
 
J. Innovative Eng. Nat. Sci., vol. 5, no. 1, pp. 128-147, 2025. 

http://doi.org/10.61112/jiens.1555378 

*Corresponding author. Tel.: +90-544-463-4075; e-mail: m.akif.dundar@yobu.edu.tr 
128 

 

 

Comparative assessment of element types for evaluating local elastic buckling 
behavior of rectangular hollow sections using finite element analysis 

 Mehmet Akif Dundara*,  Kazım Ercana and  Osman Özença   
aYozgat Bozok University, College of Engineering, Mechanical Engineering Department, 66100, Yozgat/Turkey 
 

I. INTRODUCTION 

The analysis of local buckling behavior in structural elements is a critical aspect of engineering design, especially 

for thin-walled structures such as rectangular hollow sections (RHSs) [1]. Local buckling significantly affects the 

load-bearing capacity and overall stability of these sections under various loading conditions, including axial 

compression and bending about both the major and minor axes [1-4]. Accurate prediction of local buckling 

behavior is essential to ensure the safety and performance of structures in diverse applications, ranging from civil 

engineering to aerospace and automotive industries. Finite element analysis (FEA) has become an indispensable 

tool for predicting the buckling behavior of structures [5-10]. Among the many FEA software available, Abaqus 

is widely recognized for its robust capabilities in handling complex structural [5, 7-17]. In Abaqus, various 

conventional shell element types are available, each offering different levels of computational accuracy and 

efficiency. These elements include the four-node shell elements S4 and S4R, and the eight-node reduced 

integration shell elements S8R and S8R5 [6, 18, 19]. 

The S4 element is a versatile four-node quadrilateral shell suitable for both thick and thin shells, capable of 

accommodating complex geometries, finite rotations, and membrane strains [6, 18-20]. The S4R, a reduced 

integration version of the S4, enhances computational efficiency and mitigates shear locking, making it ideal for 

large-scale models in industries such as automotive and aerospace [6, 9, 12, 19, 21]. The S4R5, using five degrees 

of freedom per node, accurately captures transverse shear deformation, benefiting thick-walled structures [19, 22, 
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23]. The S8R, an eight-node quadrilateral shell with reduced integration, provides higher-order interpolation for 

accurately modeling curved geometries and high deformation gradients [19, 24-26]. The S8R5 combines this 

higher-order interpolation to better capture transverse shear effects, making it suitable for detailed analyses of 

thick shell structures [6, 7, 19, 27, 28]. These elements are selected based on a balance of computational efficiency 

and accuracy to meet specific simulation needs. Among the aforementioned conventional shell elements, only the 

S4 uses full integration; others employ reduced integration [19]. The S4, S4R, and S4R5 elements use linear 

interpolation, while the S8R and S8R5 elements employ quadratic shape functions. S4 and S4R are four-node, 

doubly-curved shells with six degrees of freedom per node (three translational and three rotational) [19]. The 

S4R5, also four-node, has five degrees of freedom (three translational and two in-plane rotational). The eight-node 

S8R uses reduced integration with six degrees of freedom per node, suitable for higher-order interpolation. The 

S8R5, another eight-node element, combines higher-order interpolation with five degrees of freedom per node, 

enhancing transverse shear effect modeling for thin shells [19]. 

The aforementioned element types have been widely employed by researchers in finite element analyses of local 

buckling behavior of structural members typically subjected to axial compression [6, 18, 21, 24, 28–37]. The 

literature review revealed that the S4 and S4R elements are more commonly used in local buckling simulations. 

Their frequent use can be attributed to their optimal balance between computational efficiency and accuracy, 

making them highly suitable for diverse structural analysis applications [2, 3, 18, 21, 28, 31–33, 35, 38]. These 

elements apply thick shell theory when the shell thickness increases and transition to discrete Kirchhoff thin shell 

elements as the thickness decreases. A significant advantage of these two element types is their ability to account 

for variations in shell thickness [6]. However, studies have indicated that the S4 element, while achieving superior 

numerical convergence, demands more computational time compared to the S4R element [6]. Conversely, research 

has indicated that the S4R element yields results comparable to the S4 element but requires significantly less 

computational time. This difference in processing time is especially notable for large local buckling models, where 

memory requirements are a critical concern [18]. Additionally, studies have reported that the S4R5 element is not 

well-suited for finite strain problems [35]. A study reported that the S8R element, intended for thick shells with a 

thickness greater than 1/15 of the characteristic length, supports large arbitrary rotations but only small strains and 

ignores deformation in the thickness direction [6]. Moreover, the S8R5 element, although suitable for thin shells, 

can produce inaccurate buckling results due to the potential misalignment of the internally defined center node 

with the actual shell surface [6]. Additionally, these element types require significantly longer computational 

times, which further limits their practicality in certain applications. 

