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Abstract: Vertebral compression fractures are common conditions, particularly in the aging population,
often linked to osteoporosis and other degenerative diseases. Non-traumatic vertebral compression fractures
(VCFs) can be difficult to identify from medical images, especially those that do not show signs of trauma.
This has led to a demand for more effective and automated detection methods. This study proposes a hybrid
deep learning approach that uses DenseNet and Generative Adversarial Networks (GANs) to detect non-
traumatic VCFs from computed tomography (CT) images. A dataset consisting of patient CT scans was
used, including 101 images with confirmed fractures and 99 images without fractures. Our hybrid model
demonstrated superior accuracy to conventional methods, showing promising results in distinguishing
between fractured and non-fractured vertebrae. This automated method could aid radiologists in early
diagnosis and treatment planning by decreasing the time needed for manual image analysis and improving
diagnostic accuracy. The combination of DenseNet and GANs demonstrates the effectiveness of using
advanced deep-learning techniques for medical image classification, opening the door for future
applications in automated medical diagnosis.

Keywords: Vertebral Compression Fractures, DenseNet, Generative Adversarial Networks (GANs),
Computed Tomography (CT) Imaging, Automated Diagnosis.

BT Goriintiilerinde Non-Travmatik Vertebral Kompresyon Kiriklarinin DenseNet ve GAN’lar1
Birlestiren Hibrit Derin Ogrenme Modeli ile Tanimlanmasi

Oz: Vertebral kompresyon kiriklari, 6zellikle yash niifus arasinda yaygim bir durumdur ve genellikle
osteoporoz ile diger dejeneratif hastaliklarla iliskilidir. Travma belirtisi gostermeyen non-travmatik
vertebral kompresyon kiriklar1 (VK’lar) tibbi goriintiilerden tanimlanmasi zor olabilir. Bu durum, daha
etkili ve otomatik tespit yontemlerine olan talebi artirmistir. Bu c¢alisma, bilgisayarli tomografi (BT)
gdriintiilerinden non-travmatik VK’lar1 tespit etmek icin DenseNet ve Uretici Karsit Aglar (GAN’lar)
kullanan hibrit bir derin 6grenme yaklagimini 6nermektedir. Kesin kiriklarr olan 101 goriintii ve kirik
olmayan 99 goriintii igeren bir hasta BT tarama veri seti kullanilmistir. Hibrit modelimiz, geleneksel
yontemlere kiyasla iistiin bir dogruluk gostermistir ve kirik ve kirtk olmayan vertebra ayirt etme konusunda
umut verici sonuglar sunmustur. Bu otomatik yontem, radyologlarin erken tani ve tedavi planlamasinda
yardimet olabilir, manuel goriintii analizine gereken siireyi azaltarak tanisal dogrulugu artirir. DenseNet ve
GAN’larin kombinasyonu, tibbi goriintii smiflandirmasi igin ileri diizey derin 6grenme tekniklerinin
etkinligini ortaya koymakta ve otomatik tibbi tanida gelecekteki uygulamalara kap1 agmaktadir.
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1. INTRODUCTION

Vertebral compression fractures (VCFs) represent a significant clinical issue, particularly in
aging populations (Gutiérrez-Gonzalez et al., 2023). As the prevalence of osteoporosis and other
bone-degenerative diseases increases with age, the incidence of non-traumatic VCFs has also
risen. These fractures, unlike traumatic VCFs caused by physical injuries, occur due to the
weakening of vertebrae over time. Non-traumatic VCFs can lead to chronic pain, physical
deformities, and impaired mobility, having a significant negative impact on patients well-being
(Faiella et al., 2022). Early detection and accurate diagnosis are crucial for preventing
complications and initiating timely treatment interventions. However, diagnosing VCFs,
especially in their early stages, can be challenging due to the subtle nature of fracture presentation
in imaging studies.

Computed tomography (CT) is a primary imaging modality for detecting vertebral fractures
(Kolanu et al., 2020). While CT scans provide detailed anatomical information, the interpretation
of these images still heavily relies on manual analysis by radiologists. This process is time-
intensive, subject to variability between clinicians, and prone to human error. Even with highly
trained radiologists, small or early-stage fractures may be overlooked. Moreover, the increasing
demand for imaging services in healthcare adds to the workload, making automated systems for
fracture detection highly desirable in modern clinical practice.

