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Abstract   Öz 

Helicopter imaging classification and detection are crucial 

for autonomous navigation, military operations, search and 

rescue, and civil aviation management. This study utilized 

two helicopter image datasets, applying data augmentation 

techniques such as random resizing, cutting, horizontal 

rotation, rotation, and color adjustments, along with 

histogram equalization for contrast enhancement. Twenty-

four helicopter classes were trained using GoogleNet and 

AlexNet architectures, while the YOLOv9c model was 

employed for object detection. The results revealed that the 

GoogleNet classification model achieved an 81% F1 score, 

and AlexNet reached 73%. In contrast, the YOLOv9c 

model demonstrated an average mean Average Precision 

(mAP) of 87%. These findings indicate that CNN 

architectures and YOLO are effective for helicopter image 

classification and detection, highlighting their potential 

applications in military, search and rescue, and civil 

aviation contexts.  

 Helikopter görüntülerinin sınıflandırılması ve tespiti, 

otonom navigasyon sistemlerinin, askeri operasyonların, 

arama kurtarma görevlerinin ve sivil havacılık yönetiminin 

önemli bileşenlerindendir. Bu çalışmada helikopter 

görüntüleri için iki farklı veri seti kullanılmıştır. 

Sınıflandırma için rastgele yeniden boyutlandırma, kesme, 

yatay döndürme, döndürme ve renk değişiklikleri gibi veri 

artırma teknikleri uygulanmıştır. Görüntülerin kontrastı da 

histogram eşitleme yöntemi kullanılarak yeniden 

düzenlenmiştir. 24 sınıf helikopter veri seti GoogleNet ve 

AlexNet mimarileri kullanılarak eğitilmiştir. Nesne tespiti 

için YOLOv9c mimarisi kullanılmıştır. Deneysel sonuçlar, 

GoogleNet tabanlı sınıflandırma modelinin test setinde 

%81 F-1 skoru elde ettiğini ve AlexNet modelinde genel F1 

skorunun %73 olduğunu göstermektedir. YOLOv9c modeli 

ise ortalama %87 mAP oranları elde etmiştir. Bu sonuçlar, 

bir tür derin öğrenme modeli olan CNN mimarilerinin ve 

YOLO nesne tespitinin helikopter görüntüsü sınıflandırma 

ve tespitinde iyi olduğunu gösteriyor. Çalışma, helikopter 

ve bileşenlerini tespit etme ve sınıflandırmada iyi 

performans gösteren modellerin askeri, arama kurtarma ve 

sivil havacılık dahil olmak üzere çeşitli alanlarda 

kullanılabileceğini göstermiştir.  
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1 Introduction 

Rescue missions, autonomous navigation systems, civil 

aviation management, aircraft identification, and 

classification and detection of helicopter images are crucial. 

Flying activities, particularly military, rescue, and 

surveillance missions, are greatly enhanced by implementing 

robust classification systems, which also increase safety. 

Helicopters bring some challenges for image classification 

due to their different designs, structural differences, and 

various operational environments and conditions. Varying 

observation angles and other lighting conditions and 

background clutter increase these challenges. Advanced 

image classification algorithms have try to solve these 

challenges. 

Significant advances in image classification [1,2] and 

prediction [3,4] have occurred in recent years. Developing 

Convolutional Neural Networks (CNNs) and refining 

transfer learning techniques are leading these advances. 

CNNs is a suitable architecture for image classification. This 

is because it automatically learns hierarchical features from 
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raw pixel data. Due to this feature, CNNs are highly ideal for 

the helicopter classification task. 

Finding and recognizing helicopters during military 

operations relies heavily on object detection. The You Only 

Look Once (YOLO) architecture has taken the lead in object 

recognition due to its accuracy and speed  [5]. Thanks to its 

integrated design, which computes bounding boxes and class 

probabilities from full images in a single evaluation, it is 

well-suited for helicopter and structure recognition. By 

integrating YOLO object detection with CNN classification, 

we can detect helicopter components and identify different 

types of helicopters. This research provides a deep-learning 

strategy for component recognition and classification in 

helicopter images. 

We created two separate datasets for object recognition 

and classification using images of helicopters. To minimize 

the chance of overfitting, we used several data augmentation 

methods to the dataset of helicopter images we created for 

the classification assignment. These augmentations include 

rotation, color changes, random resizing cropping, and 

horizontal flipping. These operations enlarge the training 

dataset and enhance the model's capacity for generalization. 

The enlarged dataset is split 70-20-10% into training, 

validation, and test sets, respectively, to thoroughly assess 

the model's functionality. In addition, we tailored a smaller 

dataset to the object detection job. We did not use data 

augmentation for this work. 

