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ABSTRACT: This paper deals with obtaining new identities and equations for Harmonic and Hyperharmonic 

numbers.We get some matrices which defined by these numbers. We also derive some identities for these 

numbers with the aid of Riordan array. In conclusion, we get new identities related to harmonic and 

hyperharmonic numbers, enabling us to determine the row sums of these matrices. 
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1. Introduction  

Harmonic numbers are employed in many areas of number theory and have been studied 

since antiquity. There are various generalizations of harmonic numbers. Conway and  Guy 

defined Hyperharmonic numbers and obtained some equations that allow Hyperharmonic 

numbers to be written in terms of Harmonic numbers (Conway  and Guy, 1996). 

Definitions of these numbers are given as follows: 

 

The harmonic number is defined as ℋ𝑛 = ∑
1

𝑘

𝑛
𝑘=1   with  ℋ0 = 0 is called the 𝑛 −th 

harmonic number. The 𝛼 −th order 𝑛 −th hyperharmonic numbers, defined by ℋ𝑛
(𝛼)

 , is 

defined as ℋ𝑛
(𝛼)

= ∑ ℋ𝑘
(𝛼−1)𝑛

𝑘=1  with 𝛼 > 1 integer and ℋ𝑛
(1)

= ℋ𝑛 . The generating 

functions for each of these numbers are provided, 

 

∑ ℋ𝑛𝑡𝑛 = −
ln (1 − 𝑡)

1 − 𝑡

∞

𝑛=0

ℋ 
    

(1)                                           

 

∑ ℋ𝑛
(𝛼)

𝑡𝑛 = −
ln (1 − 𝑡)

(1 − 𝑡)𝛼

∞

𝑛=0

 
 

(2) 

  

Numbers to be written in terms of Harmonic numbers ( Conway and Guy, 1996). By noting 

that the resulting infinite triangular matrix of some generalized Harmonic numbers follows 

a Riordan sequence and numerous polynomials with the Harmonic numbers, Cheon et al. 

were able to establish linkages between Stirling numbers of both sorts and additional 

generalized Harmonic numbers (Cheon et al., 2006; Cheon and El -Mikkawy 2008 ; Cheon 

et al., 2007). Wang applied generalized Harmonic numbers with combinatorial sequences 

(Wang, 2010). Harmonic number theory was further developed in the well-known studies 

of ( Duran et al., 2020; Kızılates and Tuglu, 2015; Tuglu and Kızılates ,̧ 2015; Tuglu et al., 
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2015; Cetin et al., 2021; Dil and Mezo, 2008; Tuglu et al., 2023). By using the operators 

and transforms, the authors investigate the generating function, Binet-like formula, 

summation formula, recurrence relation and other characteristics equations of new 

sequences which are named Horadam, Quadrapell and Tribonacci (Kızılateş et al., 2017; 

Kızılateş, 2021; Kızılateş et al., 2022). 

Historically, there have been two versions of the Riordan series concept. The first version 

consists of a (𝑑𝑖.𝑗)(𝑖.𝑗∈𝑍)
 shaped infinite matrix. It is mostly used to examine algebraic 

properties and deals with Formal Laurent series. an (𝑑𝑖.𝑗)(𝑖.𝑗∈𝑍)
 shaped lower triangular 

matrix makes up the second version.. It was used to examine formal power series and 

combinatorial properties. Shapiro, Getu, Woan and Woodson are the researchers who made 

the first studies on the group and defined this structure. They also obtained the inverses of 

the matrices represented by Riordan notation by using the properties of the Riordan group 

(Shapiro et al., 1991). They defined Riordan matrix denoted by (𝑔(𝑡), 𝑓(𝑡)), has generating 

function of the 𝑗 −th column is 𝑔(𝑡)𝑓(𝑡)𝑗 where for 𝑗 = 0,1,2,…, 𝑔(0) ≠ 0, 𝑓(0) = 0 and 

𝑓′(0) ≠ 0. The set of all Riordan matrices is a group under matrix multiplication, which 

operation is defined as 

(𝑔(𝑡). 𝑓(𝑡)). (𝑢(𝑡), 𝑣(𝑡)) = (𝑔(𝑡)𝑢(𝑓(𝑡)), 𝑣(𝑓(𝑡))) (3) 

 

The following theorem, established by (Sprugnoli, 2006), is known as the Fundamental 

Theorem of Riordan groups. Let 𝐷 = (𝑑(𝑛,𝑘)) is a Riordan matrix which is defined by pair 

or (𝑔, 𝑓) and ℎ(𝑥) = ∑ ℎ𝑘𝑡𝑘𝑛
𝑘=0  the equation holds  

∑𝑑𝑖,𝑗ℎ𝑗 = [𝑡𝑖𝑔(𝑡)ℎ(𝑓(𝑡))]

𝑖

𝑗=0

 

(4) 

Then Rogers generalized the properties of Pascal’s triangle and Riordan introduced the 

structure (Rogers, 1978). Hennesy combined Riordan arrays with continued fractions 

(Hennesy,2011). Also the authors have studied on identites of Riordan arrays (Luzon et al., 

2012; Merlini and Verri, 2000, Merlini and Sprugnoli, 2002). The authors give the classical 

row sum of the Riordan sequence, the alternating row sum and the weighted row sums 

(Shapiro, 2003; He and Shapiro, 2016). Let D be Riordan matrix which can be expressed 

by (𝑔, 𝑓). 

