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What Can We Learn About the Grammar of 
Traditional Georgian Vocal Music from 
Computational Score Analysis? 
 

ABSTRACT 
This paper describes the current status of a long-term project aimed at 
understanding the chordal syntax of traditional Georgian vocal music by 
analyzing sheet music in Western 5-line staff notation. As an important 
milestone, we present a generative grammar model based on the self-
learning Kohonen model (Kohonen, 1989) in a prefix tree (Antonov, 
2018; 2023) framework. This represents a significant improvement 
over the classical Markov model, as it allows for the influence of different 
context lengths for each chord in a chord sequence. We used this model 
to generate a large number of chord sequences, all conforming to the 
same grammatical production rules as our corpus. These were then used 
as training data for an artificial neural network to test whether, as in 
large language models (LLMs), ‘linguistic relationships’ could be 
identified by visually analyzing the embedding space of the network. 
The results for chord-to-chord relationships are inconclusive, as the 
spatial structure of the embedding map for individual chords cannot be 
interpreted unambigously. The embedding map for whole songs, 
however, shows a pronounced spatial clustering which reflects the 
different classes of our corpus. This suggests that the structure of the 
embedding map reflects the similarities and dissimilarities of the 
chordal syntax of the individual songs, which the network has learned 
in an unsupervised way. 
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Introduction 

The country of Georgia, located at the crossroads of Europe and Asia, has an incredibly 

rich heritage of musical traditions that have been passed down for centuries through oral 

tradition. In this context, regular communal singing, which is still actively practiced, at 

least in part, in some rural areas of the country, has proven to be a crucial mechanism. It 

has preserved the transmission of knowledge between generations and helped maintain 

the vitality of this music. While — through many years of practice and continuous 

exposure — this mechanism has led to the development of an intuitive understanding of 

the music’s grammar (tonal organisation, musical syntax, and other important elements), 

this knowledge, as long as it is not formalized, represents a cultural heritage that remains 

immaterial in the truest sense of the word. However, what does exist in material form are 

numerous transcriptions of performances in the form of musical scores in Western 5-line 

staff notation. 

The focus of our collaboration, which began in 2014, is the question of how knowledge 

about the chordal syntax of traditional Georgian vocal music can be gained — at least in 

part — from such transcriptions, with the help of tools from computational 

ethnomusicology, computational linguistics, machine learning, and artificial intelligence 

(AI) research. 

Our work, which can be seen as a follow-up study to the papers by Arom and Vallejo 

(2008; 2010), raised a large number of questions along the way, for which there was no 

clear answer in terms of an existing "best practice". For example: 

How should one compare songs notated in different keys? Should all songs be transposed 

to the same key prior to analysis, or not? Should one work with a) absolute pitches, b) 

relative pitches, or c) scale degrees relative to a chosen reference note? In the case of c), 

what reference note should be chosen? Should scores be reduced to their presumed 

harmonic pillars prior to analysis, or not? If so, would that not bias the results by adding 

too much subjectivity? If not, how could one manage the enormous amount of 

information? Should one work with the original scores in Western notation at all, or 

should they be transformed into a more unbiased representation? 

At times, ad hoc choices needed to be made, some of which led to conceptual dead ends, 
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requiring a time-consuming rethinking of the entire processing chain. Based on the 

results of acoustical studies on the tonal organization of traditional Georgian music 

(Scherbaum, et al., 2020; Scherbaum et al., 2022; Tsereteli and Veshapidze, 2014; 2015), 

we realized that analyzing traditional Georgian music in terms of Western church modes, 

as attempted by Arom and Vallejo (2008), could result in artifacts that were distorted by 

the transcription process and needed to be abandoned. In order to at least partially 

correct the available scores (which are all notated in 12-TET tuning in different keys) for 

the distortions caused by the transcription process, we finally adopted the procedure of 

Scherbaum et al. ( 2024). It is based on first transforming the original pitches into scale 

degree indices (SDI) with respect to the notated key, which can then subsequently be 

transformed into any heptatonic tuning system. In this context, the SDI notation 

represents the pitches in a manner that remains independent of the details of the actual 

tuning system, as long it is heptatonic.  For more details see Scherbaum et al. (2024). 

Despite these challenges – and even during the pandemic when we could only 

communicate remotely – we managed to continue our collaboration and make progress. 

For example, a comparative study of a small collection of Georgian and Medieval 

polyphonic songs (Arom et al., 2018) taught us that it is mainly the chordal syntax and 

not the chord inventory that structurally distinguishes the two collections. This gave 

some direction to our research. By the time the Covid restrictions ended, and we could 

finally meet in person again, we had significantly expanded our digital corpus to more 

than 450 songs. This turned out to be a large enough cohort to demonstrate that different 

regional and stylistic subsets in the corpus could be computationally distinguished 

through differences in their chord-progression patterns (Scherbaum et al., 2024). 

Since the public release of ChatGPT in November 2022, it has become clear that new 

developments in the field of natural language processing have much to offer for the 

questions we seek to answer within our collaboration. As a result, we have started to 

explore how to utilize these developments in our analysis. 

In the following sections, we will discuss what we believe can be learned about the 

grammar, in particular the chordal syntax, of Georgian traditional vocal music by 

analyzing musical scores using a variety of tools and approaches available today. Rather 

than simply presenting the results for our current corpus, the details of which will evolve 
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as the corpus grows, we aim to focus on the discussion of the main concepts underlying 

our perspective. 

Overall, we view this work as a feasibility study with the long-term goal of developing 

building blocks for an optimal workflow to decode and better understand the rules 

underlying the chordal syntax of traditional Georgian vocal music. 

Methodological Considerations 

Understanding the grammar of a language or musical system requires knowledge of its 

intrinsic structural patterns. Only when we know these can we form intelligible and 

grammatically correct sentences. For the following considerations, we define — 

following linguistic practice — the search for the grammar of Georgian traditional music 

as the search for the set of rules that describe the construction and structure of this music. 

In the context of our project, in which the focus is on chordal syntax, we have explored 

several perspectives for representing songs, each of which has different advantages and 

disadvantages. 

Songs as sequences of images 

It is well known that humans are generally very skilled at recognizing visual structures. 

Sometimes, this ability is so powerful that it leads to the phenomenon of pareidolia1—the 

erroneous assignment of familiar patterns, such as faces, to diffuse perceived structures, 

like clouds. To apply this sensitivity to visual pattern recognition to our task, one of the 

approaches we pursued was converting musical chords into images, which were then 

analyzed visually. The challenge in this context was finding forms of visualization that did 

not significantly reduce the information content of a score while remaining easily 

perceivable in their entirety. Not all of these representations were convincing in terms of 

their applicability to collections of songs, but most proved to be quite useful for the 

structural analysis of individual scores. Moreover, many of these visualizations were 

aesthetically fascinating in their own right, including Harmonygrams (Scherbaum, 2024; 

Scherbaum et al., 2024; Scherbaum and Mzhavanadze, 2024). 