Deep learning has revolutionized medical imaging, enabling automated diagnosis (Zhou et
all., 2021). Convolutional neural networks (CNNs) have been particularly successful in image
classification tasks, thanks to their ability to automatically learn and extract hierarchical features
from complex data sets. CNNs have been applied in various medical domains, including the
detection of lung cancer, brain tumors, and diabetic retinopathy, showing superior performance
over traditional machine-learning approaches (Yu et al., 2021). The DenseNet architecture, a
state-of-the-art CNN model, has gained attention due to its ability to mitigate common deep
learning challenges such as vanishing gradients and enhance feature propagation through densely
connected layers.

In DenseNet, the direct connections from each layer to the outputs of all preceding layers
allow for a more efficient flow of features (Hemalatha et al., 2021). This characteristic contributes
to the development of deeper neural networks with enhanced learning capabilities. This design
makes it particularly suitable for medical imaging tasks, where subtle details and complex
structures, such as vertebrae in CT scans, must be captured and analyzed. However, despite the
capabilities of DenseNet and other CNN models, one of the major difficulties in medical image
interpretation remains the limited availability of annotated training data, which is critical for
training robust deep learning models (Wang et al., 2021).

To address the limitations posed by small datasets, Generative Adversarial Networks (GANs)
have become a popular solution (Saxena and Cao, 2021). GANs are composed of two neural
networks, a generator and a discriminator, engaged in a competitive learning process termed
adversarial training. The generator produces artificial data, whereas the discriminator seeks to
differentiate between authentic and synthesized data (Nguyen et al., 2017). This competitive
process leads to the generation of highly realistic synthetic samples, which can augment training
datasets and improve model generalization. In medical imaging, GANs have been successfully
applied to generate synthetic images of brain tumors, retinal scans, and more, enhancing deep
learning models' performance by increasing dataset size and variability (Kazeminia et al., 2020;
Shin et al., 2018).

Our proposed model offers a distinct advancement over existing methods in the literature.
While most studies focus on vertebral fracture detection using traditional deep learning techniques
or rely on limited datasets, our approach integrates the robust feature extraction capabilities of
DenseNet-121 with data augmentation via GANs, effectively addressing the critical issue of class
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imbalance. By generating synthetic data through GANs, we enhance the training dataset, ensuring
a more balanced representation and improving the model's generalization. This not only enables
the generation of realistic data during training but also enhances the model’s accuracy and
precision. Comparisons with existing literature demonstrate that our model outperforms previous
approaches, achieving higher accuracy and better generalization. Thus, our contribution lies not
only in delivering more accurate predictions but also in offering a more efficient and balanced
training process, providing a significant step forward in the field.

In this study, we propose a novel hybrid deep learning approach that combines the strengths
of DenseNet and GAN architectures to improve the detection of non-traumatic VCFs in CT
images. By leveraging DenseNet's powerful feature extraction capabilities and GAN's ability to
generate high-quality synthetic data, we aim to overcome the challenges posed by small,
imbalanced datasets in medical imaging. Our approach not only enhances the model's ability to
accurately classify fractured and non-fractured vertebrae but also addresses the issue of data
scarcity, which often limits the performance of deep learning models in clinical applications.

The dataset with ethical approval from Istanbul University-Cerrahpasa Ethics Committee
used in this study comprises 101 CT images of patients with confirmed VCFs and 99 images of
patients without fractures. These images were carefully annotated by expert radiologists,
providing a reliable ground truth for training and validating the hybrid model. The inclusion of
both fractured and non-fractured cases ensures that the model can learn to distinguish subtle
differences in vertebral structure, improving its ability to detect even early-stage fractures.
Additionally, by using GAN-generated synthetic images, we further augmented the dataset to
enhance the model's robustness and reduce the risk of overfitting.

The unique contributions of this study are summarized as follows:

Hybrid DenseNet-GAN Model: This study is one of the first to apply a hybrid model that
combines the strengths of DenseNet and GANs for the detection of VCFs. DenseNet's efficient
feature extraction is complemented by GAN's ability to generate synthetic data, addressing the
limitations of small medical datasets.

