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Abstract Objective: Colorectal cancer is a life-threatening condition. Karanjin, a furanoflavonol, has shown thera-
peutic potential against cancer. However, a comprehensive analysis of its mechanism of action is currently
lacking. Hence, the primary objective of this study was to employ an integrated network pharmacology
approach along with molecular docking to unravel the probable efficacy of karanjin in treating colorectal
cancer.

Materials and Methods: Pharmacological assessments were performed using QikProp. Protein targets
sourced from ChEMBL, Swiss target prediction, and PharmMapper were cross-referenced with colorectal
cancer targets identified from GeneCards. A protein-protein interaction (PPI) network was generated using
Cytoscape. Key targets were identified using cytoHubba. Functional insights were obtained through GO
and KEGG analyses using DAVID. A Compound–Disease–Pathways–Targets Network was developed based
on integrated data. Molecular docking was performed using YASARA. Finally, to validate the stability of
the docked ligand-protein complexes, MD simulations were conducted.

Results: Karanjin met the ADME criteria and exhibited interactions with 270 targets, including 263 indi-
viduals linked to diseases. The topological analysis of the PPI network identified 24 targets. GO analysis
yielded 20 terms, mainly associated with signal transduction, protein binding, and the cytosol. KEGG
analysis identified 20 signalling pathways, with pathways in cancer being the most prominent. Using these
data, Compound-Disease-Pathways-Targets network was constructed. Molecular docking and simulations
highlighted strong interactions between AKT1 and HSP90AA1.

Conclusion: This study indicated that karanjin may exhibit anticancer properties against colorectal cancer
via modulating PI3K-Akt signalling pathway. This study provides a building block for further research.
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INTRODUCTION
In a society experiencing rapid development and improving
standards of living, cancer is regarded as an ever-growing
threat. Cancer develops from the transformation of normal
cells into tumour cells as they progress from precancerous
lesions to malignant tumours over the course of many stages.¹
Cancer rates for colon cancer rank third among all cancers
worldwide, with an expected incidence rate of 2.4 lakhs by
2035.² Significant technological advances have been achieved
primarily in conventional therapies, but cancer remains a
leading cause of mortality for several reasons.

For the treatment of cancer, targeting or suppressing a
single gene product or specific signalling pathway, which
may have up to 500 distinct dysregulated genes, is unlikely
to be effective in treating cancer.3,4 The majority of cancer
treatment development is still focused on modulating
individual targets, usually one at a time, with compounds
dubbed "targeted therapies," "smart drugs," or "magic bullets."
To increase efficiency of cancer treatment, the current
paradigm of chemotherapy is a combination of multiple
drugs and radiation therapy, each with a particular mode
of action.⁵ The Food and Drug Administration (FDA) has
approved several drugs that modify multiple targets. However,
these medications are expensive, have an extensive list of
unfavourable side effects, and are ineffective in changing
the course of the disease. Investigating the plant kingdom
may yield promising directions for the swift advancement
of new anticancer agents. Numerous phytochemicals are
increasingly recognised as a valuable source of effective yet
safer treatments for various types of cancer.⁶ However, the
molecular targets of these natural compounds and their true
potential as anticancer agents remain unknown.

With advances in computer technology, network
pharmacology has emerged, combining various fields to study
drug actions and interactions with multiple targets.⁷ Network
pharmacology is now extensively utilised to explore the
molecular mechanisms underlying drug actions, providing
deeper insights into how drug-like substances work at the
cellular and molecular levels.⁸ Molecular docking is a widely
recognised structure-based computational technique in drug
discovery that predicts ligand-target interactions, aiding in
the identification of new medicinal compounds. Recent
studies have also explored combining docking with molecular
dynamics (MD) to improve the accuracy of virtual screening
predictions.⁹