As an example, Fig. 1 shows a Harmonygram for the chant Dghres Saghvtoman Madlman, 

in which the individual phrases are arranged vertically. The melodies of the three voices 

 
1 https://en.wikipedia.org/wiki/Pareidolia 
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are displayed in Global Notation (Killick, 2021), while the colored interval columns 

indicate —from top to bottom— the harmonic intervals between the top and middle 

voices, the middle and bass voices, and the bass and top voices, respectively. Each chord 

is associated with a unique colored pattern. The colored rounded rectangles mark 

segments of the chant that are identical (marked by identical colors) or similar (marked 

by similar colors, e.g., green) to help identify related chord progression sequences. 
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Figure 1. Harmonygram of the chant Dghres Saghvtoman Madlman. For detailed explanation see 

text and (Scherbaum, 2024; Scherbaum et al., 2024; Scherbaum and Mzhavanadze, 2024). 

The only graphical approach for structural analysis that holds essentially the same power 

for analyzing individual songs as it does for an entire corpus is the representation of 

6



 

 

songs as directed graphs (or ‘song paths’ on a ‘chordscape’)2 (Scherbaum et al., 2016a; 

2016b). Graphs effectively visualize the temporal structure of chord progression 

sequences, while simultaneously allowing for mathematical analysis. In other words, they 

can be used as mathematical objects that can be manipulated algorithmically. For 

example, one can calculate distances between graphs, which, in turn, allows for the 

quantitative exploration of neighborhood relations and similarities between the 

underlying sequences. Analyzing songs as directed graphs allowed us to demonstrate that 

the differences between medieval and Georgian songs are primarily differences in the 

syntax of chord progressions rather than in the chord distributions themselves (Arom et 

al., 2018). 

One of the open problems with the ‘graph approach’ is that a musically meaningful 

solution to the graph layout problem has yet to be found. This is the main reason we have 

not yet applied it to the analysis of our entire corpus. 

Songs as sequences of string tokens 

For the analysis of our entire corpus and its subsets, we exploited the fact that a song can 

also be written as a sequence of so-called string tokens, which, for our purposes, can be 

treated like words in a natural language. For example, a chord represented by the notes 

C4, E4, and G4 (in scientific pitch notation3) and a duration of 2.5 quarter notes could be 

expressed as the string token ‘C4_E4_G4_(2.5)’ and then converted back to its original 

representation without losing any information. As a result, a whole song, expressed as a 

sequence of string tokens, can be computationally processed like a sentence in an 

unknown language. Just as text fragments contain information about the grammar of the 

language in which they were written, we assume that musical scores contain information 

about the grammar of the music encoded within them, and that this information can be 

extracted in a similar way. 

For subsequent analysis, all the scores were transformed into sequences of string tokens 

so that they could be modeled using the same tools that are used for natural language 

processing —such as those used to produce so-called language models. Language models 

 
2https://www.uni-potsdam.de/de/soundscapelab/computational-ethnomusicology/scores-chordscapes-
and-song-paths 
3 An alternative which is better suited for algorithmic processing is the representation of the note pitches 
in scale degree index (SDI) notation described in detail in (Scherbaum et al., 2024). 
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are generative probabilistic models that predict the next word in a sentence based on the 

preceding words. What is currently referred to as large language models (LLMs) are 

special types of artificial neural networks (ANNs), trained on vast amounts of text, such 

as books, articles, and websites. One remarkable feature of these models is their apparent 

deep understanding of how language works, including grammar, vocabulary, and various 

topics. With massive training data (for instance, OpenAI's GPT-3 model was trained on 

hundreds of gigabytes of text), these LLMs can generate human-like responses that seem 

coherent and contextually appropriate. 

One of the questions we pursued in our work was to what degree we could benefit from 

these modern developments, despite the fact that our datasets are tiny in comparison to 

the vast amounts of data typically used to train LLMs, making direct training of an LLM 

from our data unfeasible. However, other types of statistical models, such as n-gram 

models or the Kohonen model (Kohonen, 1989), though lacking some of the power of 

LLMs, turned out to offer significant advantages while being far less demanding in terms 

of data size. 

For this study, these models were implemented using a special data structure called 

prefix trees, or tries (Antonov, 2018; 2023). The trie representation is known to be 

extremely efficient for tasks like automatic word completion during text input in word 

processing programs. In our case, when combined with the Kohonen model, it proved 

useful for two different purposes: first, as part of a generative model for producing 

synthetically generated, grammatically correct new songs; and second, for the analysis 

and visualization of the rule set of the detected Kohonen grammar, as will be described 

below. 

From Markov to Kohonen 

Kohonen’s self-learning musical grammar model (Kohonen, 1989) can be seen as an 

extension of Markov chain models, also known as n-gram models (Scherbaum et al., 2024; 

Scherbaum et al., 2015). Markov models operate on the so-called ‘Markov assumption,’ 

which states that the probability of a future state in a sequence (e.g., a chord in a song) 

depends on the current state and —depending on the order of the Markov process— a 

few predecessor states. In other words, in the context of language modeling, n-gram 

models predict the next word based on the current word and the n-1 prior words. The 

8



 

 

probability of a particular transition can be derived from a set of example data by a simple 

bookkeeping exercise on their n-gram set. Kohonen’s self-learning grammar model 

(Kohonen, 1989), on the other hand, goes beyond plain Markov models by dynamically 

expanding its rule-set context based on the input it receives, allowing it to capture some 

long-range dependencies individually (based on what Kohonen called ‘logical conflicts’ in 

the production rules (Kohonen, 1989)). 

To explain the principles, let’s assume we have a sequence of ‘states’—for now 

represented by different letters—that have been produced according to rules unknown 

to us. From the Markov model perspective, one assumes that the occurrence of a 

particular state at position k in the sequence depends on a) the particular state and b) 

possibly what has happened prior to position k. 

In the unigram (1-gram) model, it is assumed that it does not matter at all what has 

happened prior to position k and that the probability of occurrence of a particular ‘state’ 

– let’s say state X – depends only on the overall ‘probability’ of state X occurring. 

Prob(seq[[k]] equals X) = Prob(X). 

