𝑖 

4 9 + 3𝑖 −9 + 24𝑖 

5 24 + 9𝑖 24 − 62𝑖 

6 62 + 24𝑖 −62 + 156𝑖 

7 156 + 62𝑖 156 − 387𝑖 

8 387 + 156𝑖 −387 + 951𝑖 

. . . 

. . . 

. . . 

   

 

The characteristic equation of (2.1) is 
 

𝑥4 − 3𝑥3 + 3𝑥 + 1 = 0.  (2.2) 

 

Then, the roots of (2.2) are 

 

Ω = 1 − √2, Ψ = 1 + √2, γ =
1+√5

2
, δ =

1−√5

2
.   (2.3) 

 

Immediately note that γ and δ belongs to the Gaussian Fibonacci numbers also Ψ and Ω belongs to the 

Gaussian Pell numbers for the characteristic equations. Our next result is the generating function of the 

sequence in our focus. 

 

Theorem 2.1. The generating function of Gaussian quadra Fibona-Pell sequence 𝐺𝑊𝑛   is as follow: 



 304 

 

𝐺𝑊(𝑡) =
t2 + 𝑖t3

t4 + 3t3 − 3t + 1
. 

 

 

 
Proof. The generating function of the related sequence is a function such that whose formal power 

series expansion at 𝑡 =  0 has the form 

 

𝐺𝑊(𝑡) = ∑ 𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= 𝐺𝑊0  + 𝐺𝑊1  𝑡 + 𝐺𝑊2  𝑡
2 + 𝐺𝑊3  𝑡

3+𝐺𝑊4 𝑡
4 + ⋯ 

 

Therefore, from the power series, 

 

𝐺𝑊(𝑡) = ∑ 𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= 𝐺𝑊0  + 𝐺𝑊1  𝑡 + 𝐺𝑊2  𝑡
2 + 𝐺𝑊3  𝑡

3+𝐺𝑊4 𝑡
4 + ⋯ 

 

−3𝑡𝐺𝑊(𝑡) = −3𝑡 ∑ 𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= −3𝐺𝑊0  𝑡 − 3𝐺𝑊1  𝑡
2 − 3𝐺𝑊2  𝑡

3 − 3𝐺𝑊3  𝑡
4−3𝐺𝑊4 𝑡

5 + ⋯ 

 

3𝑡3𝐺𝑊(𝑡) = 3𝑡3 ∑ 𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= 3𝐺𝑊0  𝑡
3 + 3𝐺𝑊1  𝑡

4 + 3𝐺𝑊2  𝑡
5 + 3𝐺𝑊3  𝑡

6+3𝐺𝑊4 𝑡
7 + ⋯ 

 

𝑡4𝐺𝑊(𝑡) = 𝑡4 ∑ 𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= 𝐺𝑊0  𝑡
4 + 𝐺𝑊1  𝑡

5 + 𝐺𝑊2  𝑡
6 + 𝐺𝑊3  𝑡

7+𝐺𝑊4 𝑡
8 + ⋯. 

 
If both sides of the equation are added together 

 

𝐺𝑊(𝑡) − 3𝑡𝐺𝑊(𝑡) + 3𝑡3𝐺𝑊(𝑡) + 𝑡4𝐺𝑊(𝑡) = 𝐺𝑊0  + 𝐺𝑊1  𝑡 + 𝐺𝑊2  𝑡
2 + 𝐺𝑊3  𝑡

3 

                                                                                        +(−3𝐺𝑊0  𝑡 − 3𝐺𝑊1  𝑡
2 − 3𝐺𝑊2  𝑡

3) + 3𝐺𝑊0  𝑡
3. 

 

Hence, if necessary arrangements are made, we have 

 

𝐺𝑊(𝑡) =
𝐺𝑊0  + 𝑡(𝐺𝑊1  − 3𝐺𝑊0 ) + 𝑡2(𝐺𝑊2  − 3𝐺𝑊1  ) + 𝑡3(𝐺𝑊3  − 3𝐺𝑊2  + 3𝐺𝑊0  

1 − 3𝑡 + 3𝑡3 + 𝑡4 . 