Despite the availability of various shell elements, comprehensive studies comparing their performance specifically 

in the context of local elastic buckling of RHS under different loading conditions are lacking. Such a comparative 

study is crucial to understand the trade-offs between computational efficiency and accuracy, guiding engineers 

and researchers in selecting the most appropriate element types for their applications. 

Thus, this study aims to evaluate the computational accuracy and efficiency of the aforementioned conventional 

shell element types in Abaqus for modeling the local elastic buckling behavior of RHS under axial compression, 

major axis bending, and minor axis bending. By conducting detailed simulations and comparing the results with 

theoretical predictions, this study endeavors to identify the most suitable element types for accurate and efficient 

simulation of local elastic buckling phenomena. The outcomes of this research will provide valuable insights for 
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the engineering community, aiding in the optimization of structural designs and contributing to the advancement 

of computational mechanics. 

 

II. THEORETICAL BACKGROUND AND CALCULATIONS 

1. Theory 

The critical local elastic buckling stress (𝜎𝜎𝑐𝑐𝑐𝑐) for box sections under any type of loading can be determined using 

the well-known formula written below [1, 5, 38-40]. 

 

𝜎𝜎𝑐𝑐𝑐𝑐 =  𝑘𝑘𝜎𝜎  
𝜋𝜋2𝐸𝐸

12(1 − 𝑣𝑣2)
 �
𝑡𝑡
𝑑𝑑
�
2
 (1) 

 

where  𝑘𝑘𝜎𝜎 is the local elastic buckling coefficient and 𝐸𝐸 is the elastic modulus. 𝑣𝑣 represents the Poisson’s ratio. 𝑑𝑑 

is the width or height of the relevant wall segment of a box section and 𝑡𝑡 denotes the thickness of the relevant wall 

segment. 

 

 

Figure 1. A cross-section of RHS under various loads, (a) Axial compression (𝑃𝑃), (b) Major axis bending (𝑀𝑀𝑧𝑧) and (c) Minor axis bending 
(𝑀𝑀𝑦𝑦) 

 

Eq. (1) can be rearranged for the RHS depicted in Figure 1, as follows: 

 

𝜎𝜎𝑐𝑐𝑐𝑐 =  𝑘𝑘𝑤𝑤  
𝜋𝜋2𝐸𝐸

12(1 − 𝑣𝑣2) �
𝑡𝑡
ℎ
�
2

=  𝑘𝑘𝑓𝑓  
𝜋𝜋2𝐸𝐸

12(1 − 𝑣𝑣2) �
𝛿𝛿
𝑏𝑏
�
2

 (2) 

 

where  𝑘𝑘𝑤𝑤 and  𝑘𝑘𝑓𝑓 are the local elastic buckling coefficients for the web and flange segments of the section, 

respectively. 𝑡𝑡 and 𝛿𝛿 represent the thickness of the web and flange segments, respectively. 𝑏𝑏 and ℎ are the mid-
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line width and mid-line height of the section, respectively. These two parameters (𝑏𝑏 and ℎ) can be identified as 

given below. 

𝑏𝑏 = 𝐵𝐵 −  𝑡𝑡  and   ℎ = 𝐻𝐻 −  𝛿𝛿 (3) 

 

where 𝐻𝐻 is the height of the RHS and 𝐵𝐵 is the width, as demonstrated in Figure 1. Solving the equality given in 

Eq. (2) yields the following expression, which relates the local elastic buckling coefficient of the flange segment 

to that of the web segment [39, 41]. 

 

𝑘𝑘𝑓𝑓 =  𝑘𝑘𝑤𝑤 �
𝑏𝑏
ℎ
�
2

�
𝑡𝑡
𝛿𝛿
�
2
 (4) 

 

When  t = δ,  Eq. (4) further reduces to 

 

𝑘𝑘𝑓𝑓 =  𝑘𝑘𝑤𝑤 �
𝑏𝑏
ℎ
�
2

 (5) 

 

Eq. (2) is rearranged to highlight its simplification as follows: 

 

𝜎𝜎𝑐𝑐𝑐𝑐 =  𝑘𝑘𝑤𝑤 .𝑛𝑛 . �
𝑡𝑡
ℎ
�
2

 𝑜𝑜𝑜𝑜 𝜎𝜎𝑐𝑐𝑐𝑐 =  𝑘𝑘𝑓𝑓  .𝑛𝑛 . �
𝛿𝛿
𝑏𝑏
�
2

 (6) 

 

Here, 𝑛𝑛 is the notation and represents  𝑛𝑛 =  𝜋𝜋2𝐸𝐸
12(1−𝑣𝑣2)

 . 