In the bigram (2-gram) model, it is assumed that the probability of occurrence of a 

particular state at position k in the sequence depends on the previous state of the 

sequence seq[[k-1]] at position k-1, and the transition probability from the previous state 

of the sequence to X. One can also say that in the bigram model, one considers a context 

of length 1 for the state of interest. 

The trigram (3-gram) model follows the same construction principle, except that the 

context length is extended to 2. Finally, in the general case of an n-gram model, one 

considers a context length of n-1. In other words, one assumes that each state in a 

sequence has been influenced by n-1 previous states. The length of the considered 

context, namely the value of n-1, is also referred to as the order of the Markov process. 

All the constituents of the n-gram models can be calculated by simple bookkeeping 

exercises from ‘training data,’ which represent a particular set of sequences, e.g., words, 

notes, or chord sequences. Despite its simplicity, n-gram models have been quite 

successful in music analysis, such as for the classification of musical scores (Scherbaum 

et al., 2024). 
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However, n-gram models are missing something very important, particularly for the 

analysis of music, by making the assumption that the length of the relevant prior context 

is fixed. This is rather unrealistic. Some chords in a musical chord sequence may 

reasonably be modeled as being influenced only by the previous chord, while others may 

have been influenced by two, three, or more prior chords. Therefore, it is much more 

realistic to assume that the length of the relevant prior context of a particular state will 

depend on the state itself. 

This is where the Kohonen model performs much better, because it does not assume a 

fixed-length context. Instead, within the Kohonen framework, it is assumed that the 

number of predecessor states on which the ‘next state’ depends —referred to as the 

‘relevant context’ of the current state— may vary. Similar to the n-gram model, all the 

necessary ingredients of the Kohonen model can be determined (learned) from training 

data. The lengths of the relevant contexts for a particular training data set are determined 

dynamically based on logical conflicts that occur in the training examples (Kohonen, 

1989). 

To see what this means in practice, let’s look at the example sequence of states from 

Kohonen’s paper, which is shown in Fig. 2a. 

 

Figure 2. The determination of the production rules for a sequence of states in the Kohonen 

model. 

Fig. 2b) shows the list of all the bigrams in this sequence, sorted according to their first 

element. One can immediately see that there is a logical conflict in the transition from the 

letter F because F goes to G once, to H once, and to J once. All the other letters are always 

10



 

 

followed by the same next letter. The transition from E to F appears twice, which is not a 

logical problem; on the contrary, it could suggest this being a strong rule. 

Therefore, F is what Kohonen would refer to as a ‘conflict’ case. To resolve this, Kohonen 

dynamically extends the contexts for all instances of the letter F by one. The result is 

shown in Fig. 2c). You can see that one of the conflicts is resolved this way: If F is preceded 

by the letter K, the next state is H, and the conflict is resolved! However, this does not help 

when F is preceded by the letter E. In this case, the next state in the token sequence is G 

once and J once. Thus, in this case, the context still needs to be extended one more step 

further. The result is shown in Fig. 2d). 

Now, all conflicts are resolved. If F is preceded by an E which is preceded by a D, the next 

letter is G, while if F is preceded by an E, which is preceded by an L, the next letter is J. 

As a result, instead of representing a sequence of tokens by a sequence of sub-sequences 

of fixed lengths (i.e., a sequence of n-grams), Kohonen’s approach leads to the 

representation of the input sequence by a sequence of sub-sequences of variable lengths, 

representing unique ‘production rules’. These rules, which for this example are shown in 

the top panel of Fig. 2e), can also be seen as deterministic production rules or ‘always’ 

rules, because their contexts will always lead to the same ‘next state’. 

However, the contexts that still contain conflicts are also important structural elements! 

They represent what one could call ‘sometimes’ rules, or aleatory rules, and are shown 

for our example in the bottom panel of Fig. 2e). These rules indicate that a particular sub-

sequence is sometimes followed by, for example, state X, and sometimes by state Y. If we 

count the number of times each of the ‘sometimes’ states occurs, we have all the 

information needed about the statistics of these aleatory rules. 

In conclusion, the Kohonen model allows for the determination of a set of (deterministic 

and aleatory) production rules for a sequence of states. These rules can be encoded in a 

simple table, which is referred to as Kohonen’s ‘memory,’ as shown in Fig. 3a). 
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Figure 3. From the Kohonen memory table to the k-gram list. 

Each line in the Kohonen memory table corresponds to a transition that is realized in the 

training data. The right column in Fig. 3a), labeled the ‘conflict bit,’ indicates whether the 

transition is part of an aleatory rule (conflict bit is ON) or a deterministic rule (conflict bit 

is OFF). 

With the information now available, it is a simple bookkeeping exercise to calculate the 

list of all states and contexts occurring in the training data. If this is done in such a way 

that the elements of this list occur in the same proportion as in the training sequence, one 

obtains what we refer to as the k-gram list shown in Fig. 3b). In this context, the ‘k’ stands 

for Kohonen. The k-gram list can be seen as the repository for the ‘building blocks of the 

syntax’ that represent the rules of the learned grammar. At first glance, it looks like a 

mixture of 1-grams, 2-grams, 3-grams, and 4-grams. In Markov chain terms, the complete 

set of 1-grams generated from a sequence of tokens tells us how often a particular token 

is present in it, while the set of 2-grams represents the frequency-of-occurrence 

distribution of transitions from one token to another, and so forth. The k-gram list, 

however, combines subsets of n-grams of different orders. The selection occurs based on 

logical conflicts—in other words, situations where the transition from a particular state 

to the next is not uniquely defined unless the number of predecessor states included in 

the context is increased. The maximum length of a k-gram is determined by how many 

prior states the algorithm has to consider until the ‘Kohonen memory’ (see above), which 

is built up during the learning phase, no longer changes. 
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Comparing the k-gram list to the bigram list shown in Fig. 3c), one can immediately see 

how Kohonen’s model extends the Markov chain model, leading to a much richer 

representation of the syntax of the training data. 

Prefix trees 

Applied to a corpus of songs, the Kohonen grammar model contains everything —

assuming that only the immediate prior context is relevant— that can be determined 

from a corpus of scores about the syntactic structure of the music it represents. However, 

the way it is represented in the computer, either as a Kohonen memory table or as a k-

gram list, results in a large table that requires additional tools for analysis and 

visualization. The solution to this challenge is a data structure called a prefix tree, or 

simply a trie (Antonov, 2018; 2023). 

To illustrate the principle of constructing the prefix tree for our example, the various 

contexts in the k-gram list are first grouped according to their first elements and sorted 

vertically from bottom to top: A, B, etc., as shown in Fig. 4a). 