 
Here, when the initial conditions are written, we have 

 

𝐺𝑊(𝑡) =
t2 + 𝑖t3

t4 + 3t3 − 3t + 1
. 

 

(2.4) 

The present result gives the Binet formula for Gaussian qFP sequence. 

 
Theorem 2.2. For n ≥  0, the Binet formula for a related sequence is 

 

𝐺W𝑛 = (
Ψ𝑛 − Ω𝑛

Ψ − Ω
+ 𝑖

ΨΩ𝑛 − ΩΨ𝑛

Ψ − Ω
) − (

γ𝑛 − δ𝑛

γ − δ
+ 𝑖

γδ𝑛−δγ𝑛

γ − δ
  ).                                                     (2.5) 

  

Proof. We know that from (2.4) 
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𝐺𝑊(𝑡) =
t2 + 𝑖t3

t4 + 3t3 − 3t + 1
. 

 

 

Adjust this a bit, we have 

 

𝐺𝑊(𝑡) =
𝑖 + 𝑡 − 𝑖𝑡

1 − t − t2 −
𝑖 + 𝑡 − 2𝑖𝑡

1 − 2t − t2. 

 

 

If the generating functions of Gaussian Pell and Gaussian Fibonacci sequences are taken into consid-

eration, that is, it follows that from (1.1) and (1.2) 

 

𝐺𝑊(𝑡) = 𝐺𝑃(𝑡) − 𝐺𝐹(𝑡). 
 

 

The following result gives the sum of the first n terms of 𝐺W𝑛 . 

 

Theorem 2.3. The sum of the first n terms of 𝐺W𝑛  is 

 

∑ 𝐺𝑊𝑟  

𝑛

𝑟=1

=
𝐺𝑊𝑛  + 4𝐺𝑊𝑛−1  + 4𝐺𝑊𝑛−2  + 𝐺𝑊𝑛−3  + 𝑖 + 1

2
 

 

for n ≥  3. 

 

Proof. We know that the recurrence relation of the relevant sequence is 

 

𝐺𝑊𝑛  = 3𝐺𝑊𝑛−1  − 3𝐺𝑊𝑛−3  − 𝐺𝑊𝑛−4   

 

𝐺𝑊𝑛−3  + 𝐺𝑊𝑛−4  = 3𝐺𝑊𝑛−1  − 2𝐺𝑊𝑛−3  − 𝐺𝑊𝑛   

 

If we make a little edit and write open for n, we have 

 
𝐺𝑊1  + 𝐺𝑊0 = 3𝐺𝑊3  − 2𝐺𝑊1  − 𝐺𝑊4   

 

𝐺𝑊2  + 𝐺𝑊1 = 3𝐺𝑊4  − 2𝐺𝑊2  − 𝐺𝑊5   

 

𝐺𝑊3  + 𝐺𝑊2 = 3𝐺𝑊5  − 2𝐺𝑊3  − 𝐺𝑊6   

 

𝐺𝑊𝑛−4  + 𝐺𝑊𝑛−5  = 3𝐺𝑊𝑛−2  − 2𝐺𝑊𝑛−4  − 𝐺𝑊𝑛−1   

 

                                   .                                                    .               
 

                                   .                                                    .               
 

                                   .                                                    .               
 

𝐺𝑊𝑛−3  + 𝐺𝑊𝑛−4  = 3𝐺𝑊𝑛−1  − 2𝐺𝑊𝑛−3  − 𝐺𝑊𝑛   

 

Here, if the collection is done, both of side 

 
𝐺𝑊𝑛−3  + 𝐺𝑊0  + 2(𝐺𝑊1  + 𝐺𝑊2  + ⋯ + 𝐺𝑊𝑛−4  = 3(𝐺𝑊3  + 𝐺𝑊4  + ⋯ 𝐺𝑊𝑛  ) 

                                                                                                     −2(𝐺𝑊1  + 𝐺𝑊2  + ⋯ 𝐺𝑊𝑛−3  ) 

                                                                                      −(𝐺𝑊4 + 𝐺𝑊5  + ⋯ 𝐺𝑊𝑛  ). 