Karanjin is a principal furanoflavonol constituent present
in the seeds of the medicinal plant Millettia pinnata.
Earlier reports have confirmed the voluminous action

of karanjin as an anticancer agent in cell lines A549,
HepG2, HL-60 and HeLa.10,11 Karanjin also induced apoptosis
in dimethylhydrazine-induced colon carcinoma in rats by
downregulating the anti-apoptotic proteins Bcl2 and p53,
whereas it upregulated the expression of BAX.¹² However,
the detailed molecular mechanism of karanjin in treating
colorectal cancer is still unclear. The present study aimed
to investigate the potential inhibitory effects of the drug
using a network pharmacology approach. The initial steps
involved collecting the potential targets of karanjin and the
targets associated with colon cancer. Subsequently, common
genes were identified and used to construct Protein-Protein
Interaction (PPI) and Compound- Disease -Pathways- Targets
networks. The Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis were performed. Finally,
molecular docking and simulation were used to validate the
action of karanjin with its core targets.

MATERIALS AND METHODS

Screening Chemical Structures from the PubChem
Database

The chemical structure of karanjin (PubChem CID: 100633) was
obtained from the PubChem Database (https://pubchem.ncbi.
nlm.nih.gov/). PubChem is an open chemistry database, and
it is the largest and freely accessible online server.

Analysis of the Pharmacokinetic Properties of
Karanjin

The drug-like properties of karanjin were assessed by
predicting the absorption, distribution, metabolism, and
excretion of ADME (Figure  1). QikProp 4.4 (Schrödinger, LLC,
New York) was used to analyse these properties. The
canonical SMILES of karanjin was retrieved from the PubChem
database. The force field was set to OPLS 2005, and all
other parameters were kept constant. QikProp estimates a
wide range of pharmaceutically relevant properties. Karanjin
was also analysed to be consistent with Lipinski’s rule of
five, which should be considered for the development of a
successful drug.¹³

Identification of Potential Protein Targets

The potential protein target of karanjin was predicted
using web tools viz., Swiss Target Prediction (http://
www.swisstargetprediction.ch/), ChEMBL (https://www.ebi.ac.
uk/chembl/), and PharmMapper (https://www.lilab-ecust.cn/
pharmmapper/) tools. Swiss Target Prediction is a freely
available web service that is used to identify the targets of
small bioactive molecules in vertebrates, including humans.
Swiss Target Prediction is also applicable to determining
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Figure 1. Flowchart of the work.

the macromolecular targets of a small molecule that is
considered bioactive.¹⁴ The canonical SMILES of karanjin was
used to predict targets using Swiss Target Prediction. The term
“karanjin” was used to search targets in ChEMBL. ChEMBL is
an open data repository that includes interaction, functional,
and ADMET data for a wide range of bioactive compounds that
possess drug like properties.¹⁵ The 2D structure of karanjin in
sdf format was used to identify targets using PharmMapper.

Acquisition of Known Targets of Colorectal Cancer

The target genes related to the pathogenesis of colorectal
cancer were identified using GeneCards (www.genecards.org).
The colorectal cancer and karanjin associated protein
targets were then imported into the Venn diagram (https://
bioinformatics.psb.ugent.be/webtools/Venn/).

The intersection genes were retrieved to identify candidate
genes.

PPI Network Analysis

Using STRING in Cytoscape (version 3.9.1 software (https://
cytoscape.org/), a PPI network of candidate genes was created
with a confidence level of 0.9. Cytoscape is an open-source
software that is used for integrating, visualising, and analysing
biological networks.¹⁶ The key targets were assessed based
on the topological features of "degree," "betweenness," and
"closeness" (Figure 1).

GO and KEGG Enrichment Analyses

GO and KEGG enrichment analysis was performed using
the Database for Annotation Visualisation and Integrated
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Discovery DAVID (https://david.ncifcrf.gov/). The key target
list in the form of a gene identifier was uploaded in
the DAVID input box. The list was submitted to start
the analysis. The DAVID database facilitates the functional
annotation and analysis of a large number of genes.¹⁷
GO functionally categorises key genes into three main
categories: cellular components (CCs), molecular functions
(MFs), and biological processes (BPs). At the molecular level,
the functional implications can be assigned to genes using
GO. KEGG enrichment analysis revealed potential biological
pathways involving key genes.¹⁸ The SR plot (https://www.
bioinformatics.com.cn/en) of the shortlisted key target list
was used to generate a bubble chart for enrichment analysis
(Figure 1).