• The sum of the 𝑖. row entries of the Riordan array is defined by  

𝛼𝑖 = ∑𝑑𝑖,𝑗 = [𝑡𝑖]
𝑔(𝑡)

1 − 𝑓(𝑡)

∞

𝑗=0

 
 

(5) 

  
 

• The Riordan array's 𝑖.row entries' alternating sum is  

𝛽𝑖 = ∑(−1)𝑗𝑑𝑖,𝑗 = [𝑡𝑖]
𝑔(𝑡)

1 + 𝑓(𝑡)

∞

𝑗=0

 

 

 

(6) 

 

 

We direct the reader to a few recent contributions for the history and applications of the 

hyperharmonic and harmonic numbers employing the Riordan array to various fields 

(Wang, 2010; Munarini, 2011; Koparal et al., 2021). 

In this paper, our aim is to obtain new identites for Harmonic and hyperharmonic numbers 

by aid of Riordan matrix, which based on some special matrices defining by these numbers. 

Firstly, we defined a few unique matrices that include hyperharmonic and harmonic 

numbers. Then several theorems are given to confirm our results. So we have given new 
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identites for these numbers. Lastly, the sums of these newly defined matrices in classical 

row and alternating row are presented, respectively. 

 

2. Main Results 
In this section, firstly, we describe the definition and some basic properties of matrices 

which defined by Harmonic and generalized Harmonic numbers. Then we obtain several 

theorems by using these numbers. Let us define the ℋ = (ℎ𝑛,𝑘)𝑛,𝑘=1

∞
 and 𝑄 = (𝑞𝑛.𝑘)𝑛,𝑘=1

∞  

as follows: 

ℋ = (ℎ𝑛.𝑘)𝑛,𝑘=1
∞ = {

ℋ𝑛−𝑘+1,               𝑛 ≥ 𝑘
0,                         𝑛 < 𝑘

 
(7) 

and 

𝑄 = (𝑞𝑛.𝑘)𝑛,𝑘=1
∞ = {

𝑞𝑛−𝑘,                    𝑛 ≥ 𝑘
0,                         𝑛 < 𝑘

 
 (8) 

where ℋ𝑛 is the 𝑛 − 𝑡ℎ harmonic number. In other words, these matrices are presented as: 

ℋ =

[
 
 
 
 
ℋ1 ⋯

ℋ2 ℋ1 ⋯

ℋ3 ℋ2 ℋ1 ⋯
ℋ4 ℋ3 ℋ2 ℋ1 ⋯

⋮ ⋮ ⋮ ⋱]
 
 
 
 

 

and 

𝑄 =

[
 
 
 
 
 
𝑞0 ⋯

𝑞1 𝑞0 ⋯

𝑞2 𝑞1 𝑞0 ⋯

𝑞3 𝑞2 𝑞1 𝑞0 ⋯

⋮ ⋮ ⋮ ⋱]
 
 
 
 
 

 

Lemma 1. Suppose that ℋ is a matrix as in (7). Then the Riordan representation of the 

H matrix is given by  

(−
ln(1 − 𝑡)

𝑡(1 − 𝑡)
, 𝑡) 

(9) 

Proof. The 0 − 𝑡ℎ column of the 𝐻 matrix is [ℋ1,ℋ2,ℋ3,⋯]
𝑇
. 0 − 𝑡ℎ column consist of 

coefficients of a formal power series in the form of ∑ ℋ𝑛+1𝑡
𝑛∞

𝑛=0 . 

Since using equation of (1), we get  

∑ ℋ𝑛+1𝑡
𝑛 = −

ln (1 − 𝑡)

𝑡(1 − 𝑡)

∞

𝑛=0
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It is seen that the generating function of the 0 −  𝑡ℎ column is −
ln (1−𝑡)

𝑡(1−𝑡)
. Under the 

lighting under the equation of (3), the other columns of theℋmatrix are the 𝑡 unit shifted 

of the 0 −  𝑡ℎ column, so the Riordan representation of the ℋ  matrix is obtained as 

(−
ln(1 − 𝑡)

𝑡(1 − 𝑡)
, 𝑡). 

On the other hand, let 𝐷 matrix, denoted by 𝐷 = (−
ln(1−𝑡)

𝑡(1−𝑡)
, 𝑡), from equation of (3), we 

obtain  

𝑑𝑖,𝑗 = [𝑡𝑖] [−
ln (1 − 𝑡)

𝑡(1 − 𝑡)
𝑡𝑗] 

         = [𝑡𝑖] (∑ ℋ𝑛+1𝑡
𝑛

∞

𝑛=0

) 𝑡𝑗  

  = [𝑡𝑖−𝑗] ∑ ℋ𝑛+1𝑡
𝑛

∞

𝑛=0

 

                                                                 = 𝐻𝑖−𝑗+1. 