 
The two results for the relevant sequence are as follows:  
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Theorem 2.4. For n ≥  0, the following recurrence relations are valid: 

 

𝒂.  GW2𝑛 = 9GW2𝑛−2 − 20GW2𝑛−4 + 9GW2𝑛−6 − GW2𝑛−8. 
 

𝒃. GW2𝑛+1 = 9GW2𝑛−1 − 20GW2𝑛−3 + 95 − GW2𝑛−7. 
  
Proof. 𝒂. In the proof, we start from the recurrence relation, 𝐺𝑊𝑛  = 3𝐺𝑊𝑛−1  − 3𝐺𝑊𝑛−3  −
𝐺𝑊𝑛−4  . 

 

Here, if we put n instead of 2𝑛  and use (1.3), then 

 

GW2𝑛 = 3GW2𝑛−1 − 3GW2𝑛−3 − GW2𝑛−4 = 3(3GW2𝑛−2 − 3GW2𝑛−4 − 9GW2𝑛−5 

 

                                                                                     −3(3GW2𝑛−4 − 3GW2𝑛−6 − GW2𝑛−7) 
 

                                                                                     −3(3GW2𝑛−5 − 3GW2𝑛−7 − GW2𝑛−8) 

 

                                                                                 = 9GW2𝑛−2 − 18GW2𝑛−4 − 6GW2𝑛−5 + GW2𝑛−6 

 

                                                                                       +6GW2𝑛−7 + GW2𝑛−8 

 

                                                                                 = 9GW2𝑛−2 − 20GW2𝑛−4 + 9GW2𝑛−6 − GW2𝑛−8. 

 

b. The proof here is done by following the previous proof steps. 

 

The exponential generating function for 𝐺W𝑛  is below.  

 

Theorem 2.5. Exponential generating function for the 𝐺W𝑛  is 

 

∑ 𝐺W𝑛 

∞

𝑛=0

𝑥𝑛

𝑛!
= (

eΨ𝑥 − eΩ𝑥

Ψ − Ω
+ 𝑖

ΨeΩ𝑥 − ΩeΨ𝑥

Ψ − Ω
) − (

eγ𝑥 − eδ𝑥

γ − δ
+ 𝑖

γeδ𝑥−δeγ𝑥

γ − δ
  ) 

 

for  ≥  0 . 

 

Proof  Motivating from related Binet formula 

 

∑ 𝐺W𝑛 

∞

𝑛=0

𝑥𝑛

𝑛!
= ∑ [(

Ψ𝑛 − Ω𝑛

Ψ − Ω
+ 𝑖

ΨΩ𝑛 − ΩΨ𝑛

Ψ − Ω
) − (

γ𝑛 − δ𝑛

γ − δ
+ 𝑖

γδ𝑛−δγ𝑛

γ − δ
  )]

𝑥𝑛

𝑛!

∞

𝑛=0

 

 

                                                              = ∑ [
1

Ψ − Ω
((Ψ𝑛 − Ω𝑛) + 𝑖(ΨΩ𝑛 − ΩΨ𝑛)) −

1

γ − δ
    ((1 − 𝑖δ)γ𝑛 − 𝑖(1 − 𝑖γ)δ𝑛))]

𝑥𝑛

𝑛!

∞

𝑛=0

 

 

                         =
1

Ψ − Ω
[∑

(Ψ𝑥)𝑛

𝑛!
−

∞

𝑛=0

∑
(Ω𝑥)𝑛

𝑛!
+ 𝑖 (Ψ ∑

(Ω𝑥)𝑛

𝑛!
−

∞

𝑛=0

Ω ∑
(Ψ𝑥)𝑛

𝑛!
−

∞

𝑛=0

 )

∞

𝑛=0

] 
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                      −
1

γ − δ
[(1 − 𝑖δ) ∑

(γ𝑥)𝑛

𝑛!
− (1 − 𝑖γ)

∞

𝑛=0

∑
(δ𝑥)𝑛

𝑛!