Construction of Compound-Disease-Pathways-
Targets Network

A network of Compound-Disease-Pathways-Targets (CDPT)
was created to reveal the pharmacotherapeutic mechanism of
karanjin. The DAVID database was used to obtain the DisGeNET
data. The data from KEGG pathway and PPI network were
obtained using cytoscape software. Further, using the “merge”
tool of cytoscape software version 3.9.0, all networks were
merged to form the final network. In the network nodes for
drug and disease, target genes, and disease-related pathways
were represented with different colours and shapes using the
yFiles layout algorithm of the cytoscape tool.

Acquisition of Protein Structure

The 3D crystal structures of six different target proteins
scrutinised by topological parameter i.e. SRC (2bdf), AKT1
(3o96), MAPK1 (1tvo), HRAS (5p21), HSP90AA1 (4nh8), and PIK3CA
(2rd0), were obtained from the RCSB Protein Data Bank (RCSB
PDB) (https://www.rcsb.org/). Established in 1971, the Protein
Data Bank (PDB) was the first publicly accessible digital library
in the biological sciences. The active site of the protein was
determined using the Computed Atlas of Surface Topography
of Proteins (CASTp) (http://sts.bioe.uic.edu).¹⁹

Molecular Docking

Molecular docking was performed using the YASARA 22.5.22
software. The molecular docking methodology examines the
behaviour of small molecules in a target protein's binding
site. The proposed method is based on the AutoDock
Vina platform.²⁰ The proteins and ligands were prepared
using YASARA. During protein and ligand preparation, water
molecules were removed, hydrogen atoms were added, and
energy was minimised, while a simulation cell was also
defined around the active site of the protein. The macrofile

dock_run.mcr was used to calculate the interaction energy
between the protein receptor and karanjin. The higher
the docking score in YASARA, the better the protein-ligand
interaction, whereas a negative value indicates no binding.
After docking, the docked complexes were visualised and
converted into PDB files. The protein-ligand interactions were
further visualised in 3D and 2D using the Discovery Studio
visualiser (Figure 1).

Molecular Dynamics (MD) Simulation

MD simulations of the docked ligand-receptor complexes
AKT1-karanjin and HSP90AA1-karanjin was conducted using
YASARA version 22.5.22 based on high binding energy. The
simulation ran for 100 ns with the AMBER 14 force field. A cubic
simulation cell was created with dimensions of 100.04 Å x
100.04 Å x 100.04 Å. Energy minimisation was performed using
the steepest gradient method to alleviate any steric clashes.
The pH and physiological temperature were maintained at
7.4 and 298 K, respectively. To mimic a physiological saline
environment, water molecules and NaCl counter-ions (0.15 M)
were added to the simulation cell. The macrofile md_run.mcr
facilitated the simulation, which was performed over 100 ns
with trajectory files generated every 100 ps to record the
dynamics of interactions. After the simulation, the resulting
files were analysed using md_analyze.mcr and exported in .tab
format for graphical representation.

RESULTS

Pharmacokinetic Analysis

The drug like properties of karanjin were assessed using
QikProp. The results (Table 1) show that karanjin exhibits high
human oral absorption at 100% and QPP Caco-2 of 3979.043
nm/s. Other pharmacokinetic parameters, such as QPlogPo/
w=3.33, QPlogS of −3.564 mol dm⁻³, QPlogKhsa=0.104, and
PSA=51.639, were all within the acceptable range for human
use.

