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Abstract

We consider the optimal control of unsteady natural convective flow of reactive viscous fluid with heat
transfer. It is assumed that Newton’s law governs the heat transfer within an exothermic reaction under
Arrhenius kinetics and Navier slip condition on the lower surface of the channel. The flow is examined
in a vertical channel formed by two infinite vertical parallel plates, with a distance (H) between them.
Time-dependent natural convective slip flow of reactive viscous fluid and heat transfer equations are
solved in a unit interval using the Galerkin-Finite Element Method (FEM) with quadratic finite elements
in space and the implicit Euler method in time. The direct solutions are obtained for testing various
values of the problem parameters: the Biot number, the Frank Kamenetskii parameter, the Navier
slip parameter, and the computation of the skin friction and the Nusselt number (Nu). The optimal
control problem is designed for the momentum and energy equations to derive the fluid-prescribed
velocity and temperature profiles by defining controls on the boundary of the domain in two ways: (a)
controls are formulated as parameters in the boundary conditions, such as slip length and Biot number;
(b) controls are assigned as time-dependent functions in the boundary conditions, representing the
slip velocity and the heat transfer rate. Following a discretize-then-optimize approach to the control
problem, optimization is performed by the SLSQP (Sequential Least Squares Programming) algorithm,
a subroutine of SciPy. Numerically simulated results show that the proposed approach successfully
drives the flow to prescribed velocity and temperature profiles.
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1 Introduction

The problem of time-dependent free convective flow and heat transfer through vertical channels
occurs widely in industrial applications such as solar heating and ventilating passive systems.
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Additionally, some electronic devices with vertical circuit boards, including heat–generating
elements, are designed with parallel heated plates. Moreover, the interaction between chemical
reaction and natural convection arises within the fields of petrochemical industries and chemical
engineering. Examples of such applications include chemical deposition systems, tubular labora-
tory reactors, the oxidation of solid materials in large containers, and many others. In this manner,
several studies have been conducted by means of theoretical analysis and numerical simulations
by researchers. Minto et al. [1] considered the free-convection flow in porous media driven by an
exothermic catalytic chemical reaction represented by Arrhenius kinetics. They studied similarity
and asymptotic solutions for temperature and concentration. Makinde [2] investigated the thermal
stability of a reactive viscous fluid through a channel using perturbation technique together with
a special type of Hermite-Pade approximation. Jha et al. studied the transient natural convection
flow of reactive viscous fluid in a vertical channel [3] and in a tube [4] under Arrhenius kinetics,
providing analytical and numerical approximations using perturbation and finite difference meth-
ods, respectively. Lately, the trapezoidal and Euler discretization methods have been used for the
approximation of a numerical solution of augmented Urysohn-type nonlinear functional Volterra
integral equations in [5, 6].
Although researchers in this topic traditionally consider no-slip condition for velocity, evidences
for fluid slip have been reported for some microscale flows. For example, the effect of the slip
boundary condition on the flow of fluids in a channel was studied by Rao and Rajagopal [7]. Then,
Rundora and Makinde [8] investigated the effects of Navier slip on unsteady flow of a reactive
variable viscosity non-Newtonian fluid. Additionally, Gbadeyan et al. [9] examined the effect of
slip on natural convective flow and heat transfer of a viscous incompressible fluid using a domain
decomposition method.
Results on the free convection flow with the slip condition attracted the attention of many re-
searchers. Therefore, the analysis and control of chemically reactive and free convective flow
have become one of the main subjects of optimal control problems. Tauviqirrahman et al. [10]
applied a genetic algorithm to optimize the geometry of the complex slip surface by using location
coordinates as design parameters. Another application of genetic algorithm was conducted by
Zhang et al. [11] for optimizing the shape/pattern of boundary slip areas on bearing sliders. On
the other hand, Hu and Wu [12] obtained the existence and uniqueness of optimal solutions for the
active control of the flow velocity through the Navier slip boundary control. Moreover, an optimal
control attempt was conducted by Haslinger and Mäkinen [13] to identify the slip bound function
in the Stokes system with threshold slip boundary condition. Recently, Zhang and Zhu [14]
developed an efficient Monte Carlo search for the optimal design of slip/no-slip configuration
surfaces. Related literature and detailed theoretical results on the existence of optimal solutions
corresponding to boundary control can be found in [15–18]. The majority of the studies focused
on spatial control functions and, mostly, they have not been exemplified numerically. However,
some physical and analytical approaches have been proposed by Joseph and Kamran [19], and
Málek and Rajagopal [20].
The objective of the current work is to control the natural convective slip flow of reactive viscous
fluid by using controls on the boundary of the domain. Motivated by previous results in the
field [21–24] on the usage of parameters as control variables in fluid dynamics, we propose to
maintain control of the fluid flow by using the parameters of the slip condition and Newtonian
heating. 3. To the best of our knowledge, this is the first time that parameters such as slip length
and Biot number are considered as controls to derive the velocity and heat transfer into desired
states of the natural convective slip flow of reactive fluid in a PDE-constrained optimization frame-
work. Moreover, reduction of the problem to one dimension in space enables the representation of
the non-parametric parts of the boundary conditions as only time-dependent functions. This adds
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another option to the type of control models, which is a function on the boundary depending only
on time.
This paper is organized as follows. First, the physical formulation of the problem is introduced
with the governing equations. Second, computational methods for the solution of PDEs in
terms of space and time, and also for optimization, are presented. Third, numerical results and
discussions on the direct FEM solutions and optimization algorithm are provided. Finally, the
main contributions and findings of this study are summarized in the conclusion.