∞

𝑛=0

]. 

We derive the matrix representation for 𝐺W𝑛  below. 

 

 

 

III. MATRIX REPRESENTED OF GAUSSIAN QUADRA 

FIBONA-PELL NUMBERS 
 

Matrices and matrix representations find a place in many fields and can also be associated with the 

recurrence relation. For 𝑛 ≥  0. 

 

(

𝐺W𝑛+4 

𝐺W𝑛+3 

𝐺W𝑛+2

𝐺W𝑛+1

) = (

3 0 −3 −1
1 0 0 0
0 1 0 0
0 0 1 0

) (

𝐺W𝑛+4 

𝐺W𝑛+3 

𝐺W𝑛+2

𝐺W𝑛+1

)  
 

 

where the square matrix S of order 4 is; 

 

𝑆 = (

3 0 −3 −1
1 0 0 0
0 1 0 0
0 0 1 0

).  
 

 

Theorem 3.1. Let 𝑛 ≥  0 be integer . Then 

(

𝐺W𝑛+4 

𝐺W𝑛+3 

𝐺W𝑛+2

𝐺W𝑛+1

) = (

3 0 −3 −1
1 0 0 0
0 1 0 0
0 0 1 0

)

𝑛

(

𝐺W3 

𝐺W2

𝐺W1

𝐺W0

). 
 

 

Proof  It can be proven using mathematical induction. If 𝑛 ≥  0, the result is clear. Suppose that the 

statement is true for 𝑛  =  𝑚 −  1. Then, 

 

(

𝐺W𝑚+3 

𝐺W𝑚+2

𝐺W𝑚+1

𝐺W𝑚

) = (

3 0 −3 −1
1 0 0 0
0 1 0 0
0 0 1 0

)

𝑚−1

(

𝐺W3 

𝐺W2

𝐺W1

𝐺W0

). 
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We want to show that this is true for 𝑛 = 𝑚. This means that 

 

(

3 0 −3 −1
1 0 0 0
0 1 0 0
0 0 1 0

)

𝑚

(

𝐺W3 

𝐺W2

𝐺W1

𝐺W0

) = (

3 0 −3 −1
1 0 0 0
0 1 0 0
0 0 1 0

) (

3 0 −3 −1
1 0 0 0
0 1 0 0
0 0 1 0

)

𝑚−1

(

𝐺W3 

𝐺W2

𝐺W1

𝐺W0

) 

                                                              = (

3 0 −3 −1
1 0 0 0
0 1 0 0
0 0 1 0

) (

𝐺W𝑚+3 

𝐺W𝑚+2

𝐺W𝑚+1

𝐺W𝑚

) 

 

                                                                                                   = (

𝐺W𝑚+4 

𝐺W𝑚+3

𝐺W𝑚+2

𝐺W𝑚+1

) 

Thus the proof is concluded. 

 

 

IV. ON GAUSSIAN QUADRA FIBONA-PELL QUATERNIONS 
 

The quaternion structure, discovered by Hamilton in 1843, attracted much attention in mathematics. A 

quaternion is represented in mathematics in the form: 

ℍ = {𝑞 = 𝑎0 1 + 𝑎1 𝑖 + 𝑎2 𝑗 + 𝑎3 𝑘 ∶ 𝑎0 , 𝑎1 , 𝑎2 , 𝑎3 𝜖 ℝ}. 

which satisfies the following multiplication rules: 

 

𝑖2 = 𝑗2 = 𝑘2 = −1 (4.1) 

 

𝑗𝑖𝑘 = −1 

 

𝑖𝑗 = 𝑘 

 