Candidate Genes Associated with Karanjin and
Colorectal Cancer

A total of 168 target genes based on a high z' score from
PharmMapper were selected. The z' score is derived from
the fit score of the molecule and a library score matrix.
PharmMapper identifies the optimum mapping poses of the
query molecule against all pharmacophore models.²¹ The
target prediction through the ChEMBL database gives “active”
or “inactive,” depending on whether karanjin is projected to
interact with the target or not. From the ChEMBL database, 13
active targets with a confidence level of 90% were selected.
The targets are predicted by reverse screening based on the

European Journal of Biology, 84 (1): 30–42   33

https://david.ncifcrf.gov/
https://www.bioinformatics.com.cn/en
https://www.bioinformatics.com.cn/en
https://www.rcsb.org/
http://sts.bioe.uic.edu


Karanjin Molecular Targets in Colorectal Cancer | Ansari et al., 2025

Table 1. Pharmacokinetic properties: absorption, distribution, metabolism,
and excretion (ADME) of karanjin.

Sr.
No.

Property/Descriptor Karanjin Permissible Limit

1 #starsa 0 0-5 

2 CNSb 1 −2 (inactive), +2
(active)

3 mol_MW;c 292.29 130.0 – 725.0

4 QPlogPo/wd 3.33 −2.0-6.5

5 QPlogSe −3.564 −6.5 −0.5

6 QPlogHERGf −5.303 concern below −5

7 QPPCacog 3979.043 <25 poor, >500 great

8 QPlogKhsah 0.104 −1.5 – 1.5

9 HumanOralAbsorptioni 3 1, 2, or 3 for low,
medium, or high

10 PercentHumanOral
Absorptionj

100 >80% is high <25% is
poor

11 PSAk 51.639 7.0 – 200.0

12 RuleOfFivel 0 maximum is 4

13 RuleOfThreem 0 maximum is 3

aNumber of propertyor descriptor values that fall outside the 95% range
of similar values for known drugs. b Predicted central nervous system
activity on a –2 (inactive) to +2 (active) scale. c; Molecular weight of
the molecule. d Predicted octanol/water partition coefficient. e Predicted
aqueous solubility, log S. S in mol dm-3 is the concentration of the solute
in a saturated solution that is in equilibrium with the crystalline solid. f

Predicted IC₅₀ value for blockage of HERG K+ channels. g Predicted apparent
Caco-2 cell permeability in nm/s. Caco2 cells are a model for the gut-
blood barrier. h Prediction of binding to human serum albumin. i Predicted
qualitative human oral absorption: 1, 2, or 3 for low, medium, or high.
j Predicted percent human oral absorption on a 0 to 100% scale. The
prediction is based on a quantitative multiple linear regression model. k

Van der Waals surface area of polar nitrogen and oxygen atoms. l; Number
of violations of Lipinski’s rule of five. m Number of violations of Jorgensen’s
rule of three.

similarity principle in Swiss Target Predictions.¹⁴ A total of
100 target genes with high probability were acquired from
the Swiss Target Predictions. After eliminating duplicates, 270
genes were recognised as potential targets of karanjin. From
GeneCards, 21.607 known targets for colorectal cancer were
identified. Ultimately, 263 intersecting genes were selected as
candidate genes for further investigation (Figure 2).

PPI Network Analysis

A PPI network was built based on the 263 candidate genes
by importing them into the cytoscape, with the highest
confidence level of 0.9. The PPI network comprised 176 nodes
and 542 edges (Figure 3A). Additionally, two primary protein-
protein interaction clusters were identified using the MCODE
algorithm. The first cluster (Figure  3B) included 19 nodes
and 39 edges, featuring core genes such as HRAS, MAPK1,
MAPK8, and STAT1. The second cluster (Figure 3C) comprises

Figure 2. A Venn diagram illustrates the overlap between 263 candidate
genes identified as potential targets of the compound karanjin and 21,607
known targets for colorectal cancer.

Table 2. The topological parameters, viz. degree, betweenness, and closeness
centrality, were determined using the cytohubba tool of cytoscape software
for the major targets of karanjin for colorectal cancer.