The foundation of the classification model is GoogleNet 

[6], which has emerged as a frontrunner due to its efficiency 

and excellent performance in picture recognition tasks. The 

pre-trained GoogleNet model was fine-tuned and trained on 

the 24-class helicopter dataset we developed using transfer 

learning. In addition, the YOLO architecture was used for 

the object detection task by fine-tuning on the other 

developed dataset. 

As an classifier, GoogleNet was our top pick. Everything 

from batch size and epoch number to learning rate and 

patience time to early stopping is detailed. Step, weight 

decay, and learning rate were tweaked with the help of the 

LR planner. In order to train the model, we used weight 

decay in conjunction with the Adam optimization technique. 

The 24-class classification matrix, which includes metrics 

for recall, accuracy, and F1-score for each helicopter class, 

is employed to evaluate the classification model's efficacy. 

The classification results obtained serve as evidence of the 

model's ability to distinguish between helicopter models. 

The model's 81% overall accuracy on the test set is a 

dependable indicator of its performance, as demonstrated by 

mathematical analysis. 

The second model that was implemented was AlexNet 

[7]. Researchers and programmers have implemented them 

extensively since their introduction in 2012. This eight-layer 

model served as the initial illustration of the capacity of deep 

neural networks to identify images. Subsequent iterations 

have been significantly influenced by its architectural 

principles, which have since become industry standards. 

Many of the methods used in this approach, such data 

augmentation and dropout, are now standard procedures in 

neural network training. There are 21,680,216 parameters in 

total for AlexNet based on our data. Adam optimizer is used 

as Alexnet's optimizer.  Also Adam was selected since it 

accounts for both momentum and Root Mean Square 

Propagation (RMSprop) . The learning rate variable was 

chosen as 0.0001. Although choosing a lower value slightly 

improves the performance, it significantly increases the 

running time, so this ratio is ideally preferred. Like the 

previous algorithm, the model runs on a 24-class dataset. 

Both models have a runtime of 50 epochs. 

For object recognition, the YOLOv9c [8]  model was 

used. The model was not altered in any way. Successful 

findings were achieved when YOLOv9c's fine-tuning 

performance was assessed on a test set of helicopter images. 

The fine-tuned model demonstrated adequate accuracy in 

identifying different aircraft parts. For each class, mean 

accuracy (mAP), recall, and overall accuracy scores were 

noted, and assessments were based on these data. 

Specifically, the model scored 96.60% accuracy, 97.70% 

recall, and 98.30% mAP for the "helicopter" class, which 

refers to the location detection of the helicopter. The model 

also demonstrated robust performance metrics for the 

landing bar, cockpit, tail, and propeller, among other 

components. The model's exceptional resilience in these 

numerous component identification tasks distinguishes it. 

The proposed research represents the whole methodology 

that considerably enhances the helicopter image 

classification. In particular, we make use of a convolution 

neural network referred to as CNN, which has gained wide 

reputation for image processing. Using transfer learning, we 

can plug into those models that have already learned 

essential features from huge sets of data and raise the 

accuracy and efficiency of our work in classification. We 

have also tried different methods in order to enhance our 

dataset. Data augmentation is a used for creating modified 

versions of already existing images by means of rotation, 

scaling, and flipping. This increases diversity within the 

training data, hence helping to avoid overfitting and 

improving the capability of the model for better 

generalization on test images. Also, our research does not 

stop at mere categorization. We furthered the key job of 

object detection using the YOLOv9c model with the help of 

our dataset. YOLO is utilized for object detection in real 

time. This can detect lots of items in one image very fast and 

precisely. By fine-tuning the YOLOv9c model on our 

dataset, this makes the model much more cognizant and 

observant of those objects important in the research. 

Following the introduction, the paper is organized as 

follows: Section 2 reviews previous work on the topic. 

Section 3 provides a detailed account of the data collection 

process, including the sources of the data, the criteria for data 

selection, and any preprocessing steps. Section 4 describes 

the methodologies used. Section 5 presents the model 

architectures used in the study and Section 6 describes the 

data training process. Section 7 contains the model 

evaluation results. Finally, Section 8 summarizes the 

conclusions of the study and discusses potential future 

research directions 
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2 Related works 

The first paper we are going to review is a paper written 

in 2020. This paper introduces remote sensing imagery in 

relation to a machine recognition application for aircraft type 

recognition, a new benchmark dataset called MTARSI. The 

dataset contains more than 9,000 images of 20 aircraft types 

with various characteristics such as complex backgrounds 

with different spatial resolutions, various poses, positions, 

illuminations and time periods. The authors argue that 

existing datasets used for aircraft detection are not suitable 

for remote sensing imagery and that previous studies have 

been applied with different datasets and settings, making it 

difficult to make comparisons. MTARSI aims to provide 

researchers with a standardized benchmark for developing 

and evaluating aircraft type recognition algorithms. They try 

to classify images with 10 different algorithms. As a result 

of this classification, the best algorithm for their dataset was 

EfficientNet with a success score of 89.79%. Other well-

known and frequently used algorithms Resnet and 

GoogleNet achieved 89.61% and 86.53% respectively [9]. 