Since the entries of the (−
ln(1−𝑡)

𝑡(1−𝑡)
, 𝑡) matrix is ℋ𝑛−𝑘+1. Then the matrix defined by 

(−
ln(1−𝑡)

𝑡(1−𝑡)
, 𝑡) is Riordan representatiton is of ℋ matrix. 

Lemma 2. Assume that Q is a matrix as in (8). Then the Riordan representation of the 

Q matrix is 

(
1

1 − 𝑞𝑡
, 𝑡). 

(10) 

Proof. The evidence for this lemma is that it resembles Lemma 1. 

Theorem 1. Let ℋ and 𝑄 are as in (7) and (8). The Riordan representation of the 

𝐻𝑄 matrix is 

(−
ln(1 − 𝑡)

𝑡(1 − 𝑡)(1 − 𝑞𝑡)
, 𝑡). 

(11) 

Proof. From equation of (9) and (10),it can be written as 

ℋ𝑄 = (−
ln(1 − 𝑡)

𝑡(1 − 𝑡)
, 𝑡) (

1

1 − 𝑞𝑡
, 𝑡). 

By using (3), the Riordan representations of ℋ𝑄 is obtained as 

(−
ln(1 − 𝑡)

𝑡(1 − 𝑡)(1 − 𝑞𝑡)
, 𝑡). 

Theorem 2. The entries of ℋ𝑄 = (𝑑𝑖,𝑗)𝑖,𝑗=1

∞
 matrix is obtained as  
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𝑑𝑖,𝑗 = ∑ ℋ𝑘𝑞𝑖−𝑗−𝑘+1

𝑖−𝑗+1

𝑘=1

 

 

(12) 

where the ℋ and Q matrices defined in (7) and (8), respectively. 

Proof. The Riordan representation of the ℋ𝑄 matrix is in the form of (−
ln(1−𝑡)

𝑡(1−𝑡)(1−𝑞𝑡)
, 𝑡), 

and the 𝑗 −  𝑡ℎ column consists of the elements of the array which produced by the 

−
ln(1−𝑡)

𝑡(1−𝑡)(1−𝑞𝑡)
𝑡𝑗 function. Hence 

𝑑𝑖,𝑗 = [𝑡𝑖] (−
ln(1 − 𝑡)

𝑡(1 − 𝑡)(1 − 𝑞𝑡)
𝑡𝑗) 

         = [𝑡𝑖] (∑ ∑ ℋ𝑘+1𝑞
𝑛−𝑘𝑡𝑛

𝑛

𝑘=0

∞

𝑛=0

) 𝑡𝑗 

        = [𝑡𝑖] (∑ ∑ ℋ𝑘+1𝑞
𝑛−𝑗−𝑘𝑡𝑛

𝑛−𝑗

𝑘=0

∞

𝑛=0

) 

                                                         = [𝑡𝑖] ∑ ℋ𝑘+1𝑞
𝑛−𝑗−𝑘

𝑛−𝑗

𝑘=0

 

                                                         = ∑ ℋ𝑘𝑞𝑖−𝑗−𝑘+1.

𝑖−𝑗+1

𝑘=1

 

Theorem 3.  Let the matrix γ be defined by the array of 

(−
ln (1 − 𝑡)

𝑡(1 − 𝑡)(1 − 𝑞𝑡)
,

𝑡

1 − 𝑞𝑡
). 

(13) 

The entries of the 𝛾 matrix, with 𝛾 =  (𝑑𝑖,𝑗)𝑖,𝑗=1

∞
 is 

𝑑𝑖,𝑗 = ∑ (
𝑖 − 𝑘 + 1

𝑗
)ℋ𝑘𝑞𝑖−𝑗−𝑘+1

𝑖+1

𝑘=1

 

 

(14) 

Proof. The 𝑗 −  𝑡ℎ column of the 𝛾 matrix consists of the elements of the array produced 

by the function as 

−
ln(1 − 𝑡)

𝑡(1 − 𝑡)(1 − 𝑞𝑡)

𝑡𝑗

(1 − 𝑞𝑡)𝑗
=

− ln(1 − 𝑡)

𝑡(1 − 𝑡)

𝑡𝑗

(1 − 𝑞𝑡)𝑗+1
 

So 

−
ln(1 − 𝑡)

𝑡(1 − 𝑡)

𝑡𝑗

(1 − 𝑞𝑡)𝑗+1
= ∑ (∑ ℋ𝑘+1 (

𝑛 − 𝑘

𝑛 − 𝑗 − 𝑘
) 𝑞𝑛−𝑗−𝑘

𝑛

𝑘=0

) 𝑡𝑛.