2 Problem statement

Physical formulation of the problem

We consider the optimal control of unsteady natural convective flow of reactive viscous fluid with
heat transfer. It is assumed that the heat transfer follows Newton’s law within an exothermic
reaction under Arrhenius kinetics and the Navier slip condition on the lower surface of the channel.
The flow is examined in a vertical channel formed by two infinite vertical parallel plates having
a distance (H) between them, as shown in Figure 1. Following the work of Jha et al. [3], the
dimensional governing equations are given as

∂ū
∂τ

= v
∂2ū
∂ȳ2 + gβ(θ̄ − θ̄0),

∂θ̄

∂τ
=

k
ρCp

∂2θ̄

∂ȳ2 +
QC∗

0 A
ρCp

e(−
E

Rθ̄
),

with the corresponding initial conditions

ū = 0, θ̄ → θ̄0 for 0 ≤ ȳ ≤ H, τ ≤ 0,

and boundary conditions for τ > 0

∂ū
∂ȳ

=
ū

γ∗ ,
∂θ̄

∂ȳ
= −

h
k
(θ̄a − θ̄), at ȳ = 0,

ū = 0, θ̄ = θ̄0 as ȳ → H,

where ū and θ̄ are the dimensional velocity and temperature of the fluid, respectively. Here, θ̄0 is
the initial fluid and wall temperature, β is the coefficient of thermal expansion, Q is the heat of
reaction, A is the rate constant, E is the activation energy, R is the universal gas constant, v is the
kinematic viscosity, C∗

0 is the initial concentration of reactant species, g is the gravitational force,
Cp is the specific heat at constant pressure, and k is the thermal conductivity of the fluid, ν is the
kinematic viscosity and ρ is the density of the fluid.
The dimensionless form of the equations are derived by taking

y =
ȳ
H

, t =
τµ0

H2 , θ =
E(θ̄ − θ̄0)

Rθ̄2
0

, u =
ūµ0E

gβH2Rθ̄2
0

, (1)

and

ϵ =
Rθ̄0

E
, λ =

QC∗
0 AEH2

Rθ̄2
0

e
(− E

Rθ̄0
)
, Pr =

µ0ρCp

k
, γ =

γ∗

H
, θa =

E(θ̄a − θ̄0)

Rθ̄2
0

, Bi =
hH
k

, (2)
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ȳ = Hȳ = 0

ȳ

x̄

ū

θ̄ = θ̄0
ū = 0

∂θ̄

∂ȳ
= −

h
k
(θ̄a − θ̄)

∂ū
∂ȳ

=
ū

γ∗

Figure 1. Physical configuration of the problem

where the definitions of the parameters are given as in the reference book [25]. Thus, the non-
dimensional momentum and energy equations with dimensionless velocity u, temperature θ and
time t are given as [26]

∂u
∂t

=
∂2u
∂y2 + θ, (3)

∂θ

∂t
=

1
Pr

∂2θ

∂y2 +
λ

Pr
e(

θ
1+ϵθ ), (4)

with the initial condition

u = 0, θ = 0, 0 ≤ y ≤ 1, t = 0, (5)

and boundary conditions when t > 0

∂u
∂y

=
u
γ

,
∂θ

∂y
= Bi[θ − θa], at Γ0, (6)

u = 0, θ = 0, at Γ1, (7)

where γ, Bi, Pr, λ, θa and ϵ are Navier slip parameter, Biot number, Prandtl number, Frank
Kamenetskii parameter, ambient temperature and activation energy parameter and Γ0 and Γ1
denote the left (y = 0) and the right (y = 1) boundaries, respectively.

Boundary control approach

The optimal control problem is designed for the momentum and energy equations to derive the
fluid-prescribed velocity and temperature profiles by defining controls on the boundary of the
domain in two ways: (a) controls are assigned as time-dependent functions in the boundary
conditions, representing the slip velocity and the heat transfer rate; (b) controls are formulated
as the parameters in the boundary conditions, such as slip length (γ) and Biot number (Bi).
Accordingly, the unsteady PDE-constrained optimal control problem comprising both cases is
designed as follows:

minimize
f ,g,c

J((u, θ); ( f , g, c)) =
αu

2

∫T

0

∫
Ω
(u − ud)2dΩdt +

αθ

2

∫T

0

∫
Ω
(θ − θd)2dΩdt (8)

+
αu

2

∫
Ω
(u(T)− ud(T))2dΩ +

αθ

2

∫
Ω
(θ(T)− θd(T))2dΩ (9)
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+
α f

2

∫T

0

∫
Ω

f 2dΩdt +
αg

2

∫T

0

∫
Ω

g2dΩdt +
αc

2

∫
Ω
∥c∥2dΩ, (10)

subject to equations in (3)-(4). Here, αu, αθ, α f , αg, and αc are the regularization parameters and
ud, θd, ud(T) and θd(T) are the desired velocity, desired temperature, desired velocity and desired
temperature at final time T, respectively. Also, c is the vector of control parameters which denotes
one or both of the parameters γ and Bi, f (t) and g(t) are time-dependent control functions in (6)
at Γ0 substituted as

f (t) =
u(t, 0)

γ
, and g(t) = Bi[θ(t, 0)− θa(t, 0)]. (11)

In the sequel, controls are chosen as either from f and/or g functions or from the parameters γ

and/or Bi.

3 Computational method

Time-dependent natural convective slip flow of reactive viscous fluid flow and heat transfer
equations (3)-(4) are solved in a unit interval with the initial and boundary conditions in Eqs.
(5)-(7) by using the finite element method in space and implicit Euler method in time.