In the second paper, authors proposed a novel aircraft 

recognition scheme that utilizes a modular extreme learning 

machine (ELM) classifier. The scheme extracts three types 

of moment invariants (Hu, Zernike and Wavelet) as features 

from aircraft images and uses them as input to three separate 

modular neural networks. Each modular network consists of 

multiple single hidden layer feed-forward networks trained 

on different clustered data subsets using ELM. The final 

classification output is obtained by combining the outputs of 

each modular network according to their weighted sum. The 

scheme is evaluated on six different aircraft models and 

achieves a higher recognition accuracy compared to single 

ELM classifiers and other classification algorithms [10]. 

In this work, they developed SFSA (Scatter Features 

Spatial-Structural Association Network), a new deep 

learning model for aircraft recognition in SAR (synthetic 

aperture radar) images. It combines information from 

electromagnetic scattering features and image space features 

to improve recognition accuracy. It extracts strong scattering 

points (SSPs) from aircraft images and models their spatial 

relationships as a graph. A Graph Convolution Network 

(GCN) is used to extract structural features from this graph, 

and a modified Visual Geometry Group Network (VGGNet) 

is applied to retrieve image space features. Finally, it 

combines these two types of features to provide better 

recognition performance. The effectiveness of the proposed 

method has been validated on a SAR aircraft dataset [11]. 

Wang Y. et al. propose a hybrid attention network model 

(BA-CNN) for aircraft image recognition. This model 

utilizes a two-channel ResNet34 architecture for feature 

extraction and enhances its ability to capture fine details in 

aircraft images. The model integrates a hybrid attention 

mechanism combining channel and spatial attention 

modules. This mechanism enables the model to focus on 

important features in both channel and spatial dimensions, 

strengthening its discrimination capability. The BA-CNN 

model is trained and tested on the Fine-Grained Visual 

Classification of Aircraft (FGVC-Aircraft) dataset for fine-

grained image classification. The results show that the BA-

CNN model achieves 89.2% recognition accuracy, 

outperforming other state-of-the-art methods. The hybrid 

attention mechanism proved effective in improving the 

model's discriminative feature learning and recognition 

accuracy [12]. 

Using CNNs and a generalized Multiple Instance 

Learning (MIL) framework, a novel approach for detailed 

aircraft detection in remote sensing images is proposed in 

another recent study. The main difficulty with 

comprehensive identification is that it is sometimes 

necessary to provide thorough component descriptions in 

order to detect minute variations within subcategories. With 

this approach, an airplane is seen as a bag of samples (head, 

tail, and wing, for example), and the goal is to create a model 

that can identify different kinds of aircraft only by looking at 

these components. Explicit part descriptions are not 

necessary. A pre-trained CNN serves as the feature extractor 

in this technique, along with components for instance 

transformation and MIL pooling. The CNN's patch-level 

features are transformed into instance-level features via the 

instance transformation component, which improves the 

model's capacity to identify distinguishing elements. By 

averaging the sample-level scores, the MIL pooling 

component makes a prediction on the kind of aircraft. In 

comparison to conventional CNN-based techniques and 

conventional MIL networks, experiments conducted on a 

combined aircraft dataset demonstrate that our method 

increases accuracy and lowers computing costs. The 

aircraft's unique areas are efficiently targeted by the 

generalized MIL framework, which suppresses background 

noise and captures diverse properties of different 

subcategories [13].  

For various tasks involving object recognition and 

categorization, the works provided in [14-17] may be 

examined. 

3 Data collection 

As a first step in the data collection procedure, we sought 

reliable sources. In this context, leading websites were 

preferred and helicopter data were collected and processed 

using a range of technological tools and, importantly, 

scientific techniques. The Selenium library was used to 

collect and automate the information on these websites. To 

handle the dynamic structures of the websites and to analyze 

complex website architectures, we developed and used 

customized algorithms in the study. These algorithms 

revealed the visual data of the helicopters. We applied 

extensive error checking procedures and validation 

techniques to ensure the consistency and integrity of the 

visual data. Visual data that did not meet the quality 

requirements were not included in the dataset. As a result of 

these procedures, we obtained comprehensive and accurate 

information about the helicopters. The visual data of the 

helicopter components were labeled using the Roboflow 

platform and the helicopter class data were labeled using file 

hierarchy logic. All of our data was prepared in accordance 

with our algorithms, and we aimed to make it possible to 

achieve high performance. 
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4 Methodology 

For helicopter classification, AlexNet and GoogleNet 

models were preferred. AlexNet provides fast training and 

inference thanks to its simple and efficient architecture and 

builds a solid foundation with its basic feature extraction 

capabilities. GoogleNet, on the other hand, offers more 

advanced feature extraction and high classification accuracy 

thanks to its deep architecture and inception modules. The 

simplicity and depth offered by AlexNet and GoogleNet 

provide the required performance in classifying helicopter 

images. In this study, two separate datasets were used for 

these two different tasks. While the YOLOv9c model is used 

for object detection, the GoogleNet and AlexNet models ared 

used for classification. In order to compare the performance 

of the models, detailed comparisons were made. 