 

Figure 4 a) Sorted k-gram list, b) prefix tree for frequencies of occurrence, and c) for 

probabilities, respectively, are shown for the running example. 

Fig. 4b) shows the corresponding prefix tree. The root node (labeled $Trieroot) 
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represents the head of the tree. The children of this node represent all unique starting 

letters of all determined context lists. The information in the i-th row of the sorted k-gram 

list is mapped to the i-th branch of the prefix tree. The numerical values associated with 

each node simply indicate the number of occurrences of each element in a subsequence. 

The information given for each node is easily extracted from the values in the curly 

brackets. For example, the sub-sequence in the topmost branch, which starts with L, 

contains 4 Ls, 3 Es, 2 Fs, and one J. 

By dividing the number of occurrences of a particular node in each of the sub-sequences 

in Fig. 4b) by the number of occurrences of the node above it, we obtain the conditional 

probability of reaching that particular node from the node above. The corresponding 

prefix tree is shown in Fig. 4c). As a result, for each node, we can now immediately 

calculate which letter could follow and with what probability. A common application of 

prefix trees is for the completion of word sequences typed into a mobile phone or word 

processing program, where the prefix tree has been trained with the complete vocabulary 

of the used language. 

In our context, the prefix-tree structure has proven to be extremely efficient in two ways. 

First, as an engine of a generative model to produce synthetic, grammatically correct new 

scores (simply by randomly selecting root-to-leaf paths), and second, for the analysis and 

visualization of the rule set of the detected grammar, as illustrated in Fig. 5. 

 

Figure 5. Exploring the rule set of the determined grammar according to different criteria. 

It is now fairly easy to explore the tree structure according to certain criteria. For 

example, we can isolate the aleatory part, shown in Fig. 5a) ; the deterministic part 

occurring just once, shown in Fig. 5b) ; or the deterministic part occurring multiple times, 

as shown in Fig. 5c). Additionally, we can display the next state based on the predecessor 
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sequences, as shown in Fig. 5d). 

Application: the Erkomaishvili dataset  

In the following, we will discuss the application of the Kohonen model to a set of roughly 

100 liturgical chants from the Shemokmedi Monastery in Western Georgia (Shugliashvili, 

2014). This corpus is based on audio recordings of the master chanter Artem 

Erkomaishvili from 1966. For several reasons, this is currently our preferred study object 

for score-based corpus analysis. First, the transcriptions by David Shugliashvili are 

publicly available in digital form (Rosenzweig et al., 2020; Shugliashvili, 2014). Second, 

we have already used this dataset in several prior studies (Rosenzweig et al., 2020; 

Scherbaum et al., 2020; Scherbaum et al., , 2021; 2023) and are therefore familiar with 

some of its characteristics. Finally, the transcriptions by David Shugliashvili mark the 

individual phrases of each chant, which allows us to also use the full Harmonygram 

perspective (Scherbaum, 2024; Scherbaum et al., 2024; Scherbaum and Mzhavanadze, 

2024) for each of the chants as an additional means of analysis. 

The determination of the Kohonen grammar for this dataset results in a total of nearly 

14,000 production rules. These can easily be stored in a prefix tree, but it is obvious that 

they cannot be analyzed simply by visual inspection. Even restricting ourselves to the 

deterministic rules that occur more than once does not solve this problem, as there are 

still more than 3,000 such rules. This is because, within the Kohonen model framework, 

every single chord in the corpus is modeled as the result of applying a production rule. 

Obviously, not all the rules are equally representative of the underlying grammar. Some 

of them, perhaps even the majority, may simply represent ornamental elements, which 

are only of secondary interest to us at this time. 

Given this challenge, we felt it necessary to develop and explore various strategies for 

further action. For one, we are currently exploring to what degree ornamental elements 

of a chant can be removed from a score with the help of Harmonygram analysis. This is a 

very time-consuming, manual process for which we do not yet have final answers, as we 

have only recently started with this approach (Arom and Scherbaum, 2024). 

Additionally, we have begun to investigate the Kohonen model of the Erkomaishvili 

corpus through what could be termed ‘specific questioning’, which is done in a way that 
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allows the answers to be computed with the help of the prefix tree. The questions we have 

considered specifically with respect to the Erkomaishvili corpus are, for example: What 

are the most often used production rules? What are typical cadences? What are the most 

likely chords to follow a particular chord? This line of inquiry leads directly to the 

problem of using the production rules as a generative model. In the following, we will 

consider these questions one by one. 

What are the most often used production rules? 

Figure 6 shows the “root-to-leaf-path representation” of the 30 most frequently used 

deterministic production rules in the Erkomaishvili corpus. The numerical values in the 

string tokens in Figure 6a are in scale degree index (SDI) notation, as described in 

Scherbaum et al (2024) 

 

Figure 6. “Root-to-leaf-path representation” of the 30 most frequently used deterministic 

production rules in the Erkomaishvili corpus. The corresponding tree nodes are shown as string 

tokens and subscript-superscript chord symbols and in figure a) and b), respectively. 

Although Figure 6 contains complete information about the chord progressions in each 

of the production rules, this form of visualization is difficult to perceive because one must 

read the information for each node sequentially and retain it in memory. Even with 

practice, this remains a “slow” process in the Kahneman sense (Kahneman, 2013). 

Perception becomes slightly faster if the nodes are written in subscript-superscript chord 

notation (Figure 6b), but the fundamental perceptual problem persists. 
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A much faster way to perceive the information in Figure 6, which also facilitates the 

comparison of individual production rules, is to display the nodes in the individual root-

to-leaf paths as Harmonygram icons, underlain by the number of times each chord 

appears in the tree branch under consideration. Additional symbols, which are easy to 

recognize, are used for rests, as well as for song and phrase starts and endings. This 

concept is illustrated in Figure 7.  

 

Figure 7. Representation of the nodes of the root-to-leaf-paths as Harmonygram icons with 

additional information. The icon label explains each icon verbally while the number below the 

icon indicates the number of times a particular chord or symbol appears in the root-to-leaf-path 

considered (here randomly assigned for illustration only). 

As an implementation of this concept, Figure 8 shows the “root-to-leaf-path 

representation” of the 30 most frequently used deterministic production rules in the 

Erkomaishvili corpus using the Harmonygram icon representation.  
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Figure 8. Representation of the nodes of the root-to-leaf-paths of the 30 most often used 

deterministic production rules in the Erkomaishvili corpus in Harmonygram icon 

representation. 