Space discretization via finite element method

Setting the environment for a FEM solution requires the selection of the Sobolev spaces. For
a general domain Ω, the inner product and the norm are defined as ⟨u, v⟩Ω =

∫
Ω uv dΩ and

∥v∥L2(Ω) =
√
⟨v, v, ⟩. Correspondingly,

H1(Ω) =
{

v : ∥v∥L2(Ω) + ∥∇v∥L2(Ω) < ∞}
,

H1
0(Ω) =

{
v ∈ H1(Ω) : v = 0 on Γ1

}
.

FEM solution is achieved through the derivation of the variational equations. Thus, (3)-(4) are
multiplied by the test functions (p, q) ∈ H1

0(Ω)2, respectively, for u and θ:

∫
Ω

(
∂u
∂t

−
∂2u
∂y2 − θ

)
p dΩ = 0,∫

Ω

(
∂θ

∂t
−

1
Pr

∂2θ

∂y2 −
λ

Pr
e(

θ
1+ϵθ )

)
q dΩ = 0.

Applying the Green’s theorem and imposing the boundary conditions in (6), the variational
formulation of the problem (3)-(4) yields: find (u, θ) ∈ H1

0(Ω)2 such that∫
Ω

∂u
∂t

p dΩ +

∫
Ω

∂u
∂y

∂p
∂y

dΩ +

∫
Γ0

u
γ

p dΓ0 −

∫
Ω

θp dΩ = 0, p ∈ H1
0(Ω), (12)∫

Ω

∂θ

∂t
q dΩ +

1
Pr

∫
Ω

∂θ

∂y
∂q
∂y

dΩ +
1
Pr

∫
Γ0

Bi (θ − θa) q dΓ0 −
λ

Pr

∫
Ω

e(
θ

1+ϵθ )q dΩ = 0, q ∈ H1
0(Ω).

(13)
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After that, finite dimensional approximations are introduced to employ quadratic finite elements.
Let Th be a division of Ω with size h > 0 and let Uh,0 and Qh,0 be the space of quadratic polynomials
on Th and Uh,0, Qh,0 ⊂ H1

0(Ω). Now, the variational formulation is constructed for searching
solutions such that (u, θ) ∈ Uh,0 × Qh,0. Properly, we define the basis functions {ξi}

βu
i=1 and {υk}

βθ

k=1
for Uh,0 and Qh,0, respectively, as follows

u(t, y) ≈
βu∑

j=1

uj(t)ξ j(y), θ(t, y) ≈
βθ∑

l=1

θl(t)υl(y), (14)

where u = (uj(t)) and θ = (θl(t)) are the components of the vectors u and θ at time t, respectively.
So, the following approximations can be reached:

∂u
∂t

≈
βu∑

j=1

u̇j(t)ξ j(y),
∂θ

∂t
≈

βθ∑
l=1

θ̇l(t)υl(y), (15)

∂u
∂y

≈
βu∑

j=1

uj(t)
∂ξ j(y)

∂y
,

∂θ

∂y
≈

βθ∑
l=1

θl(t)
υl(y)

∂y
, (16)

e
θ

1+ϵθ ≈
βθ∑

l=1

e
θl

1+ϵθl υl . (17)

Here, u̇j(t) and θ̇l(t) are the components of the discretized time derivatives. Substitution of the
FEM approximations in Eqs. (14)-(17) into (12) and (13) results in the following:

βu∑
j=1

u̇j(t)
∫

Ω
ξ jξi dΩ +

βu∑
j=1

uj(t)
∫

Ω

∂ξ j

∂y
∂xi
∂y

dΩ −

βθ∑
l=1

θl(t)
∫

Ω
υlξi dΩ +

1
γ

βu∑
j=1

uj(t)
∫

Γ0

ξ jξi dΓ0 = 0,

βθ∑
l=1

θ̇l(t)
∫

Ω
υlυk dΩ +

1
Pr

βθ∑
l=1

θl(t)
∫

Ω

∂υl
∂y

∂υk
∂y

dΩ −
λ

Pr

βθ∑
l=1

e
θl

1+ϵθl

∫
Ω

υlυk dΩ

+
Bi
Pr

βθ∑
l=1

θl(t)
∫

Γ0

υlυk dΓ0 −
Bi
Pr

βθ∑
l=1

θal (t)
∫

Γ0

υlυk dΓ0 = 0,

where 1 ≤ i ≤ βu and 1 ≤ k ≤ βθ. Accordingly, the coupled semi–discrete system of equations
are formulated as[

M 0
0 S

] [
u̇
θ̇

]
+

[
K + 1

γ E −D
0 R + Bi

PrC

] [
u
θ

]
+

[
0

λ
PrSN(θ)

]
−

Bi
Pr

[
0

Cθa

]
=

[
0
0

]
, (18)
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where M = (Mij), K = (Kij), D = (Dil), E = (Eij), S = (Skl), R = (Rkl), C = (Ckl) and

Mij =

∫
Ω

ξ jξi dΩ, Kij =

∫
Ω

∂ξ j

∂y
∂ξi
∂y

dΩ, Dil =

∫
Ω

υlξi dΩ, Eij =

∫
Γ0

ξ jξidΓ0,

Skl =

∫
Ω

υlυk dΩ, Rkl =

∫
Ω

∂υl
∂y

∂υk
∂y

dΩ, Ckl =

∫
Γ0

υlυkdΓ0.

To simplify, we define the following block matrices:

A1 =

[
M 0
0 S

]
, A2 =

[
K + 1

γ E −D
0 R + Bi

PrC

]
, Π =

[
0,

λ
PrSN(θ)

]
, e =

Bi
Pr

[
0

Cθa

]
.