Improved Dataset Augmentation: The use of GANs to generate high-quality synthetic CT
images augments the training set and helps the model generalize better. This approach overcomes
the common problem of limited annotated medical data, which often constrains deep learning
model performance in real-world clinical settings.

Enhanced Feature Reuse with DenseNet: DenseNet’s dense connections, which enable the
reuse of features across layers, are particularly effective for capturing complex anatomical
structures in CT images. This allows the model to accurately classify both subtle and advanced
vertebral fractures.

Balanced Dataset for Robust Learning: By using a balanced dataset comprising both fractured
and non-fractured vertebrae, we ensure that the model learns to distinguish between healthy and
fractured vertebrae more effectively, reducing the risk of bias toward over-represented classes.

Potential for Clinical Application: The hybrid model demonstrates high accuracy in detecting
non-traumatic VCFs and holds significant promise for clinical use. This automated approach can
reduce diagnostic workload, minimize human error, and assist radiologists in making faster, more
accurate diagnoses.

Section 2 offers a detailed examination of the current literature on deep learning applications
within the field of medical imaging, with a specific emphasis on fracture detection. We also
discuss the advantages and limitations of existing methods. Section 3 describes the proposed
methodology in detail, outlining the DenseNet and GAN architectures and explaining how they
are combined in our hybrid approach. In Section 4, we present the experimental setup, including
data preprocessing, model training, and evaluation metrics. The results of the experiments,
including performance comparisons with traditional methods, are provided in Section 5. Finally,
in Section 6, we discuss the clinical implications of our findings and potential future directions
for this study.
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2. METHOD

In this section, we detail the proposed methodology, which integrates DenseNet for feature
extraction and GANSs for data augmentation to detect non-traumatic VCFs from CT images. We
describe the architecture of both networks, preprocessing techniques, and the training setup.

2.1. DenseNet Architecture for Feature Extraction

The DenseNet architecture (Densely Connected Convolutional Networks) was chosen for its
capacity to mitigate vanishing gradients and facilitate efficient feature reuse through densely
connected layers (Fooladgar and Kasaei, 2020; Huang et al., 2020; Zhang et al., 2021). DenseNet
architecture improves information flow and allows the model capable of learning representations
at multiple levels of abstraction critical in medical imaging, such as the subtle structural changes
seen in VCFs (Umirzakova et al., 2023).
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Figure 1: Model architecture with DenseNet121 approach <(Shazia et al., 2021)>

In Figure 1, illustrates the architectural flow of the DenseNet-121 model, showcasing its
convolutional layers, dense blocks, and transition layers. The input data undergoes a series of
feature extraction processes, followed by pooling and dense layers, ultimately leading to a
classification output using softmax activation, which differentiates between COVID-19 and
pneumonia classes (Shazia et al., 2021). The DenseNet-121 variant, which contains 121 layers
including convolutional and transition layers, was selected. DenseNet's ability to propagate
features from earlier layers to later layers helps in accurately detecting fractures (Warin et al.,
2023; Bastidas-Rodriguez et al., 2020). In this setup, the product of process dense piece is
concatenated and passed forward to ensure that the model retains information crucial for
identifying even minor fractures in vertebrae (Jin et al., 2019).

2.2. GANs for Data Augmentation

GANs are employed to generate synthetic CT images, addressing the limitation of the
relatively small dataset. The GAN architecture consists of a generator that produces synthetic CT
images and a discriminator that learns to distinguish real images from synthetic ones (Bahrami et
al., 2021; Frid-Adar et al., 2018). This adversarial training leads to the generation of highly
realistic images, increasing the diversity and volume of the training data (Karras et al., 2020).
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Figure 2: GAN architecture <(Tian et al., 2020)>

In Figure 2, the generator network learns to create realistic CT images of vertebrae, while the
discriminator enhances its capability to evaluate the authenticity of these images. Once trained,
the GAN generates synthetic images added to the training dataset, mitigating overfitting and
improving generalization to unseen data (Rather and Kumar, 2024; Xue et al., 2021; Ferdousi et
al., 2024).