∞

𝑛=𝑗

 

From here, the entires of the matrix is obtained as 
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𝑑𝑖,𝑗 = ∑ ℋ𝑘+1 (
𝑖 − 𝑘

𝑖 − 𝑗 − 𝑘
) 𝑞𝑖−𝑗−𝑘

𝑖

𝑘=0

 

By equation of ( 𝑖−𝑗
𝑖−𝑗−𝑘

) = (𝑖−𝑘
𝑗

), then we get  

𝑑𝑖,𝑗 = ∑ ℋ𝑘+1 (
𝑖 − 𝑘

𝑗
) 𝑞𝑖−𝑗−𝑘.

𝑖

𝑘=0

 

With the help of index change , which is 𝑘 → 𝑘 − 1, we obtain 

𝑑𝑖,𝑗 = ∑ ℋ𝑘 (
𝑖 − 𝑘 + 1

𝑗
) 𝑞𝑖−𝑗−𝑘+1.

𝑖+1

𝑘=0

 

Theorem 4. Suppose that 𝛾 is a matrix as in (13). Then we get 

∑ ∑ ℋ𝑘𝑞𝑖−𝑘+1

𝑖−𝑗+1

𝑘=1

(
𝑠 + 𝑗 − 1

𝑠 − 1
) = ∑ ℋ𝑘+1 (

𝑠 + 𝑖 − 𝑘

𝑠
) 𝑞𝑖−𝑘

𝑖

𝑘=0

𝑖

𝑗=0

 

Proof. Let ℎ(𝑡) is a function as defined by ℎ(𝑡) =
1

(1−𝑞𝑡)𝑠
= ∑ (𝑠+𝑛−1

𝑠−1
)𝑞𝑛𝑡𝑛∞

𝑛=0 . From 

equalities of (4) and (13), we get  

∑ ∑ ℋ𝑘𝑞𝑖−𝑗−𝑘+1 (
𝑠 + 𝑗 − 1

𝑠 − 1
) 𝑞𝑗

𝑖−𝑗+1

𝑘=1

= [𝑡𝑖]
−ln (1 − 𝑡)

𝑡(1 − 𝑡)(1 − 𝑞𝑡)

𝑖

𝑗=0

1

(1 − 𝑞𝑡)𝑠
 

                                                      = [𝑡𝑖]
−ln (1 − 𝑡)

𝑡(1 − 𝑡)(1 − 𝑞𝑡)𝑠+1
 

                                                                                   = [𝑡𝑖] ∑ (∑ ℋ𝑘+1 (
𝑠 + 𝑛 − 𝑘

𝑠
) 𝑞𝑛−𝑘

𝑛

𝑘=0

) 𝑡𝑛

∞

𝑛=0

 

                                                       = ∑ ℋ𝑘+1 (
𝑠 + 𝑖 − 𝑘

𝑠
) 𝑞𝑖−𝑘

𝑖

𝑘=0

 

and so we get  

∑ ∑ ℋ𝑘𝑞
𝑖−𝑘+1

𝑖−𝑗+1

𝑘=1

(
𝑠 + 𝑗 − 1

𝑠 − 1
) = ∑ ℋ𝑘+1 (

𝑠 + 𝑖 − 𝑘

𝑠
) 𝑞𝑖−𝑘

𝑖

𝑘=0

𝑖

𝑗=0

. 

In particular, if 𝑞 =  1 and 𝑠 =  1 are taken, the equation in Theorem 4 turns to 

∑ ∑ ℋ𝑘 = ∑ ℋ𝑘+1(𝑖 − 𝑘)

𝑖

𝑘=0

𝑖−𝑗+1

𝑘=1

𝑖

𝑗=0

. 

Theorem 5. Let the matrix 𝛾 be defined as in (13). The we obtain 
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∑ ∑(−1)𝑗

𝑖+1

𝑘=1

(
𝑖 − 𝑘 + 1

𝑗
)ℋ𝑘𝑞𝑖−𝑘+1 = ℋ𝑖+1

𝑖

𝑗=0

. 

Proof. Assume that ℎ(𝑡) is a function as in ℎ(𝑡) =
1

1+𝑞𝑡
= ∑ (−1)𝑛𝑞𝑛𝑡𝑛.∞

𝑛=0  From (4) and 

(13), we have  

∑ ∑(−1)𝑗𝑞𝑗

𝑖+1

𝑘=1

(
𝑖 − 𝑘 + 1

𝑗
)ℋ𝑘𝑞

𝑖−𝑗−𝑘+1 =

𝑖

𝑗=0

[𝑡𝑖] (
−ln (1 − 𝑡)

𝑡(1 − 𝑡)(1 − 𝑞𝑡)

1

1 + 𝑞 (
𝑡

1 − 𝑞𝑡)
) 

                         = [𝑡𝑖]
−ln (1 − 𝑡)

𝑡(1 − 𝑡)
 

                        = [𝑡𝑖] ∑ ℋ𝑛+1𝑡
𝑛

∞

𝑛=0

 

    = ℋ𝑖+1. 

and so  

∑ ∑(−1)𝑗

𝑖+1

𝑘=1

(
𝑖 − 𝑘 + 1

𝑗
)ℋ𝑘𝑞𝑖−𝑘+1 = ℋ𝑖+1

𝑖

𝑗=0

. 