4.1 Datasets 

In this study, two datasets were prepared. The first 

dataset was created for the YOLO model, while the other 

dataset was created for the models we will use. 

4.1.1 YOLOv9c dataset 

The dataset used with the YOLOv9c model consists of 

various images of helicopter components and is divided into 

five different classes: helicopter, landing bar, cockpit, tail 

and propeller. There are 29 images for each class, totaling 

145 image samples. The images were resized to 640x640 

pixels to fit the input size of the model. This was done to 

ensure that the model can perform consistent feature 

extraction in each image. 

4.1.2 Model dataset 

The dataset used for our models consists of a larger image 

archive. The dataset includes 24 different helicopter models 

and consists of 2494 images in total. The dataset is divided 

into three parts: 70% for training, 20% for validation and 

10% for testing. Out of 2494 image data, 1745 images were 

used in the training set, 498 in the validation set and 251 in 

the test set. The analysis of the dataset used for the models 

was analyzed as class distribution, image size distribution 

and image proportion distribution.   

 

 

Figure 1. Helicopter class distribution 

 

Figure 1 shows the number of images for each helicopter 

class. The number of images belonging to each class in the 

dataset is quite close to each other. A balanced distribution 

among the classes in the dataset increases the capacity of the 

model to learn each class. However, some classes have a 

higher number of images than others, as seen in R44-

RAVEN-1 and UH-1 Iroquouis. This may cause the model 

to learn these classes better. In addition, the number of 

images of the F-28F FALCON helicopter is quite low 

compared to the other types, but the model's performance 

may decrease in classes with a small number of images.  This 

imbalance can be overcome by using data augmentation 

techniques for classes with few images. 

Figure 2 shows the width and height distribution of the 

images in the dataset. There is a wide range of image sizes. 

However, most of them are concentrated around 500 pixels. 

This indicates that the images need to be resized to standard 

sizes. This will make them suitable for the input size of the 

GoogleNet model to be used.  

 

 

Figure 2. Image sizes distribution 

 

The 2,494 valid images in the dataset, which cover a wide 

range of dimensions, are summarized in Table 1 and Figure 

3. The average picture width of around 399.06 pixels and 

height of 268.06 pixels show that most images have a rather 

low resolution. Yet, the dataset does exhibit notable variety, 

suggesting the presence of a range of image sizes, with 

standard deviations of 122.46 pixels for width and 79.20 

pixels for height. High-resolution samples have the largest 

size, 1800x1200 pixels, whereas defective or improperly 

processed images have the lowest dimensions, 1x1 pixels. 

The interquartile range, which includes widths of 299–480 

pixels and heights of 189–320 pixels, reflects the size of most 

of the dataset. To ensure consistency and applicability for 

machine learning applications, these data highlight the need 

of preprocessing steps like scaling. 

 

Table 1. Image Dimensions Summary 

Feature Width Height 

Count 2494.00 2494.00 
Mean 399.06 268.06 

Std 122.46 79.20 

Min 1.00 1.00 
25% 299.00 189.00 

50% 464.00 310.00 

75% 480.00 320.00 
Max 1800.00 1200.00 
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Figure 3. Image dimension analysis 

 

Histogram equalization was applied to this dataset to 

address significant variations in brightness and contrast, as 

illustrated in Table 2. The dataset shows an average 

brightness of 144.13 and a contrast of 57.68, reflecting 

moderate levels overall. The wide range of values—from 

complete darkness (minimum brightness of 0) and flat 

images (minimum contrast of 0) to fully saturated (maximum 

brightness of 255) and highly dynamic images (maximum 

contrast of 106.76)—highlights inconsistencies that could 

negatively affect subsequent tasks like classification or 

object detection. The extremes in brightness and contrast 

indicate that certain images may demonstrate poor visibility 

or insufficient intensity variation to distinguish features 

effectively. The analysis helps us to better discover the 

characteristics of the our dataset and optimize training 

process of the model. 