𝑗𝑘 = 𝑖. 
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Point out that {1, 𝑖, 𝑗, 𝑘} does not provide the commutative property in the products between the base 

elements, but the set ℍ holds the associative property of multiplication. In the literature, the symbol ℍ 

was adopted for the set of quaternions based on Hamilton. Here are some basic arithmetic operations 

provided by the set ℍ. A quaternion can also be written as 

 

𝑞 = 𝑎0 1 + 𝑎1 𝑖 + 𝑎2 𝑗 + 𝑎3 𝑘  

 

where q can be written separately as the scalar part of the quaternion: 

𝑆𝑞 = 𝑎0 1  

 

and as the vector part 

 

𝑉𝑞 = 𝑎1 𝑖 + 𝑎2 𝑗 + 𝑎3 𝑘.  

 

Therefore, the quaternion  𝑞 can be expressed both scalar and vector as 

 

𝑞 = 𝑆𝑞 + 𝑉𝑞 = 𝑎1 𝑖 + 𝑎2 𝑗 + 𝑎3 𝑘.  

 

Searching the literature for quaternions and number sequences, we realize that the author at [3] 

introduced the Fibonacci quaternion and presented recurrence relation for relevant sequence. Since 

then, the growing interest in this field is evident from the existence of many works [16–19]. For 

example, in [20], the authors worked on sequences of quaternions with polynomial coefficients. Also 

in [21] the authors combined quaternion-type structures with different integer sequences. An example 

of an octonion, which is a quaternion formed using eight bases, can be found in [22]. In [23], the same 

authors studied the binomial transform of Horadam quaternions. In [24], the authors introduced 

quaternions whose coefficients are Gaussian Fibonacci numbers and presented various identities. In 

[25], authors worked on quaternions whose coefficients are Gaussian Lucas numbers. It is seen from 

many similar studies such as [26–28] that the interest in this field has not decreased. Especially, one of 

the interesting points of quaternion-Gaussian numbers is that quaternion-Gaussian numbers are used to 

investigate graphical models in [29]. Motivated by these studies, we identify quaternions with 𝑞FP 

coefficients and examine some identities. 

Describe the quaternions with Gaussian quadra Fibona-Pell coefficients as: 

 

𝑄𝐺𝑊𝑛  = 𝐺𝑊𝑛  + 𝐺𝑊𝑛+1  𝑖 + 𝐺𝑊𝑛+2  𝑗 + 𝐺𝑊𝑛+3  𝑘                              (4.2) 

 

where initial conditions of (4.2) as follows: 

 

𝑄𝐺𝑊0 = 3𝑘 
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𝑄𝐺𝑊1 = 𝑖 + 10𝑘 

 

𝑄𝐺𝑊2 = 3𝑖 + 27𝑘 

 

𝑄𝐺𝑊3 = 10𝑖 + 71𝑘. 

 

We can write the following recurrence relation with Gaussian quadra Fibona-Pell sequence 

𝑄𝐺𝑊𝑛  = 3𝑄𝐺𝑊𝑛−1  − 3𝑄𝐺𝑊𝑛−3  − 𝑄𝐺𝑊𝑛−4  , for 𝑛 ≥  0                                              (4.3) 

 

The characteristic equation of (4.3) is 

 

x4 − 3x3 + 3x + 1 = 0.                                                                                                 (4.4) 

 

The roots of the characteristic equation of (4.4) are Ψ = 1 + √2, Ω = 1 − √2, γ =
1+√5

2
, δ =

1−√5

2
. 

 

First, start by finding the generating function of the sequence.  

 

Theorem 4.1. The generating function of 𝑄𝐺𝑊𝑛   is 

 

𝑄𝐺𝑊(𝑡) =
𝑄𝐺𝑊0 + 𝑡(𝑄𝐺𝑊1 − 3𝑄𝐺𝑊0 ) + t2(𝑄𝐺𝑊2 − 3𝑄𝐺𝑊1 ) + t3(𝑄𝐺𝑊3 – 3𝑄𝐺𝑊2 + 3𝑄𝐺𝑊0 )

1 − 3t + 3t3 + t4  

 

where 𝑄𝐺𝑊0 = 3𝑘, 𝑄𝐺𝑊1 = 𝑖 + 10𝑘, 𝑄𝐺𝑊2 = 3𝑖 + 27𝑘, and 𝑄𝐺𝑊3 = 10𝑖 + 71𝑘. 