2.3. Preprocessing of CT Images

To ensure consistency in input data, all CT images were preprocessed before being fed into
the model. The preprocessing steps included resizing images to 224x224 pixels, intensity
normalization, and data augmentation techniques such as random rotations, flipping, and zooming
to introduce variability (Incir and Bozkurt, 2024). These steps improve model robustness by
simulating different imaging conditions that could occur in clinical settings.

The dataset was stratified into training, validation, and test subsets, adhering to a 75:12.5:12.5
ratio, thereby guaranteeing that the model's efficacy is evaluated on data that has not been
encountered during training.

2.4. Training Procedure

The hybrid DenseNet-GAN model was trained in two phases (Ding et al., 2023). First, the
DenseNet was pre-trained on the ImageNet dataset and then fine-tuned using the vertebral fracture
dataset. Simultaneously, the GAN was trained to generate synthetic images. After GAN training,
the synthetic images were integrated into the dataset for the final end-to-end training of the hybrid
model (Meena and Roy, 2022; Atasever et al., 2023; Jiang et al., 2023).

The training phase was carried out using the Adam optimizer with a learning rate of 0.001,
batch size of 32, and a maximum of 50 epochs. The cross-entropy loss function was used for
classification, and early stopping was employed to prevent overfitting (Fei et al., 2020). During
training, the model’s performance was monitored using the validation set, and the final model
was evaluated on the test set.

2.5. Experimental Setup
This section describes the experimental setup used to assess the performance of the hybrid

DenseNet-GAN model. We provide details on the dataset, evaluation metrics, and the baseline
models used for comparison.
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2.6. Dataset Description

The dataset used in this study comprised 200 CT scans from patients, of which 101 images
contained non-traumatic VCFs, and 99 images were without fractures from kaggle dataset
(https://www kaggle.com/datasets/mtrkmen/vkfractures).

Figure 3: Examples of images of patients with spinal fractures

Figure 3 presents sample radiographic images of individuals diagnosed with vertebral
fractures. These images serve as representative examples for the dataset used in the study,
highlighting various types of fractures for model training and evaluation purposes.

Figure 4: Examples of images of patients without spinal fractures

Figure 4 displays sample radiographic images of individuals who do not have any vertebral
fractures. These images are used as part of the dataset to train and evaluate the model's ability to
accurately distinguish between fractured and non-fractured vertebra.
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Figure 5: Histogram of the Dataset Classes

In Figure 5, the histogram visually represents the distribution of the two primary categories
in the dataset: fractured and non-fractured vertebrae. The dataset consists of a total of 407
fractured vertebrae images and 393 non-fractured vertebrae images, resulting in a nearly balanced
class distribution. Initially, 50 fractured and 50 non-fractured images were separated as test data.
The remaining 51 fractured and 49 non-fractured images were augmented using GAN method,
enhancing the representation of non-fractured vertebrae. The final dataset comprises 100 test
images, 100 validation images, and 600 training images, totaling 800 images. This balanced and
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augmented distribution ensures that the model is trained on an equal number of both categories,
facilitating effective learning from each class. The histogram's red bar represents the fractured
vertebrae images, while the green bar represents the non-fractured vertebrae images, highlighting
the crucial role of the dataset’s balance in enhancing the model’s performance.
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Figure 6: Histogram of Data in Train, Validation, and Test Sets

The histogram in Figure 6 illustrates the distribution of the dataset across three distinct subsets:
Train, Validation, and Test. The test set, consisting of 100 patients (51 fractured, 49 non-
fractured), was separated from the beginning using real patient data, ensuring an unbiased
evaluation of the model’s performance on unseen cases. The remaining 600 patients were used to
generate an expanded dataset through augmentation techniques, increasing the total number of
samples to 800. As a result, the overall dataset comprises 800 patients distributed into three sets:
100 for training, 100 for validation, and 600 for testing.