So, the semi-discrete problem can be given as

A1φ̇+ A2φ+ Π(φ) = e for φ = (u, θ)T. (19)

Time discretization via implicit Euler method

The time derivative for φ is numerically approximated by the implicit Euler method using the
following formula

φ̇n+1 ≈ φn+1 −φn

∆t
for n = 0, 1, . . . , N,

at (n + 1)th time level. Thus, (19) can be rewritten as(
1

∆t
A1 + A2

)
φn+1 + Π(φn+1)−

1
∆t

A1φn − e = 0 for n = 0, 1, . . . , N, (20)

which is a discrete non-linear system of equations in φn+1. Here, φn and φn+1 are obtained at
the consecutive time levels tn and tn+1 for n = 1, . . . , N, iteratively, via Newton’s method in the
linearization. A closed form of (20) can be given as

Fn+1(φ
n+1) := L(φn+1)φn+1 + Π(φn+1)− dn = 0,

where L and dn refer to the linear term and the known data from the previous time step, respec-
tively and they are defined as

L =
1

∆t
A1 + A2, dn =

1
∆t

A1φn + e.

As a result, fully discrete non-linear system of equations are formulated as

F(Φ) =


F1(φ

1)
F2(φ

2)
...

FN(φ
N)

 =


F1(u1, θ1)

F2(u2, θ2)
...

FN(uN , θN)

 = 0, (21)

where Φ = (φ1,φ2, . . . ,φN).



Cansu Evcin | 123

Discretize–then–optimize approach

The approach to reach the optimal solution of the control problem depends on the discretized form.
Therefore, the cost function in Eqs. (8)-(10) is reformulated using the discrete FEM approximations
given in the previous section. The substitution of the discrete FEM solutions into J((u, θ); ( f , g, c))
results in

minimize
f,g,c

J(Φ; (f, g, c)) (22)

subject to F(Φ; (f, g, c)) = 0, (23)

where Φ = (φ1,φ2, . . . ,φN)T, and J is the discrete objective function. In order to simplify, we
denote all control variables (f, g, c) by m, then the discretized problem can be restated as follows:

minimize
m

J(Φ;m) (24)

subject to F(Φ; (m)) = 0. (25)

Optimization step is initiated by construction of the Lagrangian function as

L(Φ, m, Ψ) = J(Φ, m) + Ψ∗F(Φ, m),

where Ψ denotes the Lagrange multiplier, the so-called adjoint variable. Accordingly, the first–
order optimality conditions are established, considering the first order derivatives of the La-
grangian,

∇L(Φ, m, Ψ) =

(∇J(Φ, m) +∇F(Φ, m)∗Ψ

F(Φ, m)

)
= 0. (26)

An optimal solution to problem in (24)–(25) has to be a root of (26). Therefore, Newton’s method
is employed as an iterative technique to find this root by calculating the Newton direction δk at
iterate k

∇2L(Φk, mk, Ψk)δk = −∇L(Φk, mk, Ψk), (27)

where δk = (δk
Φ, δk

m, δk
Ψ). Clearly, an open form of (27) leads to the system of equations as

[
∇2

(Φ,m)L(Φk, mk, Ψk) ∇(Φ,m)F(Φ
k, mk)∗

∇(Φ,m)F(Φ
k, mk) 0

] (δk
z

δk
u

)
δk

Ψ

 = −

[
∇J(Φk, mk) +∇(Φ,m)F(Φ

k, mk)∗Ψk

F(Φk, mk)

]
.

(28)

Here, the updated formulas to iterate solutions are given as

Φk+1 = Φk + δk
z , mk+1 = mk + δk

m, Ψk+1 = Ψk + δk
Ψ.

This sequence of solutions can also be formulated as the first–order optimality conditions of the
Sequential Quadratic Programming (SQP) subproblem defined as
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minimize
s

1
2

sT∇2
(Φ,m)L(Φk, mk, Ψk)s +∇J(Φk, mk, Ψk)∗s (29)

subject to ∇(Φ,m)F(Φ
k, mk)Ts + F(Φk, mk) = 0, (30)

where the solution vector s is the Newton direction in (28) corresponding to the update of (Φ, m)

variables. Additionally, the Lagrangian function related to the problem in (29)–(30) is established,
called ϑ, with Lagrange multiplier µ as follows [27]:

ϑ(s, µ) =
1
2

sT∇2
(Φ,m)L(Φk, mk, Ψk)s+∇J(Φk, mk, Ψk)∗s+µ∗(∇(Φ,m)F(Φ

k, mk)Ts+F(Φk, mk)).

Formally, the first–order optimality conditions of the SQP subproblem in (29)–(30) are given as[
∇2

(Φ,m)L(Φk, mk, Ψk) ∇(Φ,m)F(Φ
k, mk)∗

∇(Φ,m)F(Φ
k, mk) 0

] [
s
µ

]
= −

[
∇J(Φk, mk)

F(Φk, mk)

]
, (31)

where s = (δk
Φ, δk

m) and µ = Ψk+1. A reformulation of the SQP subproblem is stated as

minimize
s

1
2

sTBks +∇J(Φk, mk, Ψk)Ts (32)

subject to ∇(Φ,m)F(Φ
k, mk)Ts + F(Φk, mk) = 0, (33)

where we define Bk := ∇2
(Φ,m)L(Φk, mk, Ψk). This approach leads to the well-known SLSQP

(Sequential Least Squares Programming) problem, as follows

minimize
s

1
2
∥Bks +∇J(Φk, mk)∥2 (34)

subject to ∇(Φ,m)F(Φ
k, mk)Ts + F(Φk, mk) = 0. (35)

Designed algorithms using SLSQP to deal with the problem in (34) by using a decomposition
Bk = LDLT, and equivalently solves the following

minimize
s

1
2
∥(Dk)1/2(Lk)Ts + (Dk)−1/2(Lk)−1∇J(Φk, mk)∥2 (36)

subject to ∇(Φ,m)F(Φ
k, mk)Ts + F(Φk, mk) = 0. (37)

One can refer to [28–30] for details of the SLSQP algorithm and its usage in optimization. Also, a
sketch of the underlying framework is presented to facilitate an easy follow-up in Algorithm 1.