 

The local elastic buckling coefficients, 𝑘𝑘𝑤𝑤 and 𝑘𝑘𝑓𝑓, are essential in determining the critical local elastic buckling 

stress. The accuracy of 𝜎𝜎𝑐𝑐𝑐𝑐  is heavily dependent on the precise value of the relevant coefficients, highlighting the 

necessity of a thorough understanding of this parameter. Despite its importance, limited studies [39–41] 

specifically address the determination of the buckling coefficients, which is affected by boundary conditions, the 

main dimensions of the box section, and loading types, such as axial compression, major axis bending, minor axis 

bending, and biaxial bending. 

A noteworthy study developed an analytical expression for calculating the local elastic buckling coefficient of a 

box section under axial compression (Figure 1a) with simply supported boundary conditions [40]. This study 

introduced two specific buckling coefficients: 𝑘𝑘𝑤𝑤 for the web segment and 𝑘𝑘𝑓𝑓 for the flange segment, both critical 

for accurately predicting the local buckling behavior. 
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The local elastic buckling coefficient for the flange segment of the RHS subjected to axial compression (Figure 

1a) can be calculated using the following expression [40]. 

 

𝑘𝑘𝑓𝑓 =  
4

�ℎ 𝑏𝑏� �
1.7 (7) 

 

Similarly, the local elastic buckling coefficient for the web segment of the RHS under major axis bending (Figure 

1b) can be calculated using the following formula [40]. 

 
1
𝑘𝑘𝑤𝑤

=
0.19

(ℎ/𝑏𝑏)3 + 0.03 (8) 

 

Furthermore, the local elastic buckling coefficient for the flange segment of the RHS under minor axis bending 

(Figure 1c) can be specified using the following expression [40]. 

 

𝑘𝑘𝑓𝑓 =
5.5

(ℎ 𝑏𝑏⁄ )2
 (9) 

 

Emphasizing here, the formulas presented in Eqs. (7) – (9), are applicable exclusively to box sections possessing 

equal wall segment thicknesses [2, 5, 38–40]. Given Eq. (5), knowing one of the relevant buckling coefficients 

implies that the other is also known. 

The critical local elastic buckling load of axially compressed RHS can be determined using the formula written 

below [40]. 

 

𝑃𝑃𝑐𝑐𝑐𝑐 =  𝜎𝜎𝑐𝑐𝑐𝑐  .𝐴𝐴𝑔𝑔 (10) 

 

where  𝐴𝐴𝑔𝑔 is the gross cross-sectional area of the RHS and can be calculated as follows: 

 

𝐴𝐴𝑔𝑔 = 𝐻𝐻 𝑥𝑥 𝐵𝐵 − (𝐻𝐻 − 2𝛿𝛿) (𝐵𝐵 − 2𝑡𝑡) (11) 

 

The critical local elastic moment of the RHS under major axis bending can also be determined by the expression 

given below [40].  

𝑀𝑀𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 =  𝜎𝜎𝑐𝑐𝑐𝑐  .𝑤𝑤𝑧𝑧 (12) 

 

Herein, 𝑤𝑤𝑧𝑧  is the section modulus of the RHS about the z- axis (strong axis), illustrated in (Figure 1b), and can be 

determined as follows [38, 40]: 
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𝑤𝑤𝑧𝑧 =
𝐵𝐵𝐻𝐻2

6
�1 − �1 −

2𝑡𝑡
𝐵𝐵
� �1 −

2𝛿𝛿
𝐻𝐻
�
3

� (13) 

 

In the same manner, the critical local elastic moment of the RHS under minor axis bending can be computed using 

the expression given below [2, 38, 40]. 

𝑀𝑀𝑐𝑐𝑐𝑐_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 =  𝜎𝜎𝑐𝑐𝑐𝑐  .𝑤𝑤𝑦𝑦 (14) 

 

where 𝑤𝑤𝑦𝑦 is the section modulus about the y-axis (weak axis), depicted in Figure 1c, and can be defined by [38]: 

 

𝑤𝑤𝑦𝑦 =
𝐻𝐻𝐵𝐵2

6
�1 − �1 −

2𝛿𝛿
𝐻𝐻
� �1 −

2𝑡𝑡
𝐵𝐵
�
3

� (15) 

 

2. Calculations of the Critical Local Elastic Buckling Loads for RHS 

This section addresses the determination of critical local buckling loads for axial compression, major axis bending, 

and minor axis bending of RHS with the geometric specifications documented in Table 1. 

 

Table 1. The geometric specifications of the RHS addressed 
Specimen b (mm) h (mm) 𝐭𝐭 = 𝛅𝛅 (mm) L (mm) 

RHS-20 x 40 x 1 20 40 1 200 
 

Note that L in Table 1 represents the length of the RHS profile. Additionally, the RHS addressed in this study is 

assumed to be fabricated from S235 steel grade, with the corresponding material properties detailed in Table 2 

[42]. 