Theorem 6. Let the matrix ℋ be defined as in (7). Then the row sums of ℋ matrix are 

given by 

(i)  Classic row sum: 

𝛼𝑖 = ∑ ℋ𝑘+1

𝑖

𝑘=0

 

(ii) Alternating row sum: 

𝛽𝑖 = ∑ ℋ𝑘(−1)𝑖−𝑘

𝑖

𝑘=0

 

Proof. (i) If the equation of (5) is applied to ℋ matrix, we obtain 

𝛼𝑖 = [𝑡𝑖]

−ln (1 − 𝑡)
𝑡(1 − 𝑡)

1 − 𝑡
 

 

                = [𝑡𝑖] ∑ ℋ𝑛+1𝑡
𝑛 ∑ 𝑡𝑛

∞

𝑛=0

∞

𝑛=0
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                = [𝑡𝑖] ∑ (∑ ℋ𝑘+1

𝑛

𝑘=0

) 𝑡𝑛

∞

𝑛=0

 

                                                                    = ∑ ℋ𝑘+1.

𝑖

𝑘=0

 

 

(ii) If the equation of (6) is applied to ℋ matrix, we get 

𝛽𝑖 = [𝑡𝑖]

−ln (1 − 𝑡)
𝑡(1 − 𝑡)

1 + 𝑡
 

                           = [𝑡𝑖] ∑ ℋ𝑛+1𝑡
𝑛 ∑(−1)𝑛𝑡𝑛

∞

𝑛=0

∞

𝑛=0

 

                                = [𝑡𝑖] ∑ (∑ ℋ𝑘+1

𝑛

𝑘=0

(−1)𝑛−𝑘) 𝑡𝑛

∞

𝑛=0

 

                                                         = ∑(−1)𝑖−𝑘ℋ𝑘+1.

𝑖

𝑘=0

 

Theorem 7. The row sums of ℋQ matrix is given by 

(i) Classic row sum: 

𝛼𝑖 = ∑ ∑ℋ𝑘+1𝑞
𝑖−𝑘−𝑙

𝑖−𝑘

𝑙=0

𝑖

𝑘=0

 

(ii) Alternating row sum: 

𝛽𝑖 = ∑ ∑(−1)𝑖ℋ𝑘+1𝑞
𝑖−𝑘−𝑙

𝑖−𝑘

𝑙=0

𝑖

𝑘=0

 

Proof. (i)  If the equation of (5) is applied to ℋ𝑄 matrix, we find that 

𝛼𝑖 = [𝑡𝑖]

−ln (1 − 𝑡)
𝑡(1 − 𝑡)(1 − 𝑞𝑡)

1 − 𝑥
 

                  = [𝑡𝑖]
−ln (1 − 𝑡)

𝑡(1 − 𝑡)

1

1 − 𝑡

1

1 − 𝑞𝑡
 

                    = [𝑡𝑖] ∑ ℋ𝑛+1𝑡
𝑛 ∑ ∑𝑞𝑛−𝑙𝑡𝑛

𝑛

𝑙=𝑜

∞

𝑛=0

∞

𝑛=0

 

                          = [𝑡𝑖] ∑ (∑ ℋ𝑘+1

𝑛

𝑘=0

∑ 𝑞𝑛−𝑘−𝑙

𝑛−𝑘

𝑙=0

) 𝑡𝑛

∞

𝑛=0
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     = [𝑡𝑖] ∑ ∑ℋ𝑘+1

𝑖−𝑘

𝑙=0

𝑞𝑖−𝑘−𝑙

𝑖

𝑘=0

 

(𝑖𝑖) If the equation of (6) is apllied to ℋ𝑄 matrix, 

𝛽𝑖 = [𝑡𝑖]
𝑞(𝑡)

1 + 𝑓(𝑡)
 

                        = [𝑡𝑖]

−ln (1 − 𝑡)
𝑡(1 − 𝑡)(1 − 𝑞𝑡)

1 + 𝑥
 

                                    = [𝑡𝑖]
−ln (1 − 𝑡)

𝑡(1 − 𝑡)

1

1 + 𝑡

1

1 − 𝑞𝑡
 

                                                     = [𝑡𝑖] ∑ ℋ𝑛+1𝑡
𝑛 ∑(−1)𝑛𝑡𝑛 ∑ 𝑞𝑛𝑡𝑛

∞

𝑛=𝑜

∞

𝑛=0

∞

𝑛=0

 

                                                            = [𝑡𝑖] ∑ ℋ𝑛+1𝑡
𝑛 ∑ (∑(−1)𝑙𝑞𝑛−𝑘−𝑙

𝑛

𝑙=0

) 𝑡𝑛

∞

𝑛=0

∞

𝑛=0

 

                          = ∑ ∑(−1)𝑙ℋ𝑘+1𝑞
𝑖−𝑘−𝑙

𝑖−𝑘

𝑙=0

𝑖

𝑘=0

 

is obtained. 

