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Abstract: Vertebral compression fractures are common conditions, particularly in the aging population, 
often linked to osteoporosis and other degenerative diseases. Non-traumatic vertebral compression fractures 
(VCFs) can be difficult to identify from medical images, especially those that do not show signs of trauma. 
This has led to a demand for more effective and automated detection methods. This study proposes a hybrid 
deep learning approach that uses DenseNet and Generative Adversarial Networks (GANs) to detect non-
traumatic VCFs from computed tomography (CT) images. A dataset consisting of patient CT scans was 
used, including 101 images with confirmed fractures and 99 images without fractures. Our hybrid model 
demonstrated superior accuracy to conventional methods, showing promising results in distinguishing 
between fractured and non-fractured vertebrae. This automated method could aid radiologists in early 
diagnosis and treatment planning by decreasing the time needed for manual image analysis and improving 
diagnostic accuracy. The combination of DenseNet and GANs demonstrates the effectiveness of using 
advanced deep-learning techniques for medical image classification, opening the door for future 
applications in automated medical diagnosis. 
 
Keywords: Vertebral Compression Fractures, DenseNet, Generative Adversarial Networks (GANs), 
Computed Tomography (CT) Imaging, Automated Diagnosis. 
 

BT Görüntülerinde Non-Travmatik Vertebral Kompresyon Kırıklarının DenseNet ve GAN’ları 

Birleştiren Hibrit Derin Öğrenme Modeli ile Tanımlanması 
 

Öz: Vertebral kompresyon kırıkları, özellikle yaşlı nüfus arasında yaygın bir durumdur ve genellikle 

osteoporoz ile diğer dejeneratif hastalıklarla ilişkilidir. Travma belirtisi göstermeyen non-travmatik 
vertebral kompresyon kırıkları (VK’lar) tıbbi görüntülerden tanımlanması zor olabilir. Bu durum, daha 

etkili ve otomatik tespit yöntemlerine olan talebi artırmıştır. Bu çalışma, bilgisayarlı tomografi (BT) 

görüntülerinden non-travmatik VK’ları tespit etmek için DenseNet ve Üretici Karşıt Ağlar (GAN’lar) 

kullanan hibrit bir derin öğrenme yaklaşımını önermektedir. Kesin kırıkları olan 101 görüntü ve kırık 

olmayan 99 görüntü içeren bir hasta BT tarama veri seti kullanılmıştır. Hibrit modelimiz, geleneksel 

yöntemlere kıyasla üstün bir doğruluk göstermiştir ve kırık ve kırık olmayan vertebra ayırt etme konusunda 

umut verici sonuçlar sunmuştur. Bu otomatik yöntem, radyologların erken tanı ve tedavi planlamasında 

yardımcı olabilir, manuel görüntü analizine gereken süreyi azaltarak tanısal doğruluğu artırır. DenseNet ve 

GAN’ların kombinasyonu, tıbbi görüntü sınıflandırması için ileri düzey derin öğrenme tekniklerinin 

etkinliğini ortaya koymakta ve otomatik tıbbi tanıda gelecekteki uygulamalara kapı açmaktadır. 
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Anahtar Kelimeler: Vertebral Kompresyon Kırıkları, DenseNet, Üretici Karşıt Ağlar (GAN’lar), 

Bilgisayarlı Tomografi (BT) Görüntüleme, Otomatik Tanı. 
1. INTRODUCTION 
 

Vertebral compression fractures (VCFs) represent a significant clinical issue, particularly in 
aging populations (Gutiérrez-González et al., 2023). As the prevalence of osteoporosis and other 
bone-degenerative diseases increases with age, the incidence of non-traumatic VCFs has also 
risen. These fractures, unlike traumatic VCFs caused by physical injuries, occur due to the 
weakening of vertebrae over time. Non-traumatic VCFs can lead to chronic pain, physical 
deformities, and impaired mobility, having a significant negative impact on patients well-being 
(Faiella et al., 2022). Early detection and accurate diagnosis are crucial for preventing 
complications and initiating timely treatment interventions. However, diagnosing VCFs, 
especially in their early stages, can be challenging due to the subtle nature of fracture presentation 
in imaging studies. 