 
Table 2. Material properties of S235 steel grade [42] 

Material 𝑬𝑬 (GPa) 𝒗𝒗 𝝈𝝈𝒚𝒚 (GPa) 𝝈𝝈𝒖𝒖 (GPa) 
S235 210 0.3 0.282 0.324 

 

In Table 2, 𝜎𝜎𝑦𝑦 and 𝜎𝜎𝑢𝑢 denote the yield strength and ultimate strength of the RHS material, respectively. 

Procedure for calculating critical local elastic buckling loads of the RHS under axial compression, major axis 

bending, and minor axis bending is as follows: 

• Determine local elastic buckling coefficients: 

o For the flange segment: 𝑘𝑘𝑓𝑓 using Eq. (7) for axial compression, Eq. (5) for major axis bending, and Eq. (9) for 

minor axis bending. 

o For the web segment: 𝑘𝑘𝑤𝑤 using Eq. (5) for axial compression, Eq. (8) for major axis bending, and Eq. (5) for 

minor axis bending. 

• Calculate the parameter n using material properties from Table 2 for all loading conditions. 

• Calculate critical local elastic stress using Eq. (6) for all cases. 
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• Determine additional parameters: 

o Gross cross-sectional area using Eq. (11) for axial compression. 

o Section modulus about the z-axis (wz) using Eq. (13) for major axis bending. 

o Section modulus about the y-axis (wy) using Eq. (15) for minor axis bending. 

• Calculate critical local elastic buckling loads/moments:  

o Using Eq. (10) for axial compression.  

o Using Eq. (12) for major axis bending. 

o Using Eq. (14) for minor axis bending. 

Upon completing the outlined calculation steps, the results for the RHS subjected to axial compression, major axis 

bending, and minor axis bending are presented in Tables 3, 4, and 5, respectively. 

 
Table 3. The critical local elastic buckling stress and corresponding bifurcation load of RHS under axial compression 
Loading Type kf kw 𝒏𝒏 (GPa) 𝝈𝝈𝒄𝒄𝒄𝒄 (GPa) 𝑨𝑨𝒈𝒈 (mm2) 𝑷𝑷𝒄𝒄𝒄𝒄 (kN) 
Axial Compression 1.231 4.924 189.8 0.584 120 70.08 

 
Table 4. The critical local elastic buckling stress and corresponding bifurcation moment of the RHS under major axis bending 
Loading Type kf kw 𝒏𝒏 (GPa) 𝝈𝝈𝒄𝒄𝒄𝒄 (GPa) 𝒘𝒘𝒛𝒛 (mm3) 𝑴𝑴𝒄𝒄𝒄𝒄_𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒄𝒄 (kN.mm) 
Major Axis Bending 4.651 18.604 189.8 2.207 1302 2873.5 

 
Table 5. The critical local elastic buckling stress and corresponding bifurcation moment of the RHS under minor axis bending 
Loading Type kf kw 𝒏𝒏 (GPa) 𝝈𝝈𝒄𝒄𝒄𝒄 (GPa) 𝒘𝒘𝒚𝒚 (mm3) 𝑴𝑴𝒄𝒄𝒄𝒄_𝒎𝒎𝒎𝒎𝒏𝒏𝒎𝒎𝒄𝒄 (kN.mm) 
Minor Axis Bending 1.375 5.5 189.8 0.652 890.5 580.6 
 

In essence, the critical local elastic buckling stresses and corresponding bifurcation loads of the RHS subjected to 

various types of loading, including axial compression, major axis bending, and minor axis bending, have been 

theoretically determined. The analytical expressions and procedures presented in this study can also be applied to 

determine the critical local elastic buckling stresses of RHSs with different h/b ratios under the aforementioned 

loading conditions. 

 

III. FINITE ELEMENT PROCEDURE 

To investigate the influence of different element types on the local elastic buckling behavior of rectangular hollow 

sections (RHS) under various loading conditions, a linear elastic eigenvalue buckling analysis was conducted. The 

RHS model was discretized using five distinct shell elements: S4, S4R, S4R5, S8R, and S8R5. This comprehensive 

analysis is crucial for understanding how each element type affects the accuracy and computational efficiency of 

predicting buckling behavior. By comparing these shell elements, the study aims to provide insights that will guide 

the selection of the most appropriate element type for various engineering applications, ensuring optimal 

performance and reliability in structural analysis and design. 