 

Proof In the following equation, where formal power series expansion for 𝑄𝐺𝑊𝑟  is given, all the 

information necessary for the generating function is obtained. 

 

𝑄𝐺𝑊(𝑡) = ∑ 𝑄𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= 𝑄𝐺𝑊0  + 𝑄𝐺𝑊1  𝑡 + 𝑄𝐺𝑊2  𝑡
2 + 𝑄𝐺𝑊3  𝑡

3 + ⋯ + 𝑄𝐺𝑊𝑟  + ⋯. 
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Therefore, from the power series, 

 

𝑄𝐺𝑊(𝑡) = ∑ 𝑄𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= 𝑄𝐺𝑊0  + 𝑄𝐺𝑊1  𝑡 + 𝑄𝐺𝑊2  𝑡
2 + 𝑄𝐺𝑊3  𝑡

3+𝑄𝐺𝑊4 𝑡
4 + ⋯ 

 

−3𝑡𝑄𝐺𝑊(𝑡) = −3𝑡 ∑ 𝑄𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= −3𝑄𝐺𝑊0  𝑡 − 3𝑄𝐺𝑊1  𝑡
2 − 3𝑄𝐺𝑊2  𝑡

3 − 3𝑄𝐺𝑊3  𝑡
4 + ⋯ 

 

 

3𝑡3𝑄𝐺𝑊(𝑡) = 3𝑡3 ∑ 𝑄𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= 3𝑄𝐺𝑊0  𝑡
3 + 3𝑄𝐺𝑊1  𝑡

4 + 3𝑄𝐺𝑊2  𝑡
5 + 3𝑄𝐺𝑊3  𝑡

6 + ⋯ 

 

𝑡4𝑄𝐺𝑊(𝑡) = 𝑡4 ∑ 𝑄𝐺𝑊𝑟  𝑡
𝑟

∞

𝑟=0

= 𝑄𝐺𝑊0  𝑡
4 + 𝑄𝐺𝑊1  𝑡

5 + 𝑄𝐺𝑊2  𝑡
6 + 𝑄𝐺𝑊3  𝑡

7+𝑄𝐺𝑊4 𝑡
8 + ⋯. 

 

Hence, if necessary arrangements are made, we get 

 

𝑄𝐺𝑊(𝑡) =
𝑄𝐺𝑊0 + 𝑡(𝑄𝐺𝑊1 − 3𝑄𝐺𝑊0 ) + t2(𝑄𝐺𝑊2 − 3𝑄𝐺𝑊1 ) + t3(𝑄𝐺𝑊3 – 3𝑄𝐺𝑊2 + 3𝑄𝐺𝑊0 )

1 − 3t + 3t3 + t4  

 

so desired is achieved. 

 

Theorem 4.2. The Binet formula for the relevant quaternion sequence 𝑄𝐺𝑊𝑛   is 

 

𝑄𝐺𝑊𝑛 =
1

Ψ − Ω
(Ψ𝑛𝐴 − Ω𝑛B + ΨΩ𝑛𝐶 − ΩΨ𝑛𝐷) −

1

γ − δ
    (γ𝑛𝐸 − δ𝑛F + γδ𝑛𝐺 − δγ𝑛𝐻) 

 

where A = 1 + Ψ𝑖 + Ψ2𝑗 + Ψ3𝑘, B =  1 + Ω𝑖 + Ω2𝑗 + Ω3𝑘, 𝐶 = 𝑖 − Ω + Ω2𝑘 − Ω3𝑗, 

 

𝐷 = 𝑖 − Ψ + Ψ2𝑘 − Ψ3𝑗, 𝐸 = 1 + γ𝑖 + γ2𝑗 + γ3𝑘, 𝐹 = 1 + δ𝑖 + δ2𝑗 + δ𝑘, 

 