 

Table 2. Brightness and Contrast Summary 

Feature Brightness   Contrast 

Count 2494.00 2494.00 

Mean 144.13 57.68 

Std 30.63 12.99 
Min 0.00 0.00 

25% 121.32 49.00 

50% 138.78 58.32 

75% 157.14 66.63 

Max 25.00 106.76 

 

A considerable degree of imbalance in the dataset is 

indicated by the class balance ratio of 0.2071. While the 

standard deviation shows notable differences in class 

frequencies, the mean class count shows a balanced 

distribution of pictures across classes. This disparity might 

lead to biased model training, where the model performs 

poorly in underrepresented classes and well in 

overrepresented ones. To solve this problem, preprocessing 

methods such as data augmentation for classes are used. This 

improves the model's resilience and prediction performance 

in real-world applications by strengthening class 

representation and guaranteeing that it generalizes well 

across all classes.  

 

All images have been resized to 224x224 pixels so that 

the model can process each image consistently. An example 

image of our dataset is given in Figure 4. 

 

 

Figure 4. Sample dataset images 

 

These images are of the 429 Globalranger model. The 

sample images are shown from our random dataset, and the 

colors of the helicopters, their positions, and the direction of 

shooting the images are different from each other. This 

provides real scenario examples for both models. Our goal is 

to perform the classification process correctly regardless of 

the image. 

4.2 Data augmentation 

A detailed data enrichment approach was put in place to 

improve the generalizability of the model and to stop it from 

overfitting. This methodology is aimed at inducing 

variability and resilience in the training dataset by applying 

transformations that are split into a sequence of very 

carefully defined steps. Random Resized Cropping was used 

to standardize images to a 224 × 224-pixel resolution while 

simultaneously maintaining the spatial diversity present in 

the dataset. This provided the model with the capability to 

identify features regardless of their positional or scalar 

changes. To enhance invariance to horizontal orientations, 

Random Horizontal Flipping was applied with 50% 

probability. Such a transformation helped to include 

mirrored patterns, therefore strengthening the model. 

Random Rotation was used to increase rotational invariance 

with random angular rotations of the images up to 75° 

(including 15, 30, 45, and 60) to ensure that the model could 

adequately detect and classify objects regardless of their 

rotational positioning. To simulate different lighting and 

color conditions, Color Jittering was introduced, where 

parameters like brightness, contrast, saturation, and hue were 

systematically changed. Contrast and saturation were 

adjusted from 0.1 to 0.3, while brightness was adjusted from 

0.2 to 0.6. The hue was changed from 0.1 to 0.6. By doing 

so, it resulted in a realistic range of color and light conditions 

that increased the effectiveness of the model in different 

scenarios. To make sure that the input distribution stayed the 

same after these changes, the dataset was made 

homogeneous with a mean of [0.485, 0.456, 0.406] and a 

standard deviation of [0.229, 0.224, 0.225]. These 

augmentation techniques resulted in an expansion of the 

original dataset to 19,944 images, which were then separated 

into 251 test samples, 498 validation samples, and 19,195 

training samples. This augmentation strategy helped the 

model greatly, since it reduced overfitting and made the 

model more resilient against variability in the data, in order 

to be more applicable in a variety of real-world scenarios. 
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4.3 Histogram equalization 

In order to increase the contrast of the images of the 

models' dataset and to obtain clearer images, a histogram 

equalization (HE) technique was used. As shown in Figure 

5, the histogram equalization process improved the contrast 

of the images by balancing their pixel intensity distributions, 

both overall and by color channel. 

 

 

Figure 5. Original Image and After HE 

 

This will enable the model to extract more and more 

accurate information from the images, which will positively 

affect its overall performance. The more balanced and high 

contrast images obtained after the histogram equalization 

process will be used more effectively in the learning process 

of the model. This will improve classification accuracy and 

overall model performance. 

5 Model architectures 

The YOLOv9c model is a deep learning model that was 

designed with object detection in mind. The YOLOv9c [8]  

model architecture is an upgraded new series of the YOLO 

series that addresses critical issues in deep learning methods, 

such as the information bottleneck and the accumulation of 

errors in deep networks, by incorporating the Programmable 

Gradient Information (PGI) framework. YOLOv9c is built 

using the fundamental elements from YOLOv7. Especially 

concerning architecture and efficiency, the YOLOv9c model 

shows notable improvements over previous models. These 

improvements allow the model to run more complex object 

detection tasks now. They have improved architectural 

simplicity and computer performance. Such optimizations 

are crucial for deploying deep learning models in real-world 

applications where computational resources are often 

limited, and are essential for helicopter detection and 

classification, a real-world application. In the training 

process of the model, pre-trained YOLOv9c weights were 

used. This allowed for a faster and more efficient training 

process, taking advantage of the fact that the model had been 

previously trained on a large dataset. The final layers of the 

model were adapted to fit the number of classes of our 

dataset. 

In this study, GoogleNet architecture is used to classify 

helicopter types. The GoogleNet architecture is a deep 

convolutional neural network with an extensive layer 

structure and additional classification layers [6]. The main 

components of the model are as follows: The GoogleNet 

model, pre-trained on ImageNet, is highly effective in 

learning basic image features and is used as the main body. 