The training set, containing 100 images, represents the majority of the data used for model
learning. The validation set, with 100 images, is utilized for fine-tuning hyperparameters and
preventing overfitting. Similarly, the test set, consisting of 600 images, ensures a reliable
evaluation of the model’s generalization ability. The chart visually emphasizes this dataset
allocation, maintaining a structured separation for training, validation, and testing. The color
scheme—Dblue for the training set, orange for validation, and green for the test set provides a clear
distinction between these subsets.

All images were annotated by expert radiologists, ensuring the accuracy of the fracture and
non-fracture labels. Each scan was converted into 2D slices, significantly increasing the number
of training samples. The dataset was stratified into training (12.5%), validation (12.5%), and test
(75%) subsets to maintain class balance and robust model evaluation.

To mitigate the impact of class imbalance, augmentation techniques were applied exclusively
to the training and validation sets, ensuring a more diverse and representative dataset. This
approach allowed for a broader distribution of fracture patterns, improving the model’s
robustness. The expanded dataset helped enhance the model’s ability to generalize effectively to
real-world cases.
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2.7. Evaluation Metrics

The performance of the hybrid DenseNet-GAN model was evaluated using the following
metrics:

2.7.1. Accuracy
The percentage of correctly classified images (Story and Congalton, 1986).

TP+TN (1)

Accuracy = ———
Y = TP+TN+FP+FN

Where:

TP = Correctly identified fracture cases

TN = Correctly identified non-fracture cases
FP = Incorrectly identified fracture cases

FN = Incorrectly identified non-fracture cases.

2.7.2. Precision

The ratio of correctly predicted fracture images to the total predicted fracture images.

.. TP
Precision = TPiFP 2)

2.7.3. Recall (Sensitivity)

The ratio of correctly predicted fracture images to the actual number of fracture images
(Lindsey et al., 2018).

TP
Recall = TPIFN 3)

2.7.4. F1-Score

By employing the harmonic mean of precision and recall, we obtain a holistic metric that
effectively balances and encapsulates the model's overall performance (Wardhani et al., 2019).

Precision*Recall
F1—Score =2 ———— 4

Precision+Recall
2.7.5. AUC-ROC Curve

The receiver operating characteristic (ROC) curve's area under the curve (AUC) offers a
quantitative assessment of the model's capacity to distinguish between fracture and non-fracture
cases (Kumar et al., 2023).

FP
FPR = FP+TN ®)

Where:
FPR: False Positive Rate.
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These metrics were calculated for both the validation and test sets to assess model
generalization.

2.8. Baseline Comparisons

To establish the efficacy of the hybrid model, we compared its performance against several
baseline models:

DenseNet without GAN augmentation: The DenseNet model was trained without synthetic
data to assess the impact of the GAN-generated images (Alsaidi et al., 2024; Verma et al., 2020).
Standard CNN: A conventional CNN model without dense connections was implemented to
evaluate the advantages of DenseNet’s architecture (Yu et al., 2019).

Random Forest: A non-deep learning classifier often used for medical classification tasks was
included as a baseline for comparison (Teoh et al., 2022; Ghazouani and Barhoumi, 2021).

3. PROPOSED MODEL

In this study, we proposed a hybrid deep learning model that combines DenseNet-121 and
GANSs to detect non-traumatic vertebral compression fractures from CT images. The proposed
model leverages the powerful feature extraction capabilities of DenseNet-121 and the data
augmentation strength of GANs to improve classification accuracy.
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¢ CNN Model

* Random Forest

* Fractures * DenseNet121
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Figure 7: Proposed model architecture

Figure 7 illustrates the structured workflow of the proposed hybrid deep learning model for
detecting vertebral fractures. The process begins with data input, where X-ray images are labeled
as either "Fractures" or "Nonfractures." These images then undergo preprocessing, incorporating
data augmentation techniques such as rotations, flipping, and zooming to enhance the model’s
robustness and mitigate overfitting. In the feature extraction stage, DenseNet-121, a powerful
deep convolutional neural network, is employed to extract key features from the images. These
features are then passed to the classification stage, where multiple models—including DenseNet-
GAN, DenseNet without GAN, a CNN model, and Random Forest—are used to categorize the
images into "fractures" or "nonfractures." Finally, the model's performance is assessed using
various metrics such as accuracy, precision, recall, Fl-score, and AUC/ROC, providing a
comprehensive evaluation of its ability to make accurate predictions and effectively distinguish
between the two classes.
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4. RESULTS AND DISCUSSION