Computed tomography (CT) is a primary imaging modality for detecting vertebral fractures 
(Kolanu et al., 2020). While CT scans provide detailed anatomical information, the interpretation 
of these images still heavily relies on manual analysis by radiologists. This process is time-
intensive, subject to variability between clinicians, and prone to human error. Even with highly 
trained radiologists, small or early-stage fractures may be overlooked. Moreover, the increasing 
demand for imaging services in healthcare adds to the workload, making automated systems for 
fracture detection highly desirable in modern clinical practice. 

Deep learning has revolutionized medical imaging, enabling automated diagnosis (Zhou et 
all., 2021). Convolutional neural networks (CNNs) have been particularly successful in image 
classification tasks, thanks to their ability to automatically learn and extract hierarchical features 
from complex data sets. CNNs have been applied in various medical domains, including the 
detection of lung cancer, brain tumors, and diabetic retinopathy, showing superior performance 
over traditional machine-learning approaches (Yu et al., 2021). The DenseNet architecture, a 
state-of-the-art CNN model, has gained attention due to its ability to mitigate common deep 
learning challenges such as vanishing gradients and enhance feature propagation through densely 
connected layers. 

In DenseNet, the direct connections from each layer to the outputs of all preceding layers 
allow for a more efficient flow of features (Hemalatha et al., 2021). This characteristic contributes 
to the development of deeper neural networks with enhanced learning capabilities. This design 
makes it particularly suitable for medical imaging tasks, where subtle details and complex 
structures, such as vertebrae in CT scans, must be captured and analyzed. However, despite the 
capabilities of DenseNet and other CNN models, one of the major difficulties in medical image 
interpretation remains the limited availability of annotated training data, which is critical for 
training robust deep learning models (Wang et al., 2021). 

To address the limitations posed by small datasets, Generative Adversarial Networks (GANs) 
have become a popular solution (Saxena and Cao, 2021). GANs are composed of two neural 
networks, a generator and a discriminator, engaged in a competitive learning process termed 
adversarial training. The generator produces artificial data, whereas the discriminator seeks to 
differentiate between authentic and synthesized data (Nguyen et al., 2017). This competitive 
process leads to the generation of highly realistic synthetic samples, which can augment training 
datasets and improve model generalization. In medical imaging, GANs have been successfully 
applied to generate synthetic images of brain tumors, retinal scans, and more, enhancing deep 
learning models' performance by increasing dataset size and variability (Kazeminia et al., 2020; 
Shin et al., 2018). 

Our proposed model offers a distinct advancement over existing methods in the literature. 
While most studies focus on vertebral fracture detection using traditional deep learning techniques 
or rely on limited datasets, our approach integrates the robust feature extraction capabilities of 
DenseNet-121 with data augmentation via GANs, effectively addressing the critical issue of class 
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imbalance. By generating synthetic data through GANs, we enhance the training dataset, ensuring 
a more balanced representation and improving the model's generalization. This not only enables 
the generation of realistic data during training but also enhances the model’s accuracy and 

precision. Comparisons with existing literature demonstrate that our model outperforms previous 
approaches, achieving higher accuracy and better generalization. Thus, our contribution lies not 
only in delivering more accurate predictions but also in offering a more efficient and balanced 
training process, providing a significant step forward in the field. 

In this study, we propose a novel hybrid deep learning approach that combines the strengths 
of DenseNet and GAN architectures to improve the detection of non-traumatic VCFs in CT 
images. By leveraging DenseNet's powerful feature extraction capabilities and GAN's ability to 
generate high-quality synthetic data, we aim to overcome the challenges posed by small, 
imbalanced datasets in medical imaging. Our approach not only enhances the model's ability to 
accurately classify fractured and non-fractured vertebrae but also addresses the issue of data 
scarcity, which often limits the performance of deep learning models in clinical applications. 

The dataset with ethical approval from Istanbul University-Cerrahpasa Ethics Committee 
used in this study comprises 101 CT images of patients with confirmed VCFs and 99 images of 
patients without fractures. These images were carefully annotated by expert radiologists, 
providing a reliable ground truth for training and validating the hybrid model. The inclusion of 
both fractured and non-fractured cases ensures that the model can learn to distinguish subtle 
differences in vertebral structure, improving its ability to detect even early-stage fractures. 
Additionally, by using GAN-generated synthetic images, we further augmented the dataset to 
enhance the model's robustness and reduce the risk of overfitting. 