Sr. No. GeneID Degree Betweenness Closeness

1 SRC 41 5542.887 94.067

2 AKT1 30 3855.929 88.126

3 MAPK1 30 2773.450 88.443

4 HRAS 30 2640.921 86.876

5 HSP90AA1 28 3290.569 86.800

6 PIK3CA 28 1299.068 83.302

7 RXRA 22 3765.790 80.683

8 ESR1 19 1212.546 80.050

9 AR 19 1707.364 82.017

10 MAPK14 18 840.192 78.502

11 NR3C1 18 1037.992 79.476

12 JAK2 18 328.393 77.893

13 MAPK8 17 2063.028 78.402

14 HDAC1 16 836.641 73.043

15 F2 14 2186.691 73.819

16 STAT1 14 338.134 75.633

17 PRKACA 13 1601.875 72.460

18 CASP3 13 1231.867 71.944

19 CDK4 13 795.684 75.143

20 MAP2K1 13 354.165 73.702

21 ERBB4 12 102.712 71.593

22 PIK3CB 12 69.325 72.319

23 MTOR 10 551.901 70.293

24 CDK6 10 318.30217 70.47619

7 nodes and 17 edges. In the analysis of the initial network
using various algorithms, only nodes with elevated values
of "degree," "betweenness," and "closeness" were considered
key targets. Finally, 24 key targets were collected for pathway
enrichment analysis, with the top three being AKT1, MAPK1, and
SRC (Table 2).
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GO Enrichment Analysis

The gene list was submitted to the DAVID web tool to
functionally annotate the impact of key targets in BPs, CCs,
and MFs. As shown in Figure  4A, Figure  4B, and Figure  4C,
enriched BPs, CCs, and MFs (p<0.01) term includes signal
transduction GO:0007165, protein binding GO:0005515, and
cytosol GO:0005829, respectively. The dot size indicates the
quantity of targets linked to a particular term, while the colour
represents the log10 (p-value). The enrichment along the x-
axis represents the ratio of target genes associated with all
annotated genes within the pathway.

The CC annotations (Figure  4B) analysis identified several
cellular components, including the nucleoplasm GO:0005654,
cytoplasm GO:0005737, and nucleus GO:0005634, which were
targeted by karanjin. According to GO, MFs (Figure  4C) the
major activities associated with the targets are ATP binding
GO:0005524 and protein serine/threonine/tyrosine kinase
activity GO:0004712. Further BP terms (Figure 4A) showed that

key genes were involved in the positive regulation of cell
proliferation GO:0008284, negative regulation of apoptotic
process GO:0043066, cell migration GO: 0016477, MAPK cascade
GO:0000165. BP enrichment showed that identified target
genes were significantly associated with cancer cell survival,
proliferation, migration, and differentiation.

KEGG Enrichment Analysis

KEGG enrichment analysis was conducted to identify the
pathways linked to important targets, resulting in the
identification of 20 significant signalling pathways with
significance level p<0.01. The dot size indicates the quantity
of targets linked to a particular term, while the colour
represents the log10 (p-value). The enrichment along the x-
axis represents the ratio of target genes associated with all
annotated genes within the pathway (Figure 4D). The pathways
in cancer (hsa05200) were recognised as the most important
with the highest amount of target enrichments and lowest
p value. The PI3K-Akt signalling pathway (hsa04151), MAPK

Figure 3. (A) PPI (Protein-Protein Interaction) Network of all candidate gene targets of karanjin with 176 nodes and 542 edges at a confidence level of 0.9; (B)
A protein-protein cluster with 19 nodes and 39 edges was identified using the Molecular Complex Detection (MCODE) algorithm; (C) A smaller MCODE cluster
was identified with 7 nodes and 17 edges.
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signalling pathway (hsa04010), Colorectal cancer (hsa05210),
mTOR signalling pathway (hsa04150) (Figure 4D).

Compound-Disease-Pathways-Targets (C-D-P-T)
Network

Recent advances in genomics have prompted a paradigm
shift in drug discovery from an emphasis on strong single-
target interactions towards a more global and comparative
investigation of multitarget networks. The (C-D-P-T) network
(1 compound, 24 targets, 20 pathways and 1 disease) is shown
in Figure 5. Following that, 6 main targets for karanjin were
identified using the CDPT network (Figure 5), the majority of
which were involved in each pathway in the pathogenesis of
colon cancer.