Algorithm 1 Discretize–Then–Optimize Framework with SLSQP

1: Generate the fully discrete system of PDEs by FEM in space and Implicit Euler in time in (21).
2: Generate the discrete optimization problem in (22) and (23).
3: Initialize the optimization by an initial guess for the control.
4: Solve the SLSQP subproblem in (36) and (37) until |∇ J̃| < tol for a given tolerance.
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4 Numerical results and discussions

FEM solution of the unsteady exothermic fluid flow and heat transfer equations

The unsteady exothermic fluid flow equations (3)-(4) with the boundary conditions (6)-(7) are
solved using finite element method (FEM) in space and Implicit Euler scheme in time. The y-axis
velocity profile and temperature distribution are obtained along the distance between parallel
plates, Ω = [0, 1]. Simulations are performed on a computer with Intel Core i7-10510 processor
and 16GB RAM where Python programming language is used within the platform FEniCS [31]
to solve PDEs. The non-linear system of equations is solved by the Newton’s method at each
simulation.
In this study, a quadratic finite element method is used on uniform mesh, consisting of 28 cells
with 513 degrees of freedom for each subspace of the mixed finite element space. Discretization
in time is executed by an Implicit Euler scheme with a uniform time step ∆t = 0.1 Numerical
results are obtained for various values of the Biot number, 0.1 ≤ Bi ≤ 1.5, the Frank Kamenestskii
parameter, 0.2 ≤ λ ≤ 0.8, the Navier slip parameter, 0.1 ≤ γ ≤ 1.5, the ambient temperature,
θa = 1 and the final time, T = 0.4, 0.6, 0.8. Mesh-dependent convergence tests are performed to
validate the numerical results using the L2 norm of the residuals between solutions obtained in
consecutive mesh refinements. Figure 2a and Figure 2b depict the convergence in space and time,
respectively. Specifically, these rates of convergence are shown together in Figure 2c at the same
scale to highlight the difference in their sensitivity to refinements. That is, the convergence rates
are inferred from the slopes of the lines in the space and time variables. Thus, as expected, the lines
corresponding to the refinement in the time step, called as Time-Velocity and Time-Temperature,
have slopes smaller than the lines corresponding to the refinement in space, called Space-Velocity
and Space-Temperature. This is due to the employment of a first-order in time method, the Implicit
Euler, and a quadratic finite element in space. In addition, Figure 2d depicts the CPU time costs
for mesh refinements in time and space. It is observed that the refinement in time steps results in a
larger cost than in space, but the choices used in the rest of this manuscript seem admissible.
Moreover, the method of discretization in time derivative is also investigated in terms of CPU
time in Figure 3a and Figure 3b with the Crank-Nicolson method for the refinements in space
and time variables, respectively. Since the number of function evaluations increases with the
Crank-Nicolson method, the CPU costs are larger than those of the Implicit Euler method across
all different meshes. Further, a mesh-dependent convergence comparison of Implicit Euler and
Crank-Nicolson is also depicted in Figure 4a and Figure 4b. As the Implicit Euler is a first order
and the Crank-Nicolson is a second-order method, the slopes of the lines clearly indicate these
differences in both figures. In the end, the Implicit Euler is chosen to maintain the balance
between costs and accuracy in approximations of solutions.
Figure 5a shows the velocity behavior for increasing values of λ and t. It can be seen that as λ

and t increase the velocity magnitude increases. This tendency is also valid for the temperature as
well in Figure 5b. Temperature rise occurs due to the strong chemical reaction and viscous heating
sources in (4). This significant change in the temperature reduces the fluid viscosity and increases
the velocity. Besides, due to the combined effects of the Navier slip condition, and asymmetric
and convective heating of the plate, the temperature reaches the maximum value at the lower
plate and decays to the upper plate of the channel.
Figure 6a and Figure 6b depict the variation of the velocity and temperature for increasing values
of Biot number (Bi) and t. It is observed that the higher Bi higher the convective heating, velocity
and temperature reach higher values at the lower plate. Also, an increase in Bi implies more
convective heating at the lower plate which causes higher surface temperatures.
From Figure 7, one can deduce that increasing the Navier slip parameter γ increases the fluid
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Figure 2. Mesh dependent convergence tests and CPU time analysis for velocity and temperature where
γ = 0.1, Pr = 0.71, λ = 0.1, ϵ = 0.01, Bi = 0.1, T = 0.8
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Figure 5. Velocity and temperature profiles for several values of λ and final time T
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Figure 6. Velocity and temperature profiles for several values of Bi and final time T
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Table 1. Velocity and Temperature values for several values of ϵ when Bi = 0.1, Pr = 0.71, λ = 0.1, γ = 0.1,
T = 0.8 and dt = 0.1

ϵ umax θmax

1.0 1.12234204 × 10−2 1.30376904 × 10−1
10−1 1.12492495 × 10−2 1.30680323 × 10−1
10−2 1.12520966 × 10−2 1.30714049 × 10−1
10−3 1.12523843 × 10−2 1.30717459 × 10−1
10−4 1.12524131 × 10−2 1.30717801 × 10−1
10−5 1.12524160 × 10−2 1.30717835 × 10−1
10−6 1.12524163 × 10−2 1.30717838 × 10−1

velocity, since an increase of γ leads to an increase in the reaction and slipperiness of the lower
plate surface.