The unique contributions of this study are summarized as follows: 
Hybrid DenseNet-GAN Model: This study is one of the first to apply a hybrid model that 

combines the strengths of DenseNet and GANs for the detection of VCFs. DenseNet's efficient 
feature extraction is complemented by GAN's ability to generate synthetic data, addressing the 
limitations of small medical datasets. 

Improved Dataset Augmentation: The use of GANs to generate high-quality synthetic CT 
images augments the training set and helps the model generalize better. This approach overcomes 
the common problem of limited annotated medical data, which often constrains deep learning 
model performance in real-world clinical settings. 

Enhanced Feature Reuse with DenseNet: DenseNet’s dense connections, which enable the 
reuse of features across layers, are particularly effective for capturing complex anatomical 
structures in CT images. This allows the model to accurately classify both subtle and advanced 
vertebral fractures. 

Balanced Dataset for Robust Learning: By using a balanced dataset comprising both fractured 
and non-fractured vertebrae, we ensure that the model learns to distinguish between healthy and 
fractured vertebrae more effectively, reducing the risk of bias toward over-represented classes. 

Potential for Clinical Application: The hybrid model demonstrates high accuracy in detecting 
non-traumatic VCFs and holds significant promise for clinical use. This automated approach can 
reduce diagnostic workload, minimize human error, and assist radiologists in making faster, more 
accurate diagnoses. 

Section 2 offers a detailed examination of the current literature on deep learning applications 
within the field of medical imaging, with a specific emphasis on fracture detection. We also 
discuss the advantages and limitations of existing methods. Section 3 describes the proposed 
methodology in detail, outlining the DenseNet and GAN architectures and explaining how they 
are combined in our hybrid approach. In Section 4, we present the experimental setup, including 
data preprocessing, model training, and evaluation metrics. The results of the experiments, 
including performance comparisons with traditional methods, are provided in Section 5. Finally, 
in Section 6, we discuss the clinical implications of our findings and potential future directions 
for this study. 
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2. METHOD 

    In this section, we detail the proposed methodology, which integrates DenseNet for feature 
extraction and GANs for data augmentation to detect non-traumatic VCFs from CT images. We 
describe the architecture of both networks, preprocessing techniques, and the training setup. 
 

2.1. DenseNet Architecture for Feature Extraction 

The DenseNet architecture (Densely Connected Convolutional Networks) was chosen for its 
capacity to mitigate vanishing gradients and facilitate efficient feature reuse through densely 
connected layers (Fooladgar and Kasaei, 2020; Huang et al., 2020; Zhang et al., 2021). DenseNet 
architecture improves information flow and allows the model capable of learning representations 
at multiple levels of abstraction critical in medical imaging, such as the subtle structural changes 
seen in VCFs (Umirzakova et al., 2023). 
 

 
Figure 1: Model architecture with DenseNet121 approach <(Shazia et al., 2021)> 

 
In Figure 1, illustrates the architectural flow of the DenseNet-121 model, showcasing its 

convolutional layers, dense blocks, and transition layers. The input data undergoes a series of 
feature extraction processes, followed by pooling and dense layers, ultimately leading to a 
classification output using softmax activation, which differentiates between COVID-19 and 
pneumonia classes (Shazia et al., 2021). The DenseNet-121 variant, which contains 121 layers 
including convolutional and transition layers, was selected. DenseNet's ability to propagate 
features from earlier layers to later layers helps in accurately detecting fractures (Warin et al., 
2023; Bastidas-Rodriguez et al., 2020). In this setup, the product of process dense piece is 
concatenated and passed forward to ensure that the model retains information crucial for 
identifying even minor fractures in vertebrae (Jin et al., 2019). 
 

2.2. GANs for Data Augmentation 

GANs are employed to generate synthetic CT images, addressing the limitation of the 
relatively small dataset. The GAN architecture consists of a generator that produces synthetic CT 
images and a discriminator that learns to distinguish real images from synthetic ones (Bahrami et 
al., 2021; Frid-Adar et al., 2018). This adversarial training leads to the generation of highly 
realistic images, increasing the diversity and volume of the training data (Karras et al., 2020). 
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Figure 2: GAN architecture <(Tian et al., 2020)> 

 
In Figure 2, the generator network learns to create realistic CT images of vertebrae, while the 

discriminator enhances its capability to evaluate the authenticity of these images. Once trained, 
the GAN generates synthetic images added to the training dataset, mitigating overfitting and 
improving generalization to unseen data (Rather and Kumar, 2024; Xue et al., 2021; Ferdousi et 
al., 2024). 
 