Figure 8 demonstrates that the complete information in Figure 6 can now be visually 

perceived instantly, effectively making it a ‘fast process’ in the Kahneman sense 

(Kahneman, 2013).  It also becomes immediately apparent that relationships between the 

individual production rules exist, and they can be grouped into six different categories 

with similar chord progression characteristics. We refrain from further interpretation at 

this point and move on to the discussion of cadences.  

What are typical cadences? 

Figure 9 shows the most frequently used cadences in the Erkomaishvili corpus.
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Figure 9. Most often used phrase cadences (a) and song cadences (b) in the Erkomaishvili 

corpus in Harmonygram icon representation. 

It is evident that phrases most often end on a fifth, followed by a rest. This contrasts with 

song cadences, which typically end on unison.  

Using the production rules as a generative model 

Finally, one of the most natural applications of the production rules derived from the 

Kohonen model is to use them as generative models to create new songs similar to 

(Sheikholharam and Teshnehlab, 2008). Figure 10 shows six such examples as piano roll 

displays.  
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Figure 10. Piano-roll display of 6 synthetic songs, generated from prefix tree of the production 

rule set of the Erkomaishvili corpus. 

In these examples, one can observe the complexity of the voicings and the development 

of the coda, often characterized by a typical stepwise upward movement in the bass voice, 

which frequently concludes in unison with the middle and top voices. However, 

sometimes the model seems to get stuck temporarily in very repetitive patterns, until it 

finds a way out of it, as seen in the lower-right example.  

Can we benefit from the recent developments in AI research? 

Towards the end of 2022, new developments in computer science, particularly the public 

availability of OpenAI’s ChatGPT model, generated significant excitement within the 

scientific community and beyond. By now, discussions about the possible implications of 

these developments have also reached the field of ethnomusicology (Morales et al., 2024). 

In the following, we will discuss what we currently4 believe could be concrete 

consequences for our work. 

ChatGPT is a specialized artificial neural network (ANN) designed to model language. For 

our purposes, it suffices to understand language models (LMs) simply as probabilistic 

models trained to perform one task: predict the next word in a sentence based on the 

preceding words. In this sense, the prefix tree representation of the Kohonen grammar 

used earlier to generate synthetic songs, as shown in Figure 10, is also a language model, 

albeit a very small one. In contrast, at the core of ChatGPT is a Large Language Model 

 
4 Since this field is developing at an astonishing rate and new tools appear in rapid succession, please note 
that what is considered as the best approach today may be obsolete tomorrow. 
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(LLM), which is trained on vast amounts of data and possesses some initially surprising 

properties. These properties arise because, during their training process, LLMs do not 

only learn the syntax rules of a language, which they use to complete sentences, but also 

acquire ‘semantic concepts’ or ‘meanings’. This phenomenon is related to the concept of 

‘embeddings’, which will be explained below. 

Within a neural network trained on text, each word or token is represented by a long list 

of numbers, known as a feature vector. These vectors can be imagined as ‘points’ in a 

high-dimensional ‘feature space’, also referred to as the ‘embedding space’. The numbers 

initially assigned to a word or token in this space are unique, but their actual values don’t 

have any intrinsic meaning. However, during training, as the network learns to predict 

the next words, the numerical values of these feature vectors change. Once training is 

complete, words that are somehow ‘similar in meaning’ also end up being close to each 

other in this embedding or feature space. As Stephen Wolfram beautifully illustrates in 

his blog5 What is ChatGPT Doing—and Why Does It Work?, which is also available as a 

book (Wolfram, 2023), an embedding can be thought of as a way to represent the 

‘essence’ of something by lists of numbers, with the property that ‘similar things’ are 

represented by lists with similar numbers. 

To visualize these high-dimensional feature vectors, they must be projected into two 

dimensions. In Stephen Wolfram’s blog (mentioned above), one can observe how words 

corresponding to different parts of speech are laid out in an embedding. For example, 

nouns, verbs, adjectives, and adverbs are well separated. 

Driven more by curiosity than by a justified conviction that it would work, we decided to 

explore whether we might also detect some ‘linguistic relations’ through the visual 

inspection of the embedding space of an artificial neural network trained on our data. To 

address the fact that the size of our corpus is far too small to train any artificial neural 

network directly, we used a technique called ‘data augmentation’. For the training data, 

we used the Erkomaishvili dataset and restricted ourselves to the deterministic rule-set 

of the Kohonen grammar model as discussed earlier. We employed a recurrent neural 

network (LSTM network) trained on 80,000 synthetic songs generated from this rule set, 

 
5 https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/ 
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similar to the examples shown in Figure 10.  

Figure 11a shows the chord embedding map for all the chords in the Erkomaishvili corpus 

before the network was trained. Consequently, the spatial distribution is random, 

reflecting how these vectors were initially initialized. After the network was trained —

meaning it had learned to complete chord sequences— the spatial structure was no 

longer random (Figure 11b). However, it was still difficult to assign any specific 

interpretation to it. 

 

Figure 11. Chord embeddings for all chords in the Erkomaishvili dataset, based on the 

deterministic rules occuring more than once in the Kohonen grammar model. 

When all the chords are shown as Harmonygram icons (Figures 11c and 12), the 

embedding map becomes slightly more informative. Figure 12 presents this map in 

higher resolution. 
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Figure 12. Same as Fig. 11 c), but in higher resolution for better visibility. 

In Figure 12, one can observe that the chords in the upper central part of the embedding 

map generally have longer durations and display greater diversity in type compared to 

the majority of the chords in the lower left. Given the still relatively small dataset size (in 

comparison to the massive data volumes used for training Large Language Models or 

LLMs), we should avoid overinterpreting this map. However, it is fair to say that the map 

is clearly structured and less random. For instance, in the lower left, we see many single 

interval chords forming a fifth (represented by sand-colored bars with a horizontal line 

in the middle). In the Erkomaishvili corpus, these chords frequently appear as segment 

cadences (cf. Figure 9a). This could explain their distinct positions in the embedding map 

due to their different functional roles in the song structure. 

We want to emphasize that the remarks above should be seen more as speculations than 

as conclusions. What we feel we can take away from these plots at this point in time is 

that there is some structure in the embedding map that might be meaningful, but we are 

not yet at a stage where we can interpret it in a sound way. This may be due to the limited 

size of the dataset, but it could also suggest that the assumption of ‘linguistic’ 

relationships between individual chords, which could be inferred through visual 

inspection of the embedding space, might not be applicable —at least not for the chords 

we are interested in. 

But what about differences in the syntax of individual songs? Could we detect these in the 
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embedding map of the songs, as opposed to the embedding maps for chords? Our 

complete corpus consists of a total of 452 songs, which can be categorized into different 

classes. Some of these classes are regional, while others are associated with specific 

liturgical schools, such as Shemokmedi and Gelati, two monasteries in western Georgia. 