On the other hand, the effects of the Frank Kamenetskii parameter (λ) are studied on the bound-
aries in terms of the skin friction and the Nusselt number. According to Figure 8a and Figure 8b,
the wall shear stress increases as λ and t increase at both lower and upper plates. However, an
increment in λ decreases the rate of heat transfer, the Nusselt number, at the lower plate, while it
causes an increment at the upper plate, as shown in Figure 9a and Figure 9b.

Moreover, the observations on the skin friction and the Nusselt number are also obtained with
respect to the Biot number (Bi). Increasing Bi and time t increase the skin friction on both lower
and upper plates in Figure 10a and Figure 10b. Although the trend is similar for the Nusselt
number at the upper plate, an increase in time causes a reverse effect on the lower plate, as shown
in Figure 11a and Figure 11b. Lastly, the behavior of the skin friction is investigated with respect
to the Navier slip parameter as well. Figure 12a and Figure 12b demonstrate that the wall shear
stress decreases at the lower plate but it increases on the upper plate as γ increases.

Having ensured that the simulation results obtained via FEM imply that they are consistent with
the results given by Hamza [26], optimal control solutions are presented in the next section.
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Figure 8. Skin friction against λ
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Figure 9. Nusselt number against λ
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Figure 10. Skin friction against Bi
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Figure 11. Nusselt number against Bi
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Figure 12. Skin friction against γ

Control simulations via FEM solutions

Having shown the dynamics of the system according to the significant parameters, the exothermic
fluid flow with heat transfer is examined as an optimal control problem by controlling the fluid
velocity and temperature on the lower plate. The main idea of this structure is based on the
capability of driving the fluid flow into predefined or desired profiles by using the information
on the boundary conditions. Hence, control formulations are taken into consideration from two
perspectives: (a) control variables are chosen as the parameters in Eq. (6), which means that the
slip parameter (γ) and/or the Biot number (Bi) are used to control the fluid flow and temperature
on the boundary Γ0; (b) control functions are chosen as the functions on the right-hand sides of
the boundary conditions given in Eq. (6). That is, f (t) and/or g(t) in (11) are used to control the
time-dependent velocity and/or the temperature profiles on the boundary Γ0.
In the following, the SLSQP (Sequential Least Squares Programming) algorithm is implemented
using the SciPy [32] minimization subroutine of dolfin–adjoint platform [33]. Iterations to find
optimal solutions are continued until the norm of the gradient of the reduced cost function
becomes less than the value of tolerance 10−7. The value of each regularization parameter is
reported in the corresponding caption of the related table.
It is well-known that the Navier slip parameter is used to describe the behaviour of a fluid in
contact with a solid surface, and it dominates the slipperiness of the fluid along the boundary.
Therefore, the first trial in the parameter control is conducted by the Navier slip parameter (γ).
Desired/predefined states are produced by considering several values of γ, denoted by γd, and
resulting optimal values, denoted by γopt, are given in Table 2. Simulation results confirm the
convergence of optimal solutions and show the larger the values of γ the larger the number of
iterations.
Another significant parameter of the system is the Biot number as it helps design an efficient
cooling system or reaction conditions by providing information about the heat transfer charac-
teristic of the fluid. Hence, second trial in parameter control is handled with the Biot number
(Bi). To exemplify both cases - uniform and non-uniform temperature distribution within the
body- desired states are generated for Biot number values that are less than and greater than 1. As
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Table 2. Boundary control on the velocity with γ when Bi = 0.1, Pr = 0.71, λ = 0.1, dt = 0.1, αu = αθ = 103,
αc = 10−5 and α f = αg = 0

γd γopt T ∥uopt − ud∥ ∥θopt − θd∥ |∇ J̃| Nit
0.1 0.099993 0.4 7.7768 × 10−8 1.5268 × 10−15 6.6726 × 10−12 8
0.1 0.099997 0.6 5.7349 × 10−8 2.1666 × 10−15 6.4115 × 10−10 7
0.1 0.099998 0.8 3.8418 × 10−8 2.6305 × 10−15 1.3758 × 10−12 7
0.5 0.49974 0.4 1.0914 × 10−6 1.5268 × 10−15 1.9446 × 10−10 11
0.5 0.49991 0.6 6.2944 × 10−7 2.1666 × 10−15 2.9803 × 10−10 10
0.5 0.49995 0.8 4.4587 × 10−7 2.6305 × 10−15 1.1840 × 10−9 9
1.0 0.99723 0.4 4.9915 × 10−6 1.5268 × 10−15 5.8785 × 10−10 13
1.0 0.99913 0.6 2.7322 × 10−6 2.1666 × 10−15 2.5992 × 10−10 12
1.0 0.99957 0.8 1.8571 × 10−6 2.6305 × 10−15 3.7800 × 10−10 11
1.5 1.48683 0.4 1.3283 × 10−5 1.5268 × 10−15 4.9451 × 10−12 15
1.5 1.49603 0.6 7.1579 × 10−5 2.1666 × 10−15 7.3509 × 10−13 14
1.5 1.49813 0.8 4.7749 × 10−6 2.6305 × 10−15 5.2228 × 10−13 13