𝐺 = 𝑖 − δ + δ2𝑘 − δ3𝑗, 𝐻 = 𝑖 − γ + γ2𝑘 − γ3𝑗. 
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Proof. Binet’s formula for the Gaussian quadra Fibona-Pell number sequence in (2.5) was also 

derived. If we substitute this formula into the quadra Fibona-Pell quaternion, we have 

 

𝑄𝐺𝑊𝑛 = 𝐺𝑊𝑛  + 𝐺𝑊𝑛+1  𝑖 + 𝐺𝑊𝑛+2  𝑗 + 𝐺𝑊𝑛+3  𝑘 

 

= (
Ψ𝑛 − Ω𝑛

Ψ − Ω
+ 𝑖

ΨΩ𝑛 − ΩΨ𝑛

Ψ − Ω
) − (

γ𝑛 − δ𝑛

γ − δ
+ 𝑖

γδ𝑛−δγ𝑛

γ − δ
  ) 

 

+ (
Ψ𝑛+1 − Ω𝑛+1

Ψ − Ω
+ 𝑖

ΨΩ𝑛+1 − ΩΨ𝑛+1

Ψ − Ω
) 𝑖 − (

γ𝑛+1 − δ𝑛+1

γ − δ
+ 𝑖

γδ𝑛+1−δγ𝑛+1

γ − δ
  ) 𝑗 

 

+ (
Ψ𝑛+2 − Ω𝑛+2

Ψ − Ω
+ 𝑖

ΨΩ𝑛+2 − ΩΨ𝑛+2

Ψ − Ω
) 𝑗 − (

γ𝑛+2 − δ𝑛+2

γ − δ
+ 𝑖

γδ𝑛+2−δγ𝑛+2

γ − δ
  ) 𝑗 

 

+ (
Ψ𝑛+3 − Ω𝑛+3

Ψ − Ω
+ 𝑖

ΨΩ𝑛+3 − ΩΨ𝑛+3

Ψ − Ω
) 𝑗 − (

γ𝑛+3 − δ𝑛+3

γ − δ
+ 𝑖

γδ𝑛+3−δγ𝑛+3

γ − δ
  ) 𝑗 

 

=
Ψ𝑛(1 + Ψ𝑖 + Ψ2𝑗 + Ψ3𝑘) − Ω𝑛(1 + Ω𝑖 + Ω2𝑗 + Ω3𝑘)

Ψ − Ω
 

 

+
ΨΩ𝑛(𝑖 − Ω + Ω2𝑘 − Ω3𝑗) − ΩΨ𝑛(𝑖 − Ψ + Ψ2𝑘 − Ψ3𝑗)

Ψ − Ω
 

 

−
γ𝑛(1 + γ𝑖 + γ2𝑗 + γ3𝑘) − δ𝑛(1 + δ𝑖 + δ2𝑗 + δ𝑘)

γ − δ
 

 

+
γδ𝑛(𝑖 − δ + δ2𝑘 − δ3𝑗) − δγ𝑛(𝑖 − γ + γ2𝑘 − γ3𝑗)

γ − δ
 

 

where A = 1 + Ψ𝑖 + Ψ2𝑗 + Ψ3𝑘, B =  1 + Ω𝑖 + Ω2𝑗 + Ω3𝑘, 𝐶 = 𝑖 − Ω + Ω2𝑘 − Ω3𝑗, 

 

𝐷 = 𝑖 − Ψ + Ψ2𝑘 − Ψ3𝑗, 𝐸 = 1 + γ𝑖 + γ2𝑗 + γ3𝑘, 𝐹 = 1 + δ𝑖 + δ2𝑗 + δ𝑘 
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𝐺 = 𝑖 − δ + δ2𝑘 − δ3𝑗, 𝐻 = 𝑖 − γ + γ2𝑘 − γ3𝑗. 

 

The 𝑄𝐺 𝑊𝑛
∗ used in the next theorem is the conjugate of 𝑄𝐺𝑊𝑛 . 