From a recent classification study, we know that the chord progression sequences in the 

songs differ across these classes (Scherbaum et al., 2024). 

As a final experiment, we trained a Generative Transformer Network—essentially the 

same type of model that powers ChatGPT—using the complete corpus. To address the 

challenge of our corpus’s small size, we again employed ‘data augmentation,’ following a 

similar approach as before. Since we know all the production rules that define our corpus 

according to the Kohonen model, we can generate an unlimited number of additional 

synthetic songs and assume that these correspond to songs that simply have not yet been 

produced. These synthetic songs were then combined with the real ones. 

We skip the technical details, which are irrelevant to the following discussion, and jump 

straight to the resulting embedding map, shown in Figure 13.   

 

Figure 13. Feature map (embedding) for the songs in the complete corpus. Fig. 13 a) shows the 

partitioning into different classes. Fig. 13b) displays the individual feature vectors projected 

into 2 dimensions. The acronyms IME, GEL,GUR, KAK, SVA, SAM, and SHE stand forImereti, 

Gelati, Guria, Kakheti, Svaneti, Smaegrelo, and Shemokmedi, respectively. 

Each point in Figure 13b represents a song, while the different colors correspond to 

different classes or subsets within our corpus. You can see that the different classes are 
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well-separated in this map6. This suggests that in general the temporal chord progression 

structures between these classes are systematically different. In other words, the 

network effectively captures the differences between the individual subsets of the 

corpus. It is worth noting that, in contrast to the n-gram based classification (Scherbaum 

et al., 2024), this differentiation was achieved in a completely unsupervised manner.  

Discussion and conclusions 

The interdisciplinary project presented here has come a long way, overcoming many 

challenges along the way. The ultimate goal, the quantitative description of the chordal 

syntax of traditional Georgian vocal music, still lies ahead of us. However, we believe that 

with the results presented here, we have reached an important intermediate milestone. 

The self-learning Kohonen model represents a significant improvement over the classical 

Markov model, as it allows for the influence of different context lengths for each chord in 

a chord sequence. It provides a complete description of the production rules governing 

chord sequences, assuming that only the immediate context of a chord is relevant for its 

generation. With the representation of the Kohonen model in the form of prefix trees, we 

now have an efficient generative model that allows for the generation of an unlimited 

number of synthetic songs, all adhering to the rules of the dataset used to train the model. 

Technically, the limitation to the immediate context can now be overcome using artificial 

neural networks based on transformers, as employed in models like ChatGPT. However, 

the amount of data necessary for their training far exceeds what is typically available in 

ethnomusicological research. This is certainly true for traditional Georgian vocal music, 

and it is unlikely that this limitation will ever be overcome. Therefore, it is probably fair 

to say that the current model has methodologically achieved what —at least with today’s 

methods— can be extracted from musical notation, which also answers the question 

posed by the title. 

Our project has provided us, in addition to the generation of the Kohonen model, with 

several important insights. As an interdisciplinary team without a common theoretical 

background, we have come to appreciate the great importance of visual analyses, such as 

 
6 Individual songs represented by points whose color does not match that of adjacent points appear to 
deviate from this pattern. The reason for this will have to be investigated in detail, but this will have to be 
done outside the scope of this work. 
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the representation of songs as Harmonygrams and chords as Harmonygram icons, as 

these are intuitively understandable. 

From our perspective, two important tasks remain to be addressed next. First, the 

Kohonen model represents every part of a song as equally important, meaning it does not 

differentiate between ornamental and grammatically essential aspects. As a result, the 

model is somewhat ‘overloaded’ and difficult to interpret. We are still in the early stages 

of addressing this problem (Arom and Scherbaum, 2024). Secondly, all models have so 

far been culturally unvalidated. This means that their results have not yet been tested by 