Let  us define the ℍ = (ℎ𝑖,𝑗)𝑖,𝑗=1

∞
 as follows  

ℍ = (ℎ𝑖,𝑗)𝑖,𝑗=1

∞
= {

ℋ𝑖−𝑗+1
(𝛼)

,                            𝑖 ≥ 𝑗

0,                                      𝑖 < 𝑗
 

(15) 

where ℋ𝑛
(𝛼)

 is the 𝑛 − 𝑡ℎ Hyperharmonic number. 

In other words, these matrices are presented as: 

ℍ =

[
 
 
 
 
  ℋ1

(𝛼)
⋯

ℋ2
(𝛼)

ℋ1
(𝛼)

⋯

ℋ3
(𝛼)

ℋ2
(𝛼)

ℋ1
(𝛼)

⋯

ℋ4
(𝛼)

ℋ3
(𝛼)

ℋ2
(𝛼)

ℋ1
(𝛼)

⋯
⋮ ⋮ ⋮ ⋮ ⋱]

 
 
 
 
 

 

Lemma 3. Assume that ℍ is a matrix as in (15). Then the Riordan representations of 

the ℍ matrix is 

(
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼
, 𝑡). 

(16) 

Proof. 0 − 𝑡ℎ column of the ℍ matrix is [ℋ1
(𝛼)

,ℋ2
(𝛼)

,ℋ3
(𝛼)

, ⋯ ]
𝑇

.0 − 𝑡ℎ column 

consist of the coefficients of a formal power series in the form of ∑ ℋ𝑛+1
(𝛼)∞

𝑛=0 𝑡𝑛 . 
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Since using equation of (2), we obtain  

∑ ℋ𝑛+1
(𝛼)

𝑡𝑛 =
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼

∞

𝑛=0

. 

It is seen that the generating function of the 0 −  𝑡ℎ column is
−ln (1−𝑡)

𝑡(1−𝑡)𝛼
. Considering 

the equation of (3), the other columns of the ℍ matrix are the 𝑥 unit shifted of the 

0 −  𝑡ℎ column, then the Riordan representation of the ℍ matrix is obtained as 

(
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼
, 𝑡). 

On the other hand, let 𝐷 is a matrix defined by 𝐷 = (
−ln (1−𝑡)

𝑡(1−𝑡)𝛼
, 𝑡), from (3), we get  

𝑑𝑖,𝑗 = [𝑡𝑖] [
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼
𝑡𝑗] 

           = [𝑡𝑖] (∑ ℋ𝑛+1
(𝛼)

∞

𝑛=0

) 𝑡𝑗  

         = [𝑡𝑖−𝑗] ∑ ℋ𝑛+1
(𝛼)

𝑡𝑛

∞

𝑛=0

 

                                                                     = ℋ𝑖−𝑗+1
(𝛼)

 

Since thr entries of the (
−ln (1−𝑡)

𝑡(1−𝑡)𝛼
, 𝑡) matrix is ℋ𝑖−𝑗+1

(𝛼)
, then the matrix which is define by 

(
−ln (1−𝑡)

𝑡(1−𝑡)𝛼
, 𝑡) is Riordan representation of ℍ matrix. 

Theorem 8. The Riordan representation of the ℍQ matrix is  

(
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼

1

1 − 𝑞𝑡
, 𝑡) 

(17) 

where ℍ and the Q matrices are defined in (15) and (8), respectively. 

Proof. Using the equations of (10) and (16), it can be written as  

ℍ𝑄 = (
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼
, 𝑡) (

1

1 − 𝑞𝑡
, 𝑡). 

By using equation of (3), the Riordan representation of ℍ𝑄 is obtained as  

(
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼

1

1 − 𝑞𝑡
, 𝑡). 

Theorem 9. The entries of the ℍ𝑄 = (𝑑𝑖,𝑗)𝑖,𝑗=1

∞
 is given by  

𝑑𝑖,𝑗 = ∑ ℋ𝑘+1
(𝛼)

𝑞𝑖−𝑗−𝑘

𝑖−𝑗

𝑘=0

 

 

(18) 
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where ℍ and the Q matrices are defined in (15) and (8), respectively. 

Proof. The Riordan representation of the ℍ𝑄 matrix is in the form of  (
−ln (1−𝑡)

𝑡(1−𝑡)𝛼
1

1−𝑞𝑡
, 𝑡) 

and the 𝑗 − 𝑡ℎ column consist of the elements of the array which produced by the 

−ln (1−𝑡)

𝑡(1−𝑡)𝛼
1

1−𝑞𝑡
𝑡𝑗  function. 

−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼

1

1 − 𝑞𝑡
𝑡𝑗 = ∑ (∑ ℋ𝑘+1

(𝛼)
𝑞𝑛−𝑘−𝑗

𝑛−𝑗

𝑘=0

)

∞

𝑛=𝑗

𝑡𝑛 

İs in the form. 