Table 3. Boundary control on the temperature with Bi when γ = 1.0, Pr = 0.71, λ = 0.1, dt = 0.1, αu = αθ = 103,
αc = 10−5 and α f = αg = 0

Bid Biopt T ∥uopt − ud∥ ∥θopt − θd∥ |∇ J̃| Nit
0.1 0.099999 0.4 3.2628 × 10−10 2.2907 × 10−9 1.3073 × 10−8 6
0.1 0.099999 0.6 3.1486 × 10−10 1.7851 × 10−9 1.4673 × 10−9 6
0.1 0.099999 0.8 2.9755 × 10−10 1.4915 × 10−9 1.9754 × 10−12 7
0.5 0.49999 0.4 2.6455 × 10−9 1.7730 × 10−8 2.9641 × 10−12 10
0.5 0.49999 0.6 2.6720 × 10−9 1.4374 × 10−8 7.0737 × 10−10 9
0.5 0.49999 0.8 2.5839 × 10−9 1.2340 × 10−8 3.9534 × 10−9 9
1.5 1.49999 0.4 1.9357 × 10−8 1.1921 × 10−7 5.3230 × 10−13 11
1.5 1.49999 0.6 2.0812 × 10−8 1.0280 × 10−7 2.1376 × 10−8 10
1.5 1.49999 0.8 2.0355 × 10−8 9.0851 × 10−8 2.8199 × 10−8 9

indicated in Table 3, optimal solutions successfully reach the desired outcomes with a relatively
small number of iterations compared to the control of γ.
Considering their significant effects on the physics of the problem, the next trial is to consider the
pairwise control of the Navier slip parameter and the Biot number. So, Table 4 summarizes the
accurately attained optimal solutions to the desired states corresponding to the several values of
both parameters. As expected, doubling the control parameter relatively increases the number of
iterations in the optimization.
As a forward version of the control design, the time-dependence of the boundary conditions is
examined. Firstly, the time-dependent control on the boundary is adapted on the velocity as f (t).
Although Table 2 ensures that the number of iterations is not affected by an increase in the final
time, the dependence of the control function ( f (t)) on time clearly increases it due to the increase
in the number of control variables as shown in Table 5.
Secondly, the boundary condition of the temperature field is modeled as a time-dependent control.
Results in Table 6 ensure that the number of iterations increases with the increase in the number of
control variables. Fortunately, pairwise but time-dependent controls on both boundaries also give
promising results in achieving the predefined states, albeit at the cost of an increased number of
iterations as shown in Table 7.



134 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 5, 116–138

Table 4. Boundary control on the velocity and temperature with γ and Bi when Pr = 0.71, λ = 0.1, dt = 0.1,
αu = αθ = 103, αc = 10−5 and α f = αg = 0

Bid Biopt γ γd T ∥Vopt − Vd∥ ∥θopt − θd∥ |∇ J̃| Nit
0.1 0.099993 0.1 0.1 0.4 7.7480 × 10−8 2.9014 × 10−9 2.6911 × 10−8 11
0.1 0.099997 0.1 0.1 0.6 5.0183 × 10−8 2.0860 × 10−9 4.5499 × 10−8 10
0.1 0.099998 0.1 0.1 0.8 3.8239 × 10−8 1.5054 × 10−9 3.5604 × 10−8 10
0.5 0.49973 0.1 0.1 0.4 1.0914 × 10−6 1.1498 × 10−7 9.3493 × 10−8 14
0.5 0.49990 0.1 0.1 0.6 6.2934 × 10−7 7.7391 × 10−8 7.2238 × 10−8 13
0.5 0.49995 0.1 0.1 0.8 4.4600 × 10−7 5.9179 × 10−8 1.7253 × 10−10 11
1.0 0.99719 0.1 0.1 0.4 4.9912 × 10−6 6.3378 × 10−7 5.8242 × 10−8 17
1.0 0.999108 0.1 0.1 0.6 2.7330 × 10−6 4.1556 × 10−7 1.4882 × 10−8 15
1.0 0.99956 0.1 0.1 0.8 1.8586 × 10−6 3.0947 × 10−7 1.6829 × 10−10 13
1.0 0.999667 0.5 0.5 0.4 1.7187 × 10−6 2.0760 × 10−7 3.6031 × 10−8 17
1.0 0.999887 0.5 0.5 0.6 9.6693 × 10−7 1.3613 × 10−7 1.7495 × 10−8 16
1.0 0.999942 0.5 0.5 0.8 6.7210 × 10−7 1.0045 × 10−7 1.8546 × 10−9 19
1.0 0.999863 1.0 1.0 0.4 1.1025 × 10−6 9.2621 × 10−8 7.9800 × 10−9 23
1.0 0.99995 1.0 1.0 0.6 6.3447 × 10−7 5.2555 × 10−8 3.9420 × 10−9 17
1.0 0.99997 1.0 1.0 0.8 4.4821 × 10−7 3.3231 × 10−8 2.7437 × 10−8 18
1.0 0.999913 1.5 1.49999 0.4 8.8241 × 10−7 5.1638 × 10−10 3.7148 × 10−9 18
1.0 0.999968 1.5 1.49999 0.6 5.1567 × 10−7 2.4156 × 10−8 1.1175 × 10−9 19
1.0 0.999983 1.5 1.49999 0.8 3.6812 × 10−7 3.3102 × 10−8 1.9883 × 10−9 16

Table 5. Time-dependent boundary control on the velocity when Bi = 0.1, Pr = 0.71, λ = 0.1, dt = 0.1,
αu = αθ = 103, α f = 10−5 and αc = αg = 0