an audience familiar with Georgian music, and their ethnomusicological relevance 

remains to be evaluated. 
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	Introduction
	The country of Georgia, located at the crossroads of Europe and Asia, has an incredibly rich heritage of musical traditions that have been passed down for centuries through oral tradition. In this context, regular communal singing, which is still acti...
	The focus of our collaboration, which began in 2014, is the question of how knowledge about the chordal syntax of traditional Georgian vocal music can be gained — at least in part — from such transcriptions, with the help of tools from computational e...
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	How should one compare songs notated in different keys? Should all songs be transposed to the same key prior to analysis, or not? Should one work with a) absolute pitches, b) relative pitches, or c) scale degrees relative to a chosen reference note? I...
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	Despite these challenges – and even during the pandemic when we could only communicate remotely – we managed to continue our collaboration and make progress. For example, a comparative study of a small collection of Georgian and Medieval polyphonic so...
	Since the public release of ChatGPT in November 2022, it has become clear that new developments in the field of natural language processing have much to offer for the questions we seek to answer within our collaboration. As a result, we have started t...
	In the following sections, we will discuss what we believe can be learned about the grammar, in particular the chordal syntax, of Georgian traditional vocal music by analyzing musical scores using a variety of tools and approaches available today. Rat...
	Overall, we view this work as a feasibility study with the long-term goal of developing building blocks for an optimal workflow to decode and better understand the rules underlying the chordal syntax of traditional Georgian vocal music.
	Methodological Considerations
	Understanding the grammar of a language or musical system requires knowledge of its intrinsic structural patterns. Only when we know these can we form intelligible and grammatically correct sentences. For the following considerations, we define — foll...
	Songs as sequences of images
	It is well known that humans are generally very skilled at recognizing visual structures. Sometimes, this ability is so powerful that it leads to the phenomenon of pareidolia —the erroneous assignment of familiar patterns, such as faces, to diffuse pe...
	As an example, Fig. 1 shows a Harmonygram for the chant Dghres Saghvtoman Madlman, in which the individual phrases are arranged vertically. The melodies of the three voices are displayed in Global Notation (Killick, 2021), while the colored interval c...
	Figure 1. Harmonygram of the chant Dghres Saghvtoman Madlman. For detailed explanation see text and (Scherbaum, 2024; Scherbaum et al., 2024; Scherbaum and Mzhavanadze, 2024).
	The only graphical approach for structural analysis that holds essentially the same power for analyzing individual songs as it does for an entire corpus is the representation of songs as directed graphs (or ‘song paths’ on a ‘chordscape’)  (Scherbaum ...
	One of the open problems with the ‘graph approach’ is that a musically meaningful solution to the graph layout problem has yet to be found. This is the main reason we have not yet applied it to the analysis of our entire corpus.
	Songs as sequences of string tokens
	For the analysis of our entire corpus and its subsets, we exploited the fact that a song can also be written as a sequence of so-called string tokens, which, for our purposes, can be treated like words in a natural language. For example, a chord repre...
	For subsequent analysis, all the scores were transformed into sequences of string tokens so that they could be modeled using the same tools that are used for natural language processing —such as those used to produce so-called language models. Languag...
	One of the questions we pursued in our work was to what degree we could benefit from these modern developments, despite the fact that our datasets are tiny in comparison to the vast amounts of data typically used to train LLMs, making direct training ...
	For this study, these models were implemented using a special data structure called prefix trees, or tries (Antonov, 2018; 2023). The trie representation is known to be extremely efficient for tasks like automatic word completion during text input in ...
	From Markov to Kohonen
	Kohonen’s self-learning musical grammar model (Kohonen, 1989) can be seen as an extension of Markov chain models, also known as n-gram models (Scherbaum et al., 2024; Scherbaum et al., 2015). Markov models operate on the so-called ‘Markov assumption,’...
	To explain the principles, let’s assume we have a sequence of ‘states’—for now represented by different letters—that have been produced according to rules unknown to us. From the Markov model perspective, one assumes that the occurrence of a particula...
	In the unigram (1-gram) model, it is assumed that it does not matter at all what has happened prior to position k and that the probability of occurrence of a particular ‘state’ – let’s say state X – depends only on the overall ‘probability’ of state X...
	In the bigram (2-gram) model, it is assumed that the probability of occurrence of a particular state at position k in the sequence depends on the previous state of the sequence seq[[k-1]] at position k-1, and the transition probability from the previo...
	The trigram (3-gram) model follows the same construction principle, except that the context length is extended to 2. Finally, in the general case of an n-gram model, one considers a context length of n-1. In other words, one assumes that each state in...
	All the constituents of the n-gram models can be calculated by simple bookkeeping exercises from ‘training data,’ which represent a particular set of sequences, e.g., words, notes, or chord sequences. Despite its simplicity, n-gram models have been qu...
	However, n-gram models are missing something very important, particularly for the analysis of music, by making the assumption that the length of the relevant prior context is fixed. This is rather unrealistic. Some chords in a musical chord sequence m...
	This is where the Kohonen model performs much better, because it does not assume a fixed-length context. Instead, within the Kohonen framework, it is assumed that the number of predecessor states on which the ‘next state’ depends —referred to as the ‘...
	To see what this means in practice, let’s look at the example sequence of states from Kohonen’s paper, which is shown in Fig. 2a.
	Figure 2. The determination of the production rules for a sequence of states in the Kohonen model.
	Fig. 2b) shows the list of all the bigrams in this sequence, sorted according to their first element. One can immediately see that there is a logical conflict in the transition from the letter F because F goes to G once, to H once, and to J once. All ...
	Therefore, F is what Kohonen would refer to as a ‘conflict’ case. To resolve this, Kohonen dynamically extends the contexts for all instances of the letter F by one. The result is shown in Fig. 2c). You can see that one of the conflicts is resolved th...
	Now, all conflicts are resolved. If F is preceded by an E which is preceded by a D, the next letter is G, while if F is preceded by an E, which is preceded by an L, the next letter is J.
	As a result, instead of representing a sequence of tokens by a sequence of sub-sequences of fixed lengths (i.e., a sequence of n-grams), Kohonen’s approach leads to the representation of the input sequence by a sequence of sub-sequences of variable le...
	However, the contexts that still contain conflicts are also important structural elements! They represent what one could call ‘sometimes’ rules, or aleatory rules, and are shown for our example in the bottom panel of Fig. 2e). These rules indicate tha...
	In conclusion, the Kohonen model allows for the determination of a set of (deterministic and aleatory) production rules for a sequence of states. These rules can be encoded in a simple table, which is referred to as Kohonen’s ‘memory,’ as shown in Fig...
	Figure 3. From the Kohonen memory table to the k-gram list.
	Each line in the Kohonen memory table corresponds to a transition that is realized in the training data. The right column in Fig. 3a), labeled the ‘conflict bit,’ indicates whether the transition is part of an aleatory rule (conflict bit is ON) or a d...
	With the information now available, it is a simple bookkeeping exercise to calculate the list of all states and contexts occurring in the training data. If this is done in such a way that the elements of this list occur in the same proportion as in th...
	Comparing the k-gram list to the bigram list shown in Fig. 3c), one can immediately see how Kohonen’s model extends the Markov chain model, leading to a much richer representation of the syntax of the training data.
	Prefix trees
	Applied to a corpus of songs, the Kohonen grammar model contains everything —assuming that only the immediate prior context is relevant— that can be determined from a corpus of scores about the syntactic structure of the music it represents. However, ...
	To illustrate the principle of constructing the prefix tree for our example, the various contexts in the k-gram list are first grouped according to their first elements and sorted vertically from bottom to top: A, B, etc., as shown in Fig. 4a).
	Figure 4 a) Sorted k-gram list, b) prefix tree for frequencies of occurrence, and c) for probabilities, respectively, are shown for the running example.