2.3. Preprocessing of CT Images 

To ensure consistency in input data, all CT images were preprocessed before being fed into 
the model. The preprocessing steps included resizing images to 224x224 pixels, intensity 
normalization, and data augmentation techniques such as random rotations, flipping, and zooming 
to introduce variability (İncir and Bozkurt, 2024). These steps improve model robustness by 
simulating different imaging conditions that could occur in clinical settings. 

The dataset was stratified into training, validation, and test subsets, adhering to a 75:12.5:12.5 
ratio, thereby guaranteeing that the model's efficacy is evaluated on data that has not been 
encountered during training. 

 
2.4. Training Procedure 

The hybrid DenseNet-GAN model was trained in two phases (Ding et al., 2023). First, the 
DenseNet was pre-trained on the ImageNet dataset and then fine-tuned using the vertebral fracture 
dataset. Simultaneously, the GAN was trained to generate synthetic images. After GAN training, 
the synthetic images were integrated into the dataset for the final end-to-end training of the hybrid 
model (Meena and Roy, 2022; Atasever et al., 2023; Jiang et al., 2023). 

The training phase was carried out using the Adam optimizer with a learning rate of 0.001, 
batch size of 32, and a maximum of 50 epochs. The cross-entropy loss function was used for 
classification, and early stopping was employed to prevent overfitting (Fei et al., 2020). During 
training, the model’s performance was monitored using the validation set, and the final model 

was evaluated on the test set. 
 

2.5. Experimental Setup 

This section describes the experimental setup used to assess the performance of the hybrid 
DenseNet-GAN model. We provide details on the dataset, evaluation metrics, and the baseline 
models used for comparison. 

 



Türkmen M., Orman Z.: Idnt. Non-Tra. Vert. Comp. Fra. CT Img. Hybr. DL Mdl. Cmb. Dense GAN 

344 
 

2.6. Dataset Description 

The dataset used in this study comprised 200 CT scans from patients, of which 101 images 
contained non-traumatic VCFs, and 99 images were without fractures from kaggle dataset 
(https://www.kaggle.com/datasets/mtrkmen/vkfractures).  

 
Figure 3: Examples of images of patients with spinal fractures 

 
Figure 3 presents sample radiographic images of individuals diagnosed with vertebral 

fractures. These images serve as representative examples for the dataset used in the study, 
highlighting various types of fractures for model training and evaluation purposes. 

 
Figure 4: Examples of images of patients without spinal fractures 

 
Figure 4 displays sample radiographic images of individuals who do not have any vertebral 

fractures. These images are used as part of the dataset to train and evaluate the model's ability to 
accurately distinguish between fractured and non-fractured vertebra. 

 
Figure 5: Histogram of the Dataset Classes 

 
In Figure 5, the histogram visually represents the distribution of the two primary categories 

in the dataset: fractured and non-fractured vertebrae. The dataset consists of a total of 407 
fractured vertebrae images and 393 non-fractured vertebrae images, resulting in a nearly balanced 
class distribution. Initially, 50 fractured and 50 non-fractured images were separated as test data. 
The remaining 51 fractured and 49 non-fractured images were augmented using GAN method, 
enhancing the representation of non-fractured vertebrae. The final dataset comprises 100 test 
images, 100 validation images, and 600 training images, totaling 800 images. This balanced and 
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augmented distribution ensures that the model is trained on an equal number of both categories, 
facilitating effective learning from each class. The histogram's red bar represents the fractured 
vertebrae images, while the green bar represents the non-fractured vertebrae images, highlighting 
the crucial role of the dataset’s balance in enhancing the model’s performance. 

 
Figure 6: Histogram of Data in Train, Validation, and Test Sets 

 
    The histogram in Figure 6 illustrates the distribution of the dataset across three distinct subsets: 
Train, Validation, and Test. The test set, consisting of 100 patients (51 fractured, 49 non-
fractured), was separated from the beginning using real patient data, ensuring an unbiased 
evaluation of the model’s performance on unseen cases. The remaining 600 patients were used to 
generate an expanded dataset through augmentation techniques, increasing the total number of 
samples to 800. As a result, the overall dataset comprises 800 patients distributed into three sets: 
100 for training, 100 for validation, and 600 for testing. 
 