γd T ∥uopt − ud∥ |∇ J̃| Nit
0.1 0.4 2.5224 × 10−18 1.9183 × 10−9 8
0.1 0.6 9.6826 × 10−18 1.9035 × 10−9 10
0.1 0.8 2.0998 × 10−17 1.1211 × 10−8 12
0.5 0.4 3.5764 × 10−18 4.8549 × 10−10 8
0.5 0.6 1.4501 × 10−17 1.6843 × 10−9 10
0.5 0.8 8.4691 × 10−18 5.3934 × 10−9 12
1.0 0.4 2.1804 × 10−18 1.3929 × 10−8 7
1.0 0.6 4.7359 × 10−18 1.2594 × 10−9 10
1.0 0.8 1.1069 × 10−17 3.0075 × 10−9 12

Table 6. Time-dependent boundary control on the temperature when γ = 1.0, Pr = 0.71, λ = 0.1, dt = 0.1,
αu = αθ = 103, αg = 10−5 and αc = α f = 0

Bid T ∥uopt − ud∥ ∥θopt − θd∥ |∇ J̃| Nit
0.1 0.4 7.5911 × 10−16 3.3008 × 10−15 8.7364 × 10−10 10
0.1 0.6 6.4731 × 10−16 1.9490 × 10−15 5.1838 × 10−9 13
0.1 0.8 4.7463 × 10−16 1.1373 × 10−15 1.1200 × 10−8 12
0.5 0.4 3.5092 × 10−13 1.4730 × 10−12 1.0127 × 10−8 9
0.5 0.6 2.9075 × 10−13 8.3834 × 10−13 6.1592 × 10−10 10
0.5 0.8 2.1094 × 10−13 4.7483 × 10−13 1.0850 × 10−8 13
1.5 0.4 1.8122 × 10−11 7.3563 × 10−11 5.9525 × 10−12 7
1.5 0.6 1.4818 × 10−11 4.1874 × 10−11 1.4847 × 10−9 11
1.5 0.8 1.0694 × 10−11 2.3830 × 10−11 1.1199 × 10−9 13
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Table 7. Time-dependent boundary control on the velocity and temperature when Pr = 0.71, λ = 0.1, dt = 0.1,
αu = αθ = 103, α f = αg = 10−5 and αc = 0

γd Bid T ∥uopt − ud∥ ∥θopt − θd∥ |∇ J̃| Nit
0.1 0.1 0.4 1.0221 × 10−15 3.3008 × 10−15 3.0714 × 10−9 14
0.1 0.1 0.6 9.6972 × 10−16 1.9490 × 10−15 2.0665 × 10−9 16
0.1 0.1 0.8 7.9573 × 10−16 1.1373 × 10−15 3.6916 × 10−9 18
0.5 0.1 0.4 1.0241 × 10−15 3.3008 × 10−15 4.3539 × 10−9 14
0.5 0.1 0.6 9.9628 × 10−16 1.9490 × 10−15 1.8661 × 10−9 16
0.5 0.1 0.8 8.1904 × 10−16 1.1373 × 10−15 2.5095 × 10−9 18
1.5 0.1 0.4 1.0310 × 10−15 3.3008 × 10−15 4.9799 × 10−9 14
1.5 0.1 0.6 9.8253 × 10−16 1.9490 × 10−15 9.9845 × 10−9 15
1.5 0.1 0.8 8.2242 × 10−16 1.1373 × 10−15 1.1631 × 10−8 17
1.0 0.5 0.4 4.7809 × 10−13 1.4730 × 10−12 1.3276 × 10−8 11
1.0 0.5 0.6 4.4646 × 10−13 8.3834 × 10−13 1.6377 × 10−8 14
1.0 0.5 0.8 3.6590 × 10−13 4.7483 × 10−13 5.8150 × 10−9 17
1.0 1.0 0.4 6.3718 × 10−12 1.9152 × 10−11 2.8537 × 10−10 12
1.0 1.0 0.6 5.9025 × 10−11 1.0892 × 10−11 1.0109 × 10−8 15
1.0 1.0 0.8 4.8214 × 10−12 6.1845 × 10−12 6.1752 × 10−9 17
1.0 1.5 0.4 2.4821 × 10−11 7.3563 × 10−11 2.4928 × 10−9 14
1.0 1.5 0.6 2.2899 × 10−11 4.1874 × 10−11 1.1292 × 10−8 18
1.0 1.5 0.8 1.8676 × 10−11 2.3830 × 10−11 2.8764 × 10−9 21

5 Conclusion

The unsteady free convective flow of reactive viscous fluid is studied with heat transfer within an
exothermic reaction under Arrhenius kinetics and the Navier slip condition on the lower surface of
the vertical channel. In the present paper, the Navier slip parameter and Biot number are designed
as control parameters to derive the fluid into desired velocity and temperature. The control
of the flow is also attained by the time-dependent functions of the boundary conditions of the
problem. A discretize-then-optimize approach is applied with the SLSQP(Sequential Least Squares
Programming) algorithm in the optimization. Direct and optimal control solutions are formulated
by using quadratic finite element approximations of the PDEs. Numerical simulations of the
unsteady fluid flow equations are obtained with several values of the parameters to demonstrate
that they accurately reflect the dynamics of the problem. Therefore, the findings of this study
provide reliable approximate direct solutions via FEM and contribute to optimal control strategies
on the boundary for an exothermic fluid flow with Navier slip condition. As a future work of this
study, it is possible to expand the problem domain into a 2D or 3D framework.
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