The hybrid DenseNet-GAN model exhibited remarkable performance with an accuracy of
93.0% on the test set. This result not only surpasses that of the baseline models but also highlights
the model's proficiency in detecting non-traumatic VCFs (VCFs). The developed deep learning
model achieved a precision of 94.1%, recall of 90.2%, and Fl-score of 92.1% in detecting
vertebral compression fractures (VCFs) the dataset with ethical approval from Istanbul
University-Cerrahpasa Ethics Committee. These results indicate the model's potential for clinical
application. Additionally, the AUC-ROC score of 0.93 underscores the model's exceptional
discriminatory power, distinguishing between fractured and non-fractured vertebrae with high
accuracy. The significant performance improvement can be attributed to the integration of GAN-
generated images, which addressed the challenges associated with the small and imbalanced
dataset used in the study.

To clearly highlight the unique contributions of our model, we conducted a comparative
analysis with existing studies in the literature. Our model, which combines DenseNet-121 for
feature extraction with GANs for data augmentation, shows significant improvements in both
accuracy and robustness over previous methods. Specifically, the integration of GANs to generate
synthetic data addresses the common issue of class imbalance in medical image datasets, such as
those used for vertebral fracture detection. This approach not only creates a more balanced dataset
but also enhances the model's ability to generalize to unseen cases, offering a distinct advantage
over traditional machine learning techniques and other deep learning models that rely solely on
limited real data.

In the absence of GAN-generated images, the DenseNet model achieved an accuracy of
88.0%. This result highlights the crucial role of data augmentation in enhancing the model's
performance. The improvement observed with GAN augmentation emphasizes the value of
expanding the training dataset to prevent overfitting and improve generalization. The increase in
accuracy suggests that the GAN-generated images provided additional diverse examples that
helped the model learn more robust features, thereby improving its performance on unseen data.

Table 1. Metric of classification value

. DenseNet-GAN DenseNet
Metric Model (Without GAN) CNN Model Random Forest
Accuracy 93.0% 88.0% 85.0% 81.0%
Precision 94.1% 89.1% 86.1% 82.1%
Recall 90.2% 85.3% 81.4% 77.5%
F1-Score 92.1% 87.2% 83.7% 79.7%
AUC-ROC 93.0% 88.0% 85.0% 81.0%

In Table 1, the standard CNN model achieved an accuracy of 85.0%. This performance, lower
than the deep learning models, highlights the advantages of DenseNet's densely connected
architecture. These dense connections in DenseNet facilitate enhanced feature extraction,
enabling the model to capture the intricate details of vertebral structures crucial for accurate
fracture detection. The standard CNN, lacking these dense connections, was less effective at
identifying the subtle features associated with VCFs.

The Random Forest classifier, with an accuracy of 81.0%, demonstrated a notably lower
performance compared to the deep learning models. For the Random Forest (RF) model, the
input data consisted of features extracted using the outlined method, including texture features,
histogram-based features, and edge-related features derived from the CT images. This outcome
underscores the limitations of traditional machine learning approaches for complex image
classification tasks. Unlike deep learning models that benefit from hierarchical feature extraction,
Random Forest, while simpler, may not fully capture the intricate complexities of medical images.
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This performance gap highlights the advantages of modern deep learning techniques in handling
such complex image data.

Table 2. Confusion matrix of proposed model

Predicted: Fractured Predicted: Non-Fractured
Actual: Fractured 46 (TP) 5 (FN)
Actual: Non-Fractured 3 (FP) 46 (TN)

In Table 2, the confusion matrix provides a comprehensive evaluation of the model's
performance in accurately classifying VCFs. The model correctly identified 46 of the actual
fractured cases as "Fractured" (true positives), while 5 fractured cases were incorrectly classified
as "Non-Fractured" (false negatives). This indicates a strong recall, meaning the model is
proficient at identifying a large portion of fractured vertebrae. On the other hand, 46 of the actual
non-fractured cases were correctly classified as "Non-Fractured" (true negatives), with only 3
being misclassified as "Fractured" (false positives). The low number of misclassifications in both
categories reflects the model’s high precision and overall accuracy, as it minimizes both false
positives and false negatives, ensuring reliable diagnostic performance.