From here, the general term of the matrix  

𝑑𝑖,𝑗 = ∑ ℋ𝑘+1
(𝛼)

𝑞𝑖−𝑗−𝑘,

𝑖−𝑗

𝑘=0

 

is obtained. 

Theorem 10. Let the matrix τ be defined by the array of  

(
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼(1 − 𝑞𝑡)
,

𝑡

1 − 𝑞𝑡
). 

(19) 

 Therefore, the entries of τ matrix, with 𝜏 = (𝑑𝑖,𝑗)𝑖,𝑗=1

∞
, is 

𝑑𝑖,𝑗 = ∑ ℋ𝑘+1
(𝛼)

(
𝑖 − 𝑘

𝑗
) 𝑞𝑖−𝑗−𝑘.

𝑖−𝑗

𝑘=0

 

(20) 

Proof. The 𝑗 − 𝑡ℎ column of the 𝜏 matrix consist of the elements of the array produced by 

the function as  

−ln (1 − 𝑡)

𝑡(1 − 𝑞𝑡)

𝑡𝑗

(1 − 𝑞𝑡)𝑗
=

−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼

𝑡𝑗

(1 − 𝑞𝑡)𝑗+1
. 

So  

−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼(1 − 𝑞𝑡)𝑗+1
𝑡𝑗 = ∑ ℋ𝑛+1

(𝛼)
𝑡𝑛 ∑ (

𝑗 + 𝑛

𝑛
) 𝑞𝑛𝑡𝑛+𝑗

∞

𝑛=0

∞

𝑛=0

 

                                            = ∑ ∑ ℋ𝑘+1
(𝛼)

(
𝑛 − 𝑘

𝑗
) 𝑞𝑛−𝑗−𝑘

𝑛−𝑗

𝑘=0

∞

𝑛=𝑗

 

From here, the entries of the matrix is obtained as  

𝑑𝑖,𝑗 = ∑ ℋ𝑘+1
(𝛼)

(
𝑖 − 𝑘

𝑗
) 𝑞𝑖−𝑗−𝑘.

𝑖−𝑗

𝑘=0

 

Theorem 11. Suppose that ℍQ is a matrix as in (17). Then we get  
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∑ ∑ ℋ𝑘+1
(𝛼)

𝑞𝑖−𝑗−𝑘 (
𝑠 + 𝑗 − 1

𝑗
) = ∑ ℋ𝑘+1

(𝛼+𝑠)𝑞𝑖−𝑘.

𝑖

𝑘=0

𝑖−𝑗

𝑘=0

𝑖

𝑗=0

 

Proof. Let ℎ(𝑡) is a function as 
1

(1−𝑡)𝑠
= ∑ (𝑠+𝑛−1

𝑠−1
)𝑡𝑛.∞

𝑛=0  From (4) and (17), we get  

∑ ∑ ℋ𝑘+1
(𝛼)

𝑞𝑖−𝑗−𝑘 (
𝑠 + 𝑗 − 1

𝑠 − 1
) = [𝑡𝑖]

−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼

1

1 − 𝑞𝑡

1

(1 − 𝑡)𝑠

𝑖−𝑗

𝑘=0

𝑖

𝑗=0

 

                                           = [𝑡𝑖]
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼+𝑠

1

1 − 𝑞𝑡
 

                                                 = [𝑡𝑖] ∑ ℋ𝑛+1
(𝛼+𝑠)𝑡𝑛 ∑ 𝑞𝑛𝑡𝑛

∞

𝑛=0

∞

𝑛=0

 

                                                      = [𝑡𝑖] ∑ (∑ ℋ𝑘+1
(𝛼+𝑠)𝑞𝑖−𝑘

∞

𝑘=0

) 𝑡𝑛

∞

𝑛=0

 

                            = ∑ ℋ𝑘+1
(𝛼+𝑠)𝑞𝑖−𝑘

𝑖

𝑘=0

 

and so  

∑ ∑ ℋ𝑘+1
(𝛼)

𝑞𝑖−𝑗−𝑘 (
𝑠 + 𝑗 − 1

𝑗
) = ∑ ℋ𝑘+1

(𝛼+𝑠)𝑞𝑖−𝑘.

𝑖

𝑘=0

𝑖−𝑗

𝑘=0

𝑖

𝑗=0

 

Theorem 12. Let the matrix τ be defined as in (19). Following equation holds 

∑ ∑ ℋ𝑘+1
(𝛼)

(
𝑖 − 𝑘

𝑗
) 𝑞𝑖−𝑘(−1)𝑗 = ℋ𝑖+1

(𝛼)
.