The fully connected layers are customized for classification 

and the fully connected layers in the original GoogleNet 

model are reconstructed to fit the number of classes. To 

avoid overlearning, 40% dropout was applied and the last 

fully connected classification layer was adjusted to set the 

output size of the model to the number of classes in the 

dataset, i.e. 24. In addition, two auxiliary classifiers from the 

original structure of the GoogleNet model were used to allow 

the main model to generalize better and gradients to reach 

deeper layers. These auxiliary classifiers are similarly 

constructed with dropout and fully connected layers. This 

structure allows the model to both perform better on training 

data and increase its generalization capability. 

AlexNet [8] architecture is used as the second model. 

AlexNet architecture has an important place among deep 

convolutional neural networks and has shown high success 

in large-scale image recognition tasks. The main components 

of the model are as follows: Starting with a convolution layer 

with 11x11 filters, the network learns more complex features 

in deep layers by performing extensive feature extraction. 

The model architecture is structured as follows: The first 

layer applies an 11x11 convolution with 96 filters, followed 

by batch normalization and then a 3x3 max pooling 

operation. The second layer conducts a 5x5 convolution 

using 256 filters, similarly followed by batch normalization 

and another max pooling step. Subsequent layers, namely the 

third, fourth, and fifth, implement 3x3 convolutions with 

384, 384, and 256 filters respectively. These layers are 

designed to progressively capture more complex features 

within the data. The architecture then transitions to fully 

connected layers, consisting of two layers, each with 4096 

neurons. To prevent overfitting, each of these layers 

incorporates a 50% dropout regularization. The final layer 

employs a softmax activation function to classify across 24 

categories, providing a probability distribution over these 

classes. This configuration has been carefully tuned through 

extensive experimentation to optimize performance on 

training datasets while enhancing the model's ability to 

generalize to new data. All parameters described have been 

selected to achieve superior results based on rigorous 

empirical testing. 

6 Data training process 

Experimental studies for classification include the 

learning rate, batch size, epoch size, early stop and patience 

hyperparameters. In the study, transfer learning models were 

used and the model was fine-tuned. The hyperparameters and 

values of the most efficient classification model in these 

experiments were determined as learning rate 0.001, epoch 

size 32, epoch number 50 and patience time 5. The learning 

rate was adjusted by using a decay factor of 0.1 every 5 

epochs and StepLR scheduler. The study employed a model 

trained with a weight decay of 1 × 10^-4 and the Adam 

optimization algorithm. The model's performance was 

assessed through a 24-class classification setup, measuring 

accuracy, recall, and F1-score for each helicopter category. 

For object detection, the YOLOv9c model was utilized 

without any alterations. This model underwent training for 

100 epochs, while the Googlenet model was trained for 50 

epochs. The validation dataset played a crucial role in 
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evaluating the model's performance throughout the training 

phase and in the learning process. 

 

 

Figure 6. Training, validation loss and accuracy graphs 

 

Figure 6 shows the training and validation loss curves of 

the GoogleNet model. The curve decreases consistently over 

the epochs, showing that the model is learning efficiently. 

The training loss curve consistently decreased as the epochs 

progressed. This shows that the model is learning the training 

data well.  The validation loss curve similarly decreases, 

indicating that the model performs well on the overall data 

and there is no overlearning. The training accuracy of the 

GoogleNet model has been continuously increasing, 

showing that the model's performance on the training data 

has improved and was measured at 83%. The validation 

accuracy increased in a similar way, showing the 

generalization ability of the model. The value was observed 

to be 85%. The value and the pattern of increase here reveals 

that the model also performs well on test data, i.e. data that 

the model has not seen before. 

Figure 7 shows the change in accuracy and loss values 

for AlexNet during the training process of the model. At the 

beginning of training, the accuracy value starts at around 

20%. As the number of epochs increases, the accuracy value 

gradually increases. Especially during the first 20 epochs, a 

significant increase in accuracy is observed. This increase 

indicates that the model starts to adapt to the data. When the 

number of epochs reaches 40, the accuracy exceeds 80% and 

stabilizes in the last epochs. This shows that the performance 

of the model is continuously improving throughout the 

training process and it classifies the data better. The loss 

value is quite high at the beginning of the training and 

decreases rapidly in the first epochs. This rapid decrease 

indicates that the model's errors are rapidly decreasing at the 

beginning and the parameters of the model are optimized. 

 

 

Figure 7. Validation loss and accuracy graphs 

When the number of epochs approached 20, the loss 

value decreased significantly to around 0.05. When the 

number of epochs reached 40, the loss value dropped below 

0.025 and remained at this level for the last epochs. This 

decrease in the loss value indicates that the learning process 

of the model is progressing successfully and that it adapts 

well to the training data. Based on this graph, it can be 

concluded that the AlexNet model has successfully carried 

out the training process and has been able to cope with the 

classification task given to it on the dataset and the overall 

performance of the model is high. 