	Fig. 4b) shows the corresponding prefix tree. The root node (labeled $Trieroot) represents the head of the tree. The children of this node represent all unique starting letters of all determined context lists. The information in the i-th row of the so...
	By dividing the number of occurrences of a particular node in each of the sub-sequences in Fig. 4b) by the number of occurrences of the node above it, we obtain the conditional probability of reaching that particular node from the node above. The corr...
	In our context, the prefix-tree structure has proven to be extremely efficient in two ways. First, as an engine of a generative model to produce synthetic, grammatically correct new scores (simply by randomly selecting root-to-leaf paths), and second,...
	Figure 5. Exploring the rule set of the determined grammar according to different criteria.
	It is now fairly easy to explore the tree structure according to certain criteria. For example, we can isolate the aleatory part, shown in Fig. 5a) ; the deterministic part occurring just once, shown in Fig. 5b) ; or the deterministic part occurring m...
	Application: the Erkomaishvili dataset
	In the following, we will discuss the application of the Kohonen model to a set of roughly 100 liturgical chants from the Shemokmedi Monastery in Western Georgia (Shugliashvili, 2014). This corpus is based on audio recordings of the master chanter Art...
	The determination of the Kohonen grammar for this dataset results in a total of nearly 14,000 production rules. These can easily be stored in a prefix tree, but it is obvious that they cannot be analyzed simply by visual inspection. Even restricting o...
	Given this challenge, we felt it necessary to develop and explore various strategies for further action. For one, we are currently exploring to what degree ornamental elements of a chant can be removed from a score with the help of Harmonygram analysi...
	Additionally, we have begun to investigate the Kohonen model of the Erkomaishvili corpus through what could be termed ‘specific questioning’, which is done in a way that allows the answers to be computed with the help of the prefix tree. The questions...
	What are the most often used production rules?
	Figure 6 shows the “root-to-leaf-path representation” of the 30 most frequently used deterministic production rules in the Erkomaishvili corpus. The numerical values in the string tokens in Figure 6a are in scale degree index (SDI) notation, as descri...
	Figure 6. “Root-to-leaf-path representation” of the 30 most frequently used deterministic production rules in the Erkomaishvili corpus. The corresponding tree nodes are shown as string tokens and subscript-superscript chord symbols and in figure a) an...
	Although Figure 6 contains complete information about the chord progressions in each of the production rules, this form of visualization is difficult to perceive because one must read the information for each node sequentially and retain it in memory....
	A much faster way to perceive the information in Figure 6, which also facilitates the comparison of individual production rules, is to display the nodes in the individual root-to-leaf paths as Harmonygram icons, underlain by the number of times each c...
	Figure 7. Representation of the nodes of the root-to-leaf-paths as Harmonygram icons with additional information. The icon label explains each icon verbally while the number below the icon indicates the number of times a particular chord or symbol app...
	As an implementation of this concept, Figure 8 shows the “root-to-leaf-path representation” of the 30 most frequently used deterministic production rules in the Erkomaishvili corpus using the Harmonygram icon representation.
	Figure 8. Representation of the nodes of the root-to-leaf-paths of the 30 most often used deterministic production rules in the Erkomaishvili corpus in Harmonygram icon representation.
	Figure 8 demonstrates that the complete information in Figure 6 can now be visually perceived instantly, effectively making it a ‘fast process’ in the Kahneman sense (Kahneman, 2013).  It also becomes immediately apparent that relationships between th...
	What are typical cadences?
	Figure 9 shows the most frequently used cadences in the Erkomaishvili corpus.
	Figure 9. Most often used phrase cadences (a) and song cadences (b) in the Erkomaishvili corpus in Harmonygram icon representation.
	It is evident that phrases most often end on a fifth, followed by a rest. This contrasts with song cadences, which typically end on unison.
	Using the production rules as a generative model
	Finally, one of the most natural applications of the production rules derived from the Kohonen model is to use them as generative models to create new songs similar to (Sheikholharam and Teshnehlab, 2008). Figure 10 shows six such examples as piano ro...
	Figure 10. Piano-roll display of 6 synthetic songs, generated from prefix tree of the production rule set of the Erkomaishvili corpus.
	In these examples, one can observe the complexity of the voicings and the development of the coda, often characterized by a typical stepwise upward movement in the bass voice, which frequently concludes in unison with the middle and top voices. Howeve...
	Can we benefit from the recent developments in AI research?
	Towards the end of 2022, new developments in computer science, particularly the public availability of OpenAI’s ChatGPT model, generated significant excitement within the scientific community and beyond. By now, discussions about the possible implicat...
	ChatGPT is a specialized artificial neural network (ANN) designed to model language. For our purposes, it suffices to understand language models (LMs) simply as probabilistic models trained to perform one task: predict the next word in a sentence base...
	Within a neural network trained on text, each word or token is represented by a long list of numbers, known as a feature vector. These vectors can be imagined as ‘points’ in a high-dimensional ‘feature space’, also referred to as the ‘embedding space’...
	To visualize these high-dimensional feature vectors, they must be projected into two dimensions. In Stephen Wolfram’s blog (mentioned above), one can observe how words corresponding to different parts of speech are laid out in an embedding. For exampl...
	Driven more by curiosity than by a justified conviction that it would work, we decided to explore whether we might also detect some ‘linguistic relations’ through the visual inspection of the embedding space of an artificial neural network trained on ...
	Figure 11a shows the chord embedding map for all the chords in the Erkomaishvili corpus before the network was trained. Consequently, the spatial distribution is random, reflecting how these vectors were initially initialized. After the network was tr...
	Figure 11. Chord embeddings for all chords in the Erkomaishvili dataset, based on the deterministic rules occuring more than once in the Kohonen grammar model.
	When all the chords are shown as Harmonygram icons (Figures 11c and 12), the embedding map becomes slightly more informative. Figure 12 presents this map in higher resolution.
	Figure 12. Same as Fig. 11 c), but in higher resolution for better visibility.
	In Figure 12, one can observe that the chords in the upper central part of the embedding map generally have longer durations and display greater diversity in type compared to the majority of the chords in the lower left. Given the still relatively sma...
	We want to emphasize that the remarks above should be seen more as speculations than as conclusions. What we feel we can take away from these plots at this point in time is that there is some structure in the embedding map that might be meaningful, bu...
	But what about differences in the syntax of individual songs? Could we detect these in the embedding map of the songs, as opposed to the embedding maps for chords? Our complete corpus consists of a total of 452 songs, which can be categorized into dif...
	As a final experiment, we trained a Generative Transformer Network—essentially the same type of model that powers ChatGPT—using the complete corpus. To address the challenge of our corpus’s small size, we again employed ‘data augmentation,’ following ...
	We skip the technical details, which are irrelevant to the following discussion, and jump straight to the resulting embedding map, shown in Figure 13.
	Figure 13. Feature map (embedding) for the songs in the complete corpus. Fig. 13 a) shows the partitioning into different classes. Fig. 13b) displays the individual feature vectors projected into 2 dimensions. The acronyms IME, GEL,GUR, KAK, SVA, SAM,...
	Each point in Figure 13b represents a song, while the different colors correspond to different classes or subsets within our corpus. You can see that the different classes are well-separated in this map . This suggests that in general the temporal cho...
	Discussion and conclusions
	The interdisciplinary project presented here has come a long way, overcoming many challenges along the way. The ultimate goal, the quantitative description of the chordal syntax of traditional Georgian vocal music, still lies ahead of us. However, we ...
	Technically, the limitation to the immediate context can now be overcome using artificial neural networks based on transformers, as employed in models like ChatGPT. However, the amount of data necessary for their training far exceeds what is typically...
	Our project has provided us, in addition to the generation of the Kohonen model, with several important insights. As an interdisciplinary team without a common theoretical background, we have come to appreciate the great importance of visual analyses,...
	From our perspective, two important tasks remain to be addressed next. First, the Kohonen model represents every part of a song as equally important, meaning it does not differentiate between ornamental and grammatically essential aspects. As a result...
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