    The training set, containing 100 images, represents the majority of the data used for model 
learning. The validation set, with 100 images, is utilized for fine-tuning hyperparameters and 
preventing overfitting. Similarly, the test set, consisting of 600 images, ensures a reliable 
evaluation of the model’s generalization ability. The chart visually emphasizes this dataset 

allocation, maintaining a structured separation for training, validation, and testing. The color 
scheme—blue for the training set, orange for validation, and green for the test set provides a clear 
distinction between these subsets. 
 
    All images were annotated by expert radiologists, ensuring the accuracy of the fracture and 
non-fracture labels. Each scan was converted into 2D slices, significantly increasing the number 
of training samples. The dataset was stratified into training (12.5%), validation (12.5%), and test 
(75%) subsets to maintain class balance and robust model evaluation. 
 
    To mitigate the impact of class imbalance, augmentation techniques were applied exclusively 
to the training and validation sets, ensuring a more diverse and representative dataset. This 
approach allowed for a broader distribution of fracture patterns, improving the model’s 

robustness. The expanded dataset helped enhance the model’s ability to generalize effectively to 

real-world cases. 
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2.7. Evaluation Metrics 

The performance of the hybrid DenseNet-GAN model was evaluated using the following 
metrics: 
 

2.7.1.  Accuracy 

The percentage of correctly classified images (Story and Congalton, 1986). 
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

TP+TN

TP+TN+FP+FN
                                                                                                   (1) 

Where: 
TP = Correctly identified fracture cases 
TN = Correctly identified non-fracture cases 
FP = Incorrectly identified fracture cases 
FN = Incorrectly identified non-fracture cases. 
 

2.7.2.  Precision 

The ratio of correctly predicted fracture images to the total predicted fracture images. 
 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

TP

TP+FP
                                (2) 

2.7.3.  Recall (Sensitivity) 

The ratio of correctly predicted fracture images to the actual number of fracture images 
(Lindsey et al., 2018). 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

TP

TP+FN
                                                       (3) 

2.7.4.  F1-Score 

By employing the harmonic mean of precision and recall, we obtain a holistic metric that 
effectively balances and encapsulates the model's overall performance (Wardhani et al., 2019). 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
Precision∗Recall

Precision+Recall
                (4) 

2.7.5.  AUC-ROC Curve 
 

The receiver operating characteristic (ROC) curve's area under the curve (AUC) offers a 
quantitative assessment of the model's capacity to distinguish between fracture and non-fracture 
cases (Kumar et al., 2023). 

 
𝐹𝑃𝑅 =

FP

FP+TN
                 (5) 

Where: 
FPR: False Positive Rate. 
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These metrics were calculated for both the validation and test sets to assess model 
generalization. 

 
2.8. Baseline Comparisons 

To establish the efficacy of the hybrid model, we compared its performance against several 
baseline models: 

DenseNet without GAN augmentation: The DenseNet model was trained without synthetic 
data to assess the impact of the GAN-generated images (Alsaidi et al., 2024; Verma et al., 2020). 
Standard CNN: A conventional CNN model without dense connections was implemented to 
evaluate the advantages of DenseNet’s architecture (Yu et al., 2019). 

Random Forest: A non-deep learning classifier often used for medical classification tasks was 
included as a baseline for comparison (Teoh et al., 2022; Ghazouani and Barhoumi, 2021). 
 
3. PROPOSED MODEL 

In this study, we proposed a hybrid deep learning model that combines DenseNet-121 and 
GANs to detect non-traumatic vertebral compression fractures from CT images. The proposed 
model leverages the powerful feature extraction capabilities of DenseNet-121 and the data 
augmentation strength of GANs to improve classification accuracy. 

 
Figure 7: Proposed model architecture 

 
Figure 7 illustrates the structured workflow of the proposed hybrid deep learning model for 

detecting vertebral fractures. The process begins with data input, where X-ray images are labeled 
as either "Fractures" or "Nonfractures." These images then undergo preprocessing, incorporating 
data augmentation techniques such as rotations, flipping, and zooming to enhance the model’s 

robustness and mitigate overfitting. In the feature extraction stage, DenseNet-121, a powerful 
deep convolutional neural network, is employed to extract key features from the images. These 
features are then passed to the classification stage, where multiple models—including DenseNet-
GAN, DenseNet without GAN, a CNN model, and Random Forest—are used to categorize the 
images into "fractures" or "nonfractures." Finally, the model's performance is assessed using 
various metrics such as accuracy, precision, recall, F1-score, and AUC/ROC, providing a 
comprehensive evaluation of its ability to make accurate predictions and effectively distinguish 
between the two classes. 
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4. RESULTS AND DISCUSSION 