7 Model evaluation results 

For each class, the performance of the YOLOv9C model 

was measured using criteria such as precision, recall and 

mAP (Mean Average Precision). The overall precision for 

this model was 85.2%.   The classification results with 

GoogleNet were evaluated with precision, sensitivity and F-

1 score metrics and the overall F-1 score was 81%. The 

results obtained by both models on a class basis are detailed 

below. 

7.1 YOLOv9c results 

The YOLOv9c model's general accuracy came out to be 

85.2%. This result indicates that the model performs 

satisfactorily for the object detection challenge. The 

helicopter class performed the best, with 96.6% accuracy, 

97.7% recall, and 98.3% mAP50. However, with 74.1% 

accuracy and 59.3% recall, the Propeller class had less 

performance than the other classes. Table 3 presents all the 

data findings.  

 

Table 3. YOLOv9c results 

Class Precision Recall mAP50 mAP50-95 

Helicopter 0.966 0.977 0.983 0.62 

Landing 

Bar/Gear 
0.827 0.828 0.843 0.34 

Cockpit 0.897 0.931 0.930 0.397 

Tail 0.826 0.862 0.865 0.338 

Propeller 0.741 0.593 0.724 0.303 

Overall 0.852 0.838 0.869 0.400 

 

Figure 8 displays, with confidence value given, the many 

helicopter components found using the Yolov9c model.  

Although the cockpit and propeller are identified with 

confidence levels of 75% and 65%, respectively, the general 

form of the aircraft has a confidence level of 85%, with a 

confidence level of 76% for the tail and 83% for the landing 

gear, respectively. These many confidence levels correspond 

to the degree of precision of the method in identifying and 

grouping every component. 
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Figure 8. Training, validation loss and accuracy graphs 

 

7.2 GoogleNet results 

The performance metrics of the GoogleNet model in 

Table 4 show that it achieved high accuracy in the 

classification task. The overall accuracy of the model is 81%, 

with precision and recall values generally at high levels. In 

particular, 100% precision and recall values were achieved 

for the A129 Mangusta, AW139 and MD900 Explorer 

classes. However, lower precision and recall values were 

observed in the KC518 Adventourer and 505 Jet Ranger X 

classes. This may be due to the fact that these classes have 

less distinctive features than the other classes or that they 

have less data in the dataset. 

7.3 AlexNet results 

The model shows an overall high accuracy, as evidenced 

by the strong concentration of values along the diagonal. 

This indicates a good ability to correctly classify most 

helicopter types. However, certain classes pose challenges 

for the model. For the 505 Jet Ranger X helicopter model, 

the number of correctly labeled images is 5, while the 

number of incorrectly labeled images is shown to be 23. This 

has a negative impact on the success of the model. These 

deviations are possible due to the quality of the images of the 

models, the shooting direction or the similarities between the 

models. 

In Table 5, the performance metrics of the AlexNet 

model show that, like GoogleNet, it provides high accuracy 

in the classification task. The overall accuracy of the model 

is 75%, with precision and recall values generally at high 

levels. The highest accuracy value was observed for the 

Eurocopter Cougar helicopter. The lowest accuracy was 

observed for the R44 Raven I. While there were high 

achievements in some classes, there were some classes 

where the achievements dropped by half compared to the 

other classes. 

The performance of the YOLOv9c, GoogleNet and 

AlexNet models in the detection and classification of 

helicopters and helicopter components is presented in detail.  

The overall accuracy of the YOLOv9c model is 85.2%, 

which shows that the model is effective in the object 

detection task. The overall accuracy of the GoogleNet model 

is 81% and 75% for the AlexNet model. Overall, our models 

performed reliably in the classification task. 

Table 4. GoogleNet results 

Class Precision Recall F1-Score 

429 GLOBALRANGER 0.67 0.53 0.59 

505 JET RANGER X 0.53 0.50 0.52 

A129 MANGUSTA 1.00 0.92 0.96 

AK1-3 1.00 0.88 0.93 

AW139 1.00 1.00 1.00 

EXEC 162F 0.53 0.67 0.59 

Eurocopter Cougar 0.86 1.00 0.92 

F-28F FALCON 1.00 1.00 1.00 

GÖKBEY 1.00 1.00 1.00 

KC518 

ADVENTOURER 

0.42 0.45 0.43 

MD900 EXPLORER 1.00 1.00 1.00 

MOSQUITO XE 0.90 0.90 0.90 

NEO 1.00 0.40 0.57 

P.531 1.00 1.00 1.00 

R44 RAVEN I 0.67 1.00 0.80 

R66 0.69 0.65 0.67 

S-76 A 0.50 0.50 0.50 

S-92 A SUPERHAWK 1.00 0.86 0.92 

SYTON AH 130 0.70 0.88 0.78 

T129 ATAK 0.92 1.00 0.96 

T70 1.00 0.82 0.90 

UH-1 Iroquois 0.91 1.00 0.95 

V-22 OSPREY 0.92 1.00 0.96 

W-3 SOKOL 

Overall 

0.91 

0.81 

0.91 

0.81 

0.91 

0.81 

 