In Abaqus, various conventional shell element types are designed to meet different modeling requirements with 

distinct advantages. The S4 is a four-node, doubly curved general-purpose shell element capable of handling finite 

membrane strains [6, 43-45]. This element type is versatile and suitable for complex geometries, providing reliable 
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results for both thick and thin shell applications. The S4R is a similar four-node element but features reduced 

integration with hourglass control, enhancing computational efficiency while also accommodating finite 

membrane strains [2, 8, 38, 44]. The reduced integration helps mitigate shear locking, making S4R ideal for large-

scale models in industries such as automotive and aerospace. The S4R5, another four-node element, is optimized 

for thin shell applications, incorporating reduced integration, hourglass control, and five degrees of freedom per 

node to accurately capture transverse shear deformations [35, 37, 44, 45]. This makes the S4R5 particularly useful 

for detailed analyses of thick-walled structures. 

The S8R is an eight-node, doubly curved thick shell element that employs reduced integration, making it suitable 

for thick shell applications [6, 26, 44]. It supports large arbitrary rotations but only small strains, and it ignores 

deformation in the thickness direction. Despite providing accurate results in specific scenarios, its applicability 

can be limited due to these characteristics. The S8R5, an eight-node thin shell element with reduced integration 

and five degrees of freedom per node, improves the accuracy of transverse shear effects. However, the potential 

misalignment of the internally defined center node with the actual shell surface can lead to inaccurate buckling 

results, particularly in thin shell applications [44, 46, 47]. 

Each element type offers a balance between computational efficiency and precision tailored to the specific needs 

of various simulations. The choice of element type is critical in ensuring the optimal performance of finite element 

models, particularly in large-scale or computationally intensive analyses. This study highlights the importance of 

understanding the strengths and limitations of each shell element type to make informed decisions in structural 

analysis and design. 

Figure 2 illustrates the finite element models of the RHS, including loading and boundary conditions, as well as 

mesh configurations: Figure 2a presents the model for axial compression, while Figure 2b and Figure 2c depict 

the models for major axis bending and minor axis bending, respectively. Three distinct finite element models were 

developed for these loading cases. Reference points were established at the midpoints of both ends of the RHS and 

connected to the sections using kinematic couplings for axial compression and rigid body-pin constraints for major 

and minor axis bending, as per the methodologies described in [38, 48]. Separate simulations were conducted for 

each loading scenario to ensure accurate representation and validation of the finite element analysis. Kinematic 

couplings were used for axial compression because they allow the load to be uniformly distributed across the cross-

section, ensuring a realistic simulation of axial load transmission. They are particularly useful for transmitting 

forces and moments to a structure without inducing artificial constraints that could alter the structural response 

[19]. On the other side of the coin, in major axis bending and minor axis bending simulations, rigid body constraints 

with pin nodes were deployed to enforce a rigid connection between the reference node and the nodes on the 

surface, allowing for rotational and translational movements relative to a specified point. This setup is beneficial 

for bending simulations because it accurately represents the boundary conditions where moments are applied, 

ensuring the load is correctly transmitted to induce bending about the desired [19]. 

For axial compression, a unit load was applied and transmitted to the RHS. In the cases of major axis and minor 

axis bending, a unit moment was applied to achieve the desired deformation. This setup ensures a comprehensive 

evaluation of the local buckling behavior under different loading conditions, thereby validating the accuracy and 

reliability of the finite element analysis. The detailed configurations and application of loads and constraints in the 
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models allow for precise simulation and insightful comparisons of the performance of various shell element types 

in Abaqus. 

 

 

Figure 2. The finite element model of RHS under various loads, (a) Axial compression (P), (b) Major axis bending (Mz), and (c) Minor axis 
bending (My) 

 

The elastic material properties, including the elastic modulus and Poisson's ratio documented in Table 2, were 

utilized in the simulations. The subspace iteration eigen-solver method was employed, with the number of vectors 

per iteration set to five. To ensure the accuracy and reliability of the finite element procedure, a mesh convergence 

analysis was conducted on the RHS under axial compression. The mesh was progressively refined until the results 

stabilized, demonstrating the model's consistency. As shown in Figure 3, convergence was achieved when the 

element size was reduced below 5 mm. Consequently, a mesh size of 2 mm was chosen for the entire RHS based 

on the mesh convergence study results. A total of 600 elements and 6060 nodes were used in the simulations, with 

each element meshed into a square shape (aspect ratio of 1) to enhance accuracy [2]. The choice of mesh size is 

crucial in buckling simulations as it directly impacts the accuracy and precision of the predicted buckling behavior 

[49-54]. 
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Figure 3. Results of the mesh convergence study 

 

IV. RESULTS AND DISCUSSIONS 

The local buckling modes and corresponding bifurcation loads of the axially compressed RHS, extracted from the 

linear elastic eigenvalue buckling analyses, are depicted in Figure 4. The local elastic buckling mode shapes 

estimated for the RHS under axial compression, as shown in Figure 4, are consistent with those reported in the 

relevant literature [2, 38, 39]. While the mode shapes are largely unaffected by the element type employed in the 

analysis, the critical local elastic buckling loads exhibit varying degrees of sensitivity to the element type. These 

discrepancies are particularly notable when compared to theoretical results, as reported in Table 6 and graphically 

illustrated in Figure 5. This sensitivity underscores the importance of selecting the appropriate element type in 

finite element analyses to ensure accurate predictions of buckling loads. Different element formulations can 

influence the precision of the computed buckling loads, highlighting the need for careful consideration in element 

selection to achieve reliable and accurate structural analysis outcomes. 