The hybrid DenseNet-GAN model exhibited remarkable performance with an accuracy of 
93.0% on the test set. This result not only surpasses that of the baseline models but also highlights 
the model's proficiency in detecting non-traumatic VCFs (VCFs). The developed deep learning 
model achieved a precision of 94.1%, recall of 90.2%, and F1-score of 92.1% in detecting 
vertebral compression fractures (VCFs) the dataset with ethical approval from Istanbul 
University-Cerrahpasa Ethics Committee. These results indicate the model's potential for clinical 
application. Additionally, the AUC-ROC score of 0.93 underscores the model's exceptional 
discriminatory power, distinguishing between fractured and non-fractured vertebrae with high 
accuracy. The significant performance improvement can be attributed to the integration of GAN-
generated images, which addressed the challenges associated with the small and imbalanced 
dataset used in the study. 

To clearly highlight the unique contributions of our model, we conducted a comparative 
analysis with existing studies in the literature. Our model, which combines DenseNet-121 for 
feature extraction with GANs for data augmentation, shows significant improvements in both 
accuracy and robustness over previous methods. Specifically, the integration of GANs to generate 
synthetic data addresses the common issue of class imbalance in medical image datasets, such as 
those used for vertebral fracture detection. This approach not only creates a more balanced dataset 
but also enhances the model's ability to generalize to unseen cases, offering a distinct advantage 
over traditional machine learning techniques and other deep learning models that rely solely on 
limited real data. 

In the absence of GAN-generated images, the DenseNet model achieved an accuracy of 
88.0%. This result highlights the crucial role of data augmentation in enhancing the model's 
performance. The improvement observed with GAN augmentation emphasizes the value of 
expanding the training dataset to prevent overfitting and improve generalization. The increase in 
accuracy suggests that the GAN-generated images provided additional diverse examples that 
helped the model learn more robust features, thereby improving its performance on unseen data. 

 
Table 1. Metric of classification value 

Metric DenseNet-GAN 
Model 

DenseNet 
(Without GAN) CNN Model Random Forest 

Accuracy 93.0% 88.0% 85.0% 81.0% 
Precision 94.1% 89.1% 86.1% 82.1% 

Recall 90.2% 85.3% 81.4% 77.5% 
F1-Score 92.1% 87.2% 83.7% 79.7% 

AUC-ROC 93.0% 88.0% 85.0% 81.0% 
 

In Table 1, the standard CNN model achieved an accuracy of 85.0%. This performance, lower 
than the deep learning models, highlights the advantages of DenseNet's densely connected 
architecture.  These dense connections in DenseNet facilitate enhanced feature extraction, 
enabling the model to capture the intricate details of vertebral structures crucial for accurate 
fracture detection. The standard CNN, lacking these dense connections, was less effective at 
identifying the subtle features associated with VCFs. 

The Random Forest classifier, with an accuracy of 81.0%, demonstrated a notably lower 
performance compared to the deep learning models.  For the Random Forest (RF) model, the 
input data consisted of features extracted using the outlined method, including texture features, 
histogram-based features, and edge-related features derived from the CT images. This outcome 
underscores the limitations of traditional machine learning approaches for complex image 
classification tasks. Unlike deep learning models that benefit from hierarchical feature extraction, 
Random Forest, while simpler, may not fully capture the intricate complexities of medical images. 
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This performance gap highlights the advantages of modern deep learning techniques in handling 
such complex image data. 

Table 2. Confusion matrix of proposed model 

 Predicted: Fractured   Predicted: Non-Fractured 
Actual: Fractured 46 (TP) 5 (FN) 

Actual: Non-Fractured 3 (FP) 46 (TN) 
 

In Table 2, the confusion matrix provides a comprehensive evaluation of the model's 
performance in accurately classifying VCFs. The model correctly identified 46 of the actual 
fractured cases as "Fractured" (true positives), while 5 fractured cases were incorrectly classified 
as "Non-Fractured" (false negatives). This indicates a strong recall, meaning the model is 
proficient at identifying a large portion of fractured vertebrae. On the other hand, 46 of the actual 
non-fractured cases were correctly classified as "Non-Fractured" (true negatives), with only 3 
being misclassified as "Fractured" (false positives). The low number of misclassifications in both 
categories reflects the model’s high precision and overall accuracy, as it minimizes both false 

positives and false negatives, ensuring reliable diagnostic performance. 
 