 

Theorem 4.3. The quaternions with Gaussian 𝑞FP coefficients satisfy: 

      

𝒂. 𝑄𝐺𝑊𝑛+1 = 3𝑄𝐺𝑊𝑛  − 3𝑄𝐺𝑊𝑛−2  − 𝑄𝐺𝑊𝑛−3  for 𝑛 ≥ 3. 

 

𝒃. 𝑄𝐺𝑊𝑛 + 𝑄𝐺 𝑊𝑛
∗ = 2𝐺𝑊𝑛  . 

 

Proof. Start from the right side equation and use (4.3), we have 

 

𝒂. For n ≥ 3, 

 

3𝑄𝐺𝑊𝑛  − 3𝑄𝐺𝑊𝑛−2  − 𝑄𝐺𝑊𝑛−3   

 

= 3(𝐺𝑊𝑛  + 𝐺𝑊𝑛+1  𝑖 + 𝐺𝑊𝑛+2  𝑗 + 𝐺𝑊𝑛+3  𝑘) 

 

                                  −3(𝐺𝑊𝑛−2  + 𝐺𝑊𝑛−1  𝑖 + 𝐺𝑊𝑛  𝑗 + 𝐺𝑊𝑛+1  𝑘) 

 

                                       −(𝐺𝑊𝑛−3 1 + 𝐺𝑊𝑛−2  𝑖 + 𝐺𝑊𝑛−1  𝑗 + 𝐺𝑊𝑛  𝑘) 

 

                                     = ( 3𝐺𝑊𝑛  − 3𝐺𝑊𝑛−2  − 𝐺𝑊𝑛−3  ) 

 

                                        +(3𝐺𝑊𝑛+1  − 3𝐺𝑊𝑛−1  − 𝐺𝑊𝑛−2  )𝑖 

 

                                        +(3𝐺𝑊𝑛+2  − 3𝐺𝑊𝑛  − 𝐺𝑊𝑛−1  )𝑗 
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                                         +(3𝐺𝑊𝑛+3  − 3𝐺𝑊𝑛+1  − 𝐺𝑊𝑛  )𝑘 

 

= 𝐺𝑊𝑛+1  + 𝐺𝑊𝑛+2  𝑖 + 𝐺𝑊𝑛+3  𝑗 + 𝐺𝑊𝑛+4  𝑘 

 

= 𝑄𝐺𝑊𝑛+1  . 

 

𝒃. From (4.3) and quaternion conjugate, we get 

 

                                    𝑄𝐺𝑊𝑛 + 𝑄𝐺 𝑊𝑛
∗ = 𝐺𝑊𝑛  + 𝐺𝑊𝑛+1  𝑖 + 𝐺𝑊𝑛+2  𝑗 + 𝐺𝑊𝑛+3  𝑘 

 

                             +𝐺𝑊𝑛  − 𝐺𝑊𝑛+1  𝑖 − 𝐺𝑊𝑛+2  𝑗 − 𝐺𝑊𝑛+3  𝑘 

 

                               = 2𝐺𝑊𝑛   

 

 

V. CONCLUSION 
 

Since quaternions find serious areas of study in many fields, from physics (such as quantum physics) 

to mathematics (graphical modelling), in this article, it was considered to examine quaternions in 

terms of the Gaussian qFP integer coefficient sequence. 

Firstly, after giving detailed preliminary information and literature about the quadra Fibonacci-Pell 

sequence, the Gaussian Fibona-Pell sequence was introduced in the second part. Sum formulas, 

recurrence relation, Binet formula, some identities, and generating functions were introduced for the 

related new sequence. The matrix representation for the relevant sequence was presented in the third 

part. In the last part, the quadra Fibona-Pell quaternion sequence, which is the focus of our attention, 

was introduced. Therefore, in our future paper, we idea to present some known identities, such as 

Cassini, Catalan, and d’Ocagne, and create a binomial transform for quaternion sequences and their 

key characteristics. 
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