 
Table 6. Comparison of element types for critical local elastic buckling load of RHS under axial compression 

Element Type Bifurcation Load 𝑷𝑷𝒄𝒄𝒄𝒄 (kN) Wall-clock 
Time (Sec) |Error| % FEM Theory 

S4 74.88 70.08 24 6.971 
S4R 74.918 70.08 21 7.025 
S4R5 75.067 70.08 27 7.238 
S8R 74.688 70.08 90 6.697 
S8R5 74.408 70.08 116 6.297 

 
 

Drawing from the findings in Figure 5 and Table 6, the evaluation of various element types for estimating the 

critical local elastic buckling load of an RHS under axial compression yields insightful conclusions. The S4 

element achieves a bifurcation load of 74.88 kN with an error of 6.971%, balancing accuracy and computational 

efficiency with a wall-clock time of only 24 seconds. The S4R element, slightly less accurate with an error of 

7.025%, offers enhanced efficiency, completing the analysis in 21 seconds. In contrast, the S4R5 element, with 
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five degrees of freedom per node, exhibits the highest error among the 4-node elements at 7.238%, requiring 27 

seconds of computation. 

 

 

Figure 4. Local elastic buckling modes and corresponding bifurcation loads predicted for the axially compressed RHS by using various element 
types, (a) S4, (b) S4R, (c) S4R5, (d) S8R, and (e) S8R5 

 

The S8R element yields the second-lowest error at 6.697% but demands significantly more computational time at 

90 seconds, making it suitable for accuracy-critical applications. The S8R5 element, despite providing the highest 

accuracy with an error of 6.297%, incurs the greatest computational expense at 116 seconds, positioning it as the 

preferred choice for precise analyses. Overall, the S4R element is recommended for routine applications where 

computational efficiency is paramount, whereas the S8R5 element is ideal for high-precision tasks, despite its 

increased computational demands. 
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The discrepancies observed between element types can be attributed to their respective formulations and 

integration schemes. For instance, the reduced integration in S4R, S4R5, S8R, and S8R5 elements enhances 

computational efficiency but can introduce numerical inaccuracies, especially in complex buckling scenarios. 

Conversely, the full integration used in S4 elements improves accuracy but at the cost of higher computational 

resources. This analysis underscores the essential trade-off between computational efficiency and accuracy, 

enabling informed selection of element types based on specific analysis requirements and resource constraints. 

 

 

Figure 5. Error and analysis time comparison of element types for critical local elastic buckling load of RHS under axial compression 

 

In this case, since the structure is considered thin (with thickness less than about 1/15 of a characteristic length on 

the surface of the shell), the S4, S4R, S4R5, S8R, and S8R5 elements are evaluated accordingly. The S4 and S4R 

elements are 4-node quadrilateral shell elements. S4 employs full integration for high accuracy but at a higher 

computational cost, while S4R uses reduced integration for enhanced efficiency but with potential numerical 

issues. The S4R5 element, also using reduced integration with five degrees of freedom per node, is optimized for 

thin shells but can compromise accuracy in some scenarios. 

The S8R element, designed for thick shells, is less suitable here despite its second-lowest error due to its higher 

computational demands. The S8R5 element, however, provides high accuracy for thin shells with its five degrees 

of freedom per node and reduced integration, making it the best choice for precision despite its computational 

expense. 

In conclusion, for thin structures, the S4R element offers a good balance of efficiency and accuracy for routine 

applications, while the S8R5 element is recommended for tasks requiring high precision, despite the increased 

computational requirements.  