Table 3. Feature importance table

Feature Importance Score
Fracture Pattern (DenseNet) 0.30
Bone Density (DenseNet) 0.28
Vertebra Shape (DenseNet) 0.20
GAN-Augmented Features 0.22

Table 3 presents the feature importance scores associated with different attributes in the
analysis. The scores reflect the relative significance of each feature in contributing to the model's
performance. The Fracture Pattern feature, derived from DenseNet, holds the highest importance
score of 0.30, indicating its substantial impact on the model's predictions. Following closely is
the Bone Density feature, also from DenseNet, with an importance score of 0.28. This suggests
that bone density is a significant predictor but slightly less influential than fracture patterns. The
Vertebra Shape feature, another DenseNet-based attribute, has a slightly lower importance score
of 0.20, highlighting its moderate role in the model's assessment. Lastly, the GAN-Augmented
Features have an importance score of 0.22, illustrating their contribution to the model, albeit less
than the top two DenseNet-derived features. These scores collectively provide insights into which
features are most critical for the predictive capabilities of the model.

The impact of GAN-generated images on the model's performance was substantial. By
augmenting the dataset, GANs contributed to increased diversity and volume, which in turn
enhanced the model's ability to generalize to new, unseen data. The improved generalization
capability was particularly beneficial in detecting subtle fractures, which could have been missed
with a smaller, less diverse dataset. This finding reinforces the importance of incorporating
advanced data augmentation techniques to address the challenges of limited and imbalanced
datasets in medical imaging.

5. CONCLUSIONS

The study conclusively demonstrates that the hybrid DenseNet-GAN model is highly
effective for detecting non-traumatic VCFs from CT images. By combining the advanced feature
extraction capabilities of DenseNet with the synthetic data generation strengths of GANSs, this
model addresses two critical challenges in medical imaging. DenseNet’s architecture excels in
capturing both low- and high-level features from complex CT images, which is essential for
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accurate fracture detection. Meanwhile, the use of GANs to generate synthetic images overcomes
the issue of limited annotated datasets, providing a more comprehensive and varied training set.
This synergy between DenseNet and GANSs results in a model with superior performance, as
evidenced by its high accuracy, precision, recall, and F1-score, along with a remarkable AUC-
ROC score of 0.93. Such performance indicates the model’s capability to effectively distinguish
between fractured and non-fractured vertebrae, which is crucial for clinical practice.

The high AUC-ROC score of 0.93 achieved by the model underscores its effectiveness in
accurately differentiating between VCFs and non-fractured vertebrae. This performance metric is
vital in clinical settings where precise detection and diagnosis are essential for patient
management and treatment planning. The ability of the model to deliver reliable and accurate
results can greatly assist radiologists in diagnosing fractures more efficiently and accurately. By
automating and enhancing the fracture detection process, this approach holds the potential to
improve patient outcomes, reduce diagnostic errors, and streamline clinical workflows.

Despite the impressive performance of the hybrid DenseNet-GAN model, the study
acknowledges certain limitations. A notable limitation is the relatively small size of the dataset
used for training and evaluation. Although GAN augmentation improved the dataset’s diversity,
the overall volume remains limited compared to the extensive datasets typically required for deep
learning models. Future research should focus on evaluating the model's performance on larger,
more diverse datasets to validate its robustness and applicability across different clinical settings
and patient populations. This will ensure that the model performs consistently well in various
scenarios and can be generalized to broader applications.

Additionally, while the use of GAN-generated images was beneficial, there is room for further
improvement in synthetic image quality. Future studies should explore the implementation of
more advanced GAN architectures, such as conditional GANs or other state-of-the-art variants,
to generate even more realistic images. Enhancing the quality of synthetic images can further
boost the model’s performance and potentially expand its application to other medical imaging
domains beyond vertebral fractures. Continued advancements in both GAN technology and deep
learning techniques will be crucial in pushing the boundaries of automated medical diagnostics.
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