𝑖−𝑗

𝑘=0

𝑖

𝑗=0

 

Proof. Let ℎ(𝑡) =
1

1+𝑞𝑡
= ∑ (−1)𝑛𝑞𝑛𝑡𝑛∞

𝑛=0 . From (4) and (19) 

∑ ∑ ℋ𝑘+1
(𝛼)

(
𝑖 − 𝑘

𝑗
) 𝑞𝑖−𝑘(−1)𝑗 = [𝑡𝑖]

−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼

1

1 − 𝑞𝑡

1

1 + 𝑞
𝑡

1 − 𝑞𝑡

𝑖−𝑗

𝑘=0

𝑖

𝑗=0

 

                      = [𝑡𝑖]
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼
 

                      = [𝑡𝑖] ∑ ℋ𝑛+1
(𝛼)

𝑡𝑛

∞

𝑛=0

 

=ℋ𝑖+1
(𝛼)

. 

 

 

Theorem 13. Let the matrix ℍ be defined as in (15). In this case, 
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(i) Classic row sum: 

𝛼𝑖 = ℋ𝑖+1
(𝛼+1)

 

(ii) Alternating row sum: 

𝛽𝑖 = ∑ ℋ𝑘+1
(𝛼)

(−1)𝑖−𝑘

𝑖

𝑘=0

 

Proof. (i) If the equation of (5) is applied to ℍ matrix, we obtain 

𝛼𝑖 = [𝑡𝑖]

−ln (1 − 𝑡)
𝑡(1 − 𝑡)𝛼

1 − 𝑡
 

      = [𝑡𝑖]
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼+1
 

     = [𝑡𝑖] ∑ ℋ𝑘+1
(𝛼)

𝑡𝑘

∞

𝑘=0

 

                                                                     = ℋ𝑖+1
(𝛼+1)

. 

(𝑖𝑖) If the equation of (6) is applied to ℍ matrix 

𝛽𝑖 = [𝑡𝑖]

−ln (1 − 𝑡)
𝑡(1 − 𝑡)𝛼

1 + 𝑡
 

                            = [𝑡𝑖] ∑ ℋ𝑘+1
(𝛼)

𝑡𝑛 ∑(−1)𝑛𝑡𝑛

∞

𝑛=0

∞

𝑘=0

 

                                 = [𝑡𝑖] ∑ (∑ ℋ𝑘+1
(𝛼)

(−1)𝑛−𝑘

𝑛

𝑘=0

) 𝑡𝑛

∞

𝑘=0

 

      = ∑ ℋ𝑘+1
(𝛼)

(−1)𝑖−𝑘

𝑖

𝑘=0

 

Theorem 14. The row sums of ℍQ matrix are given by  

(i) Classic row sum: 

𝛼𝑖 = ∑ ℋ𝑘+1
(𝛼+1)

𝑞𝑖−𝑘

𝑖

𝑘=0

 

(ii) Alternating row sum: 

𝛽𝑖 = ∑ ∑(−1)𝑙𝑞𝑖−𝑘−𝑙ℋ𝑘+1
(𝛼)

𝑖−𝑘

𝑙=0

𝑖

𝑘=0

 

 

Proof. (i) If the equation of (5) is applied ℍ𝑄 matrix, we obtain  
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𝛼𝑖 = [𝑡𝑖]

−ln (1 − 𝑡)
𝑡(1 − 𝑡)𝛼(1 − 𝑞𝑡)

1 − 𝑥
 

      = [𝑡𝑖]
−ln (1 − 𝑡)

𝑡(1 − 𝑡)𝛼+1

1

1 − 𝑞𝑡
 

          = [𝑡𝑖] ∑ ℋ𝑛+1
(𝛼+1)

𝑡𝑛 ∑ 𝑞𝑛𝑡𝑛

∞

𝑛=0

∞

𝑘=0

 

                                                             = [𝑡𝑖] ∑ (∑ ℋ𝑘+1
(𝛼+1)

𝑞𝑛−𝑘

𝑛

𝑘=0

) 𝑡𝑛

∞

𝑘=0

 

                                                             = ∑ ℋ𝑘+1
(𝛼+1)

𝑞𝑖−𝑘

𝑖

𝑘=0

 

(𝑖𝑖) ) If the equation of (6) is applied ℍ𝑄 matrix, we obtain 

𝛽𝑖 = [𝑡𝑖]

−ln (1 − 𝑡)
𝑡(1 − 𝑡)𝛼(1 − 𝑞𝑡)

1 + 𝑡
 

                                     = [𝑡𝑖] ∑ ℋ𝑛+1
(𝛼)

𝑡𝑛 ∑ (∑(−1)𝑘𝑞𝑛−𝑘

𝑛

𝑘=0

) 𝑡𝑛

∞

𝑛=0

∞

𝑘=0

 

                                   = [𝑡𝑖] ∑ (∑ ℋ𝑘+1
(𝛼)

∑(−1)𝑙𝑞𝑛−𝑘−𝑙

𝑛−𝑘

𝑙=0

𝑛

𝑘=0

) 𝑡𝑛

∞

𝑘=0

 

        = ∑ ℋ𝑘+1
(𝛼)

∑(−1)𝑙𝑞𝑖−𝑘−𝑙

𝑖−𝑘

𝑙=0

𝑖

𝑘=0
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