The local elastic buckling mode shapes identified for the RHS under major axis bending, as illustrated in Figure 

6, were found to be consistent with those reported in the relevant literature [2, 38, 39]. Although the mode shapes 

were basically unaffected by the choice of element type in the analysis, the critical local elastic buckling loads  
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Figure 6. Local elastic buckling modes and corresponding bifurcation moments predicted for the RHS under major axis bending by using 
various element types, (a) S4, (b) S4R, (c) S4R, (d) S8R, and (e) S8R5 

 

exhibited varying sensitivities to the element types, reflecting differences when compared to the theoretical results, 

as documented in Table 7 and shown in Figure 7. The results of major axis bending reported in Table 7 and Figure 

7 indicate that the error ratios are generally lower compared to those observed in axial compression, highlighting 

the superior accuracy of the analyzed element types in this loading condition. Specifically, the S8R5 element 

demonstrates the highest accuracy with an error of 2.644%, followed closely by S8R at 3.319%, reflecting their 

effective formulation for capturing thin shell behavior due to reduced integration techniques. In contrast, while the 

S4R5 and S4R elements exhibit slightly higher error rates of 5.571% and 4.868%, respectively, they maintain 

competitive computational times, emphasizing their balance between efficiency and accuracy. Notably, the wall-

clock times for major axis bending are significantly higher, with S8R5 taking 870 seconds, compared to axial 

compression simulations. This can be attributed to the increased complexity in capturing the bending responses 
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and deformation patterns, which necessitate more extensive computational resources. Overall, these findings 

suggest that while the element formulations effectively capture local buckling phenomena, the choice of element 

type significantly influences both the accuracy and computational demands, underscoring the importance of 

selecting appropriate models based on the specific loading conditions and structural behavior. 

       

Table 7. Comparison of element types for critical local elastic buckling moment of RHS under major axis bending 

Element Type 
Bifurcation Moment 
𝑴𝑴𝒄𝒄𝒄𝒄_𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒄𝒄 (kN.mm)  Wall-clock 

Time (Sec) |Error| % 
FEM Theory 

S4 3006.2 2873.5 155 4.618 
S4R 3013.4 2873.5 151 4.868 
S4R5 3033.6 2873.5 140 5.571 
S8R 2968.9 2873.5 447 3.319 
S8R5 2949.5 2873.5 870 2.644 

 

 

 
Figure 7. Error and analysis time comparison of element types for critical local elastic buckling load of RHS under major axis bending 

 

The error ratios between the element types indicate negligible differences, with the S4 and S4R elements exhibiting 

an error difference of only 0.25% (4.618% for S4 vs. 4.868% for S4R), making them practically equivalent. In 

contrast, the S4 and S8R5 elements show a more significant error difference of 2.973% (4.618% for S4 vs. 2.644% 

for S8R5), highlighting the superior accuracy of the S8R5 element. Given these findings, it is recommended that 

for applications prioritizing computational efficiency, the S4 or S4R elements be utilized due to their reasonable 

accuracy and lower computational demands. Conversely, for analyses requiring high precision in major axis 

bending, the S8R5 element is advisable despite its increased computational time. This approach facilitates a 

balanced selection of element types based on the specific accuracy and efficiency needs of the project. 

The local elastic buckling modes and corresponding bifurcation moments predicted for the RHS under minor axis 

bending using various element types are illustrated in Figure 8. The results presented in Table 8, as well as 

graphically presented in Figure 9, underscore the significance of evaluating different element types in determining 

the critical local elastic buckling moment of RHS under minor axis bending, highlighting considerations of 

accuracy, computational efficiency, and the inherent trade-offs among various element types. Notably, the local 
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elastic buckling modes identified in this study are consistent with existing literature, reinforcing the validity of the 

findings. 

 

 
 

Figure 8. Local elastic buckling modes and corresponding bifurcation moments predicted for the RHS under minor axis bending by using 
various element types, (a) S4, (b) S4R, (c) S4R5, (d) S8R, and (e) S8R5 

 

 
Table 8. Comparison of element types for critical local elastic buckling moment of RHS under minor axis bending 

Element Type 
Bifurcation Moment 
𝑴𝑴𝒄𝒄𝒄𝒄_𝒎𝒎𝒎𝒎𝒏𝒏𝒎𝒎𝒄𝒄 (kN.mm) Wall-clock 

Time (Sec) |Error| % 
FEM Theory 

S4 603.71 580.6 54 3.981 
S4R 603.02 580.6 53 3.861 
S4R5 604.42 580.6 46 4.102 
S8R 600.87 580.6 221 3.491 
S8R5 599.77 580.6 305 3.301 
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The S4 element yields a bifurcation moment of 603.71 kN.mm, accompanied by an error of 3.981%, reflecting a 

commendable balance between accuracy and computational efficiency, with a computation time of 54 seconds. 

Similarly, the S4R element achieves a moment of 603.02 kN.mm, demonstrating a marginally lower error of 

3.861% and a computation duration of 53 seconds. In contrast, the S4R5 element presents a higher error of 4.102%, 

resulting in a moment of 604.42 kN.mm while requiring 46 seconds for analysis. Among the eight-node element 

types, the S8R element produces a bifurcation moment of 600.87 kN.mm with an error of 3.491%, although it 

demands significantly greater computational time, totaling 221 seconds. The S8R5 element, while yielding a 

slightly lower moment of 599.77 kN.mm, achieves the highest accuracy with an error of 3.301%, albeit with an 

extended computation duration of 305 seconds. 