Table 3. Feature ımportance table 

Feature Importance Score 
Fracture Pattern (DenseNet) 0.30 

Bone Density (DenseNet) 0.28 
Vertebra Shape (DenseNet) 0.20 
GAN-Augmented Features 0.22 

 
Table 3 presents the feature importance scores associated with different attributes in the 

analysis. The scores reflect the relative significance of each feature in contributing to the model's 
performance. The Fracture Pattern feature, derived from DenseNet, holds the highest importance 
score of 0.30, indicating its substantial impact on the model's predictions. Following closely is 
the Bone Density feature, also from DenseNet, with an importance score of 0.28. This suggests 
that bone density is a significant predictor but slightly less influential than fracture patterns. The 
Vertebra Shape feature, another DenseNet-based attribute, has a slightly lower importance score 
of 0.20, highlighting its moderate role in the model's assessment. Lastly, the GAN-Augmented 
Features have an importance score of 0.22, illustrating their contribution to the model, albeit less 
than the top two DenseNet-derived features. These scores collectively provide insights into which 
features are most critical for the predictive capabilities of the model. 

The impact of GAN-generated images on the model's performance was substantial. By 
augmenting the dataset, GANs contributed to increased diversity and volume, which in turn 
enhanced the model's ability to generalize to new, unseen data. The improved generalization 
capability was particularly beneficial in detecting subtle fractures, which could have been missed 
with a smaller, less diverse dataset. This finding reinforces the importance of incorporating 
advanced data augmentation techniques to address the challenges of limited and imbalanced 
datasets in medical imaging. 
 
5. CONCLUSIONS 

The study conclusively demonstrates that the hybrid DenseNet-GAN model is highly 
effective for detecting non-traumatic VCFs from CT images. By combining the advanced feature 
extraction capabilities of DenseNet with the synthetic data generation strengths of GANs, this 
model addresses two critical challenges in medical imaging. DenseNet’s architecture excels in 

capturing both low- and high-level features from complex CT images, which is essential for 
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accurate fracture detection. Meanwhile, the use of GANs to generate synthetic images overcomes 
the issue of limited annotated datasets, providing a more comprehensive and varied training set. 
This synergy between DenseNet and GANs results in a model with superior performance, as 
evidenced by its high accuracy, precision, recall, and F1-score, along with a remarkable AUC-
ROC score of 0.93. Such performance indicates the model’s capability to effectively distinguish 

between fractured and non-fractured vertebrae, which is crucial for clinical practice. 
The high AUC-ROC score of 0.93 achieved by the model underscores its effectiveness in 

accurately differentiating between VCFs and non-fractured vertebrae. This performance metric is 
vital in clinical settings where precise detection and diagnosis are essential for patient 
management and treatment planning. The ability of the model to deliver reliable and accurate 
results can greatly assist radiologists in diagnosing fractures more efficiently and accurately. By 
automating and enhancing the fracture detection process, this approach holds the potential to 
improve patient outcomes, reduce diagnostic errors, and streamline clinical workflows. 

Despite the impressive performance of the hybrid DenseNet-GAN model, the study 
acknowledges certain limitations. A notable limitation is the relatively small size of the dataset 
used for training and evaluation. Although GAN augmentation improved the dataset’s diversity, 

the overall volume remains limited compared to the extensive datasets typically required for deep 
learning models. Future research should focus on evaluating the model's performance on larger, 
more diverse datasets to validate its robustness and applicability across different clinical settings 
and patient populations. This will ensure that the model performs consistently well in various 
scenarios and can be generalized to broader applications. 

Additionally, while the use of GAN-generated images was beneficial, there is room for further 
improvement in synthetic image quality. Future studies should explore the implementation of 
more advanced GAN architectures, such as conditional GANs or other state-of-the-art variants, 
to generate even more realistic images. Enhancing the quality of synthetic images can further 
boost the model’s performance and potentially expand its application to other medical imaging 

domains beyond vertebral fractures. Continued advancements in both GAN technology and deep 
learning techniques will be crucial in pushing the boundaries of automated medical diagnostics. 
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