Table 5. AlexNet results 

Class Precision Recall F1-Score 

429 GLOBALRANGER 0.74 0.67 0.70 

505 JET RANGER X 0.60 0.58 0.59 

A129 MANGUSTA 0.71 0.79 0.75 
AK1-3 0.59 0.87 0.70 

AW139 0.76 0.73 0.75 

EXEC 162F 0.75 0.54 0.63 
Eurocopter Cougar 0.96 0.87 0.91 

F-28F FALCON 0.78 0.58 0.67 

GÖKBEY 0.92 0.75 0.83 
KC518 

ADVENTOURER 

0.50 0.69 0.58 

MD900 EXPLORER 0.73 0.80 0.76 

MOSQUITO XE 0.77 0.56 0.65 

NEO 0.81 0.72 0.76 

P.531 0.80 0.67 0.73 
R44 RAVEN I 0.51 0.87 0.65 

R66 0.66 0.82 0.73 

S-76 A 0.89 0.67 0.76 
S-92 A SUPERHAWK 0.81 0.85 0.83 

SYTON AH 130 0.88 0.74 0.80 

T129 ATAK 0.86 0.77 0.81 
T70 0.72 0.78 0.75 

UH-1 Iroquois 0.76 0.86 0.81 

V-22 OSPREY 0.69 0.65 0.67 
W-3 SOKOL 0.82 0.56 0.67 

Overall 0.75 0.72 0.73 

 

Table 6. Model comparison results 

Class Precision Recall F1-Score 

GoogleNet 0.81 0.81 0.81 

AlexNet 0.7510 0.7309 0.7323 
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Table 6 compares the helicopter identification 

performance of two deep learning architectures, GoogleNet 

and AlexNet. The results show that GoogleNet achieves a 

precision score of 0.81, a recall of 0.81 and an F1 score of 

0.81, while AlexNet achieves a precision score of 0.7510, a 

recall of 0.7309 and an F1 score of 0.7323. The high F1 

scores and similar recall values for both models suggest that 

both are effective at detecting true positives. However, 

GoogleNet's higher sensitivity score indicates that it is better 

at distinguishing between true and false positives, resulting 

in fewer false alarms. This difference in sensitivity can be 

attributed to the unique architecture and design choices of 

GoogleNet, which incorporates initialization modules and 

batch normalization. Overall, the results suggest that 

GoogleNet may be the more appropriate choice for this 

particular task, but when considering the performance 

differences between the two models, AlexNet's lower 

memory usage and easy integration may compensate for this 

performance difference. 

8 Results and future works 

The paper proposes an approach using CNN and YOLO 

architectures to classify and object detection of helicopter 

images. Driven by the need for great precision and efficiency 

in practical uses such military operations, search and rescue 

missions, and civil aviation, the study comprises GoogleNet 

and AlexNet models to maximize performance under 

mentioned parameters, architectures and pipelines. In 

classification tests, the AlexNet-based model obtained a 73% 

F-1 score; the GoogleNet-based model obtained an F-1 score 

of 81%. Furthermore displaying a mean average precision 

(mAP) of 87% in object recognition, the YOLOv9c model 

highlighted the dependability of the suggested method. The 

study emphasizes the major contributions of data 

augmentation methods and transfer learning approaches in 

improving model performance. GoogleNet's advanced 

feature extraction via its deep architecture and inception 

modules complements AlexNet's efficient and simple 

design, ensuring high accuracy. This approach establishes a 

solid foundation for reliable helicopter component detection, 

proving its applicability across various domains. Future 

studies will seek to expand these approaches to include more 

complicated operating situations and a wider spectrum of 

aircraft. Including more varied and large-scale image 

collections in the dataset will help to improve the 

generalizability and robustness of the models. Advancing 

data augmentation methods is expected to help to improve 

model performance and resilience against various real-world 

conditions. To increase accuracy and efficiency in aircraft 

classification and detection tasks, next research will combine 

CNN architectures with more recent generation object 

detection algorithms. Moreover, the application of these 

models in emerging fields such autonomous navigation 

systems and intelligent air traffic management will be a focal 

point, where exact and reliable aircraft recognition is 

paramount. Continuous development and optimization of 

deep learning models are essential to provide more 

dependable and effective solutions for aircraft recognition 

and detection, so contributing to advancements in aviation 

safety and operational efficiency. 
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