In summary, the S4 and S4R elements are recommended for scenarios prioritizing computational efficiency, 

whereas the S8R5 element is more suited for high-precision analyses, notwithstanding its longer computation time. 

The evaluations across axial compression, major axis bending, and minor axis bending reveal distinct performance 

characteristics among the element types. For axial compression, the S4 and S4R elements demonstrate a 

satisfactory balance between accuracy and computational efficiency, exhibiting errors of approximately 7% with 

computation times of 24 and 21 seconds, respectively. Conversely, the S8R and S8R5 elements provide higher 

accuracy but necessitate substantially greater computational times. 

In major axis bending, the S4 and S4R elements maintain their efficiency, with errors around 4.6% and 4.8% and 

computation times of 155 and 151 seconds, respectively. The S8R5 element, while delivering the highest accuracy, 

incurs increased computation time. For minor axis bending, the S4 and S4R elements again exhibit efficient 

performance, with errors below 4%, while the S8R5 element offers the highest accuracy, requiring the longest 

computation time of 305 seconds. 

Overall, the S4 and S4R elements are recommended for applications that prioritize computational efficiency, while 

the S8R5 element is ideal for high-precision analyses. Although the S8R and S8R5 elements demonstrate 

commendable accuracy -with error ratios of 6.697% and 6.297%, respectively, under axial compression, 3.319% 

and 2.644% under major axis bending, and 3.491% and 3.301% under minor axis bending- their reliability is not 

universal. The S8R element, designed for thick shells, neglects deformation in the thickness direction, which is 

critical for thin plates [6, 44]. Conversely, the S8R5 element, tailored for thin shells, may yield inaccuracies in 

buckling problems due to potential misalignment of its internally defined center node with the actual shell surface 

[6, 44]. 

Both the S4 and S4R elements exhibit comparable accuracy across all loading conditions: axial compression, major 

axis bending, and minor axis bending. The S4 element records slightly lower error percentages for axial 

compression (6.971% vs. 7.025%) and major axis bending (4.618% vs. 4.868%), while the S4R element shows a 

marginally lower error for minor axis bending (3.861% vs. 3.981%). In terms of computational efficiency, the S4R 

element consistently requires less time: 21 seconds compared to 24 seconds for axial compression, 151 seconds 

compared to 155 seconds for major axis bending, and 53 seconds compared to 54 seconds for minor axis bending. 

Based on these findings, the S4R element is recommended for applications emphasizing computational efficiency, 

while the S4 element remains a viable choice for scenarios where slightly higher accuracy is desired. 

Nonetheless, the differences in error percentages between the S4 and S4R elements are minimal across all loading 

conditions. The slight increase in error associated with the S4R element is offset by its significant reduction in 
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computational time, establishing the S4R element as a more appropriate choice for large-scale analyses or 

scenarios where time efficiency is paramount. Consequently, the S4R element is advocated for its effective 

performance, achieving a favorable balance between computational efficiency and accuracy. 

 

 

Figure 9. Error and analysis time comparison of element types for critical local elastic buckling load of RHS under minor axis bending 

 

V. CONCLUDING REMARKS 

The following conclusions can be drawn from the findings of the study. 

• The S4 element achieves a balanced performance with low error percentages of 6.971% for axial 

compression, 4.618% for major axis bending, and 3.981% for minor axis bending, requiring moderate 

computational time, which makes it suitable for analyses needing a balance between accuracy and 

efficiency. 

• The S4R element offers similar accuracy to the S4 element, with slightly higher errors of 7.025% for axial 

compression, 4.868% for major axis bending, and 3.861% for minor axis bending, while significantly 

reducing computational time, enhancing overall efficiency and making it preferable for time-sensitive 

studies. 

• The S4R5 element shows higher errors across all loading conditions, including 7.238% for axial 

compression and 4.102% for minor axis bending, and requires more computational time, limiting its 

suitability for routine applications. 

• The S8R element produces competitive results with error percentages of 6.697% for axial compression, 

3.319% for major axis bending, and 3.491% for minor axis bending, but demands significantly longer 

computational time. 

• The S8R5 element achieves the highest accuracy with errors of 2.644% in major axis bending and 3.301% 

in minor axis bending but incurs substantial computational time and may yield unreliable results for 

buckling problems due to its internal node configuration. 
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• The S4R element is ideal for scenarios prioritizing computational efficiency while maintaining 

satisfactory accuracy. 

• The S8R5 element is suitable for applications requiring slightly higher precision. 

• Selecting an element type should involve a careful assessment of the trade-offs between computational demand 

and the required accuracy for the analysis. 
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