Molecular Docking

For molecular docking with karanjin, a total of 6 target
genes with strong interactions with other targets, pathways,
and potential components were selected. The proteins
included SRC (2bdf), AKT1 (3o96), HSP90AA1 (4nh8), HRAS
(5p21), MAPK1 (1tvo), and PIK3CA (2rd0). These proteins
are involved in the pathogenesis of colorectal cancer. A
higher binding energy indicates more favourable protein-
ligand interaction. According to the molecular docking
results presented in Table  3, karanjin has the highest
binding energy with AKT1, i.e., 10.54 kcal/mol. The findings
indicated that karanjin demonstrates stronger interactions
with AKT1 (10.54 kcal/mol), HSP90AA1 (9.35 kcal/mol), HRAS
(9.14 kcal/mol), and MAPK1 (8.57 kcal/mol) compared with
their respective positive inhibitors, Idelalisib (9.53 kcal/mol),

Figure 4. Bubble plot generated using SR plot (A) GO Biological processes; (B) GO Cellular Components; (C) GO Molecular Functions; (D) KEGG enrichment. The
size and the colour of the dot reflect the number of target genes and -log10 (p-value) respectively associated with these terms.
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Irsogladine (8.60 kcal/mol), Tipifarnib (7.90 kcal/mol), and
FR180204 (8.03 kcal/mol). For SRC, the positive inhibitor,
Dasatinib, exhibited stronger binding affinity (8.49 kcal/mol)
than karanjin (7.82 kcal/mol). Similarly, the positive inhibitor
of PIK3CA, Alpelisib, showed a higher binding affinity
(9.33 kcal/mol) than karanjin (7.93 kcal/mol). Figure  6
illustrates that karanjin interacts strongly with the key binding
pocket of the protein. This interaction involves multiple
binding modes, including hydrogen bonding, carbon hydrogen
bonding, Pi-alkyl/Pi-Pi stacked/Pi-Cation/Pi sigma/Pi-Pi T-
shaped interactions within the active site.

MD Simulation

Based on the docking results, the AKT1 and HSP90AA1 protein-
ligand complexes were selected for the 100-ns MD simulation.
In this study, two protein-karanjin complexes were subjected
to MD simulation by root-mean-square deviation (RMSD),
root-mean-square fluctuation (RMSF), and radius of gyration
(Rg) analysis.

The RMSD analysis assessed the stability and conformational
changes of AKT1 and HSP90AA1, with lower molecular
deviations indicating higher protein stability. According to
the RMSD analysis, the RMSD values of HSP90AA1 protein

Figure 5. The compound-disease pathways target network was constructed with 46 nodes and 326 edges using the STRING plugin in Cytoscape software. This
network visually illustrates the complex connections among karanjin, colorectal cancer, associated pathways, and key targets. The pink diamond-shaped
node represents karanjin; yellow node represents disease colorectal cancer acquired from the DisGeNet database from the DAVID web tool; purple and
green rectangular nodes represent pathways acquired from the KEGG database from the DAVID web tool and key targets acquired using the cytohubba tool
from cytoscape.

Table 3. Molecular docking results comparing the binding affinities of selected proteins with those of karanjin and FDA-approved drugs.

Binding
energy
(Kcal/mol)

Karanjin

Sr.
No.

Target
(PDB ID)

Positive
Inhibitor

Karanjin
Hydrogen
bond (HB)
interactions

HB (Å)
Pi-alkyl/Pi-Pi stacked/Pi-Cation/Pisigma/Pi-
Pi Tshaped, Pi-Sulphur

Van der Waals interactions
Carbon
hydrogen
bonds

1
SRC
(2bdf)

8.49 7.82 - - VAL281, ALA293, LYS295, LEU393, and LEU273
GLN275, GLY274, GLY276, SER345, ASP348,
MET341, GLU339, TYR340, THR338, VAL323,
ASP404

GLY344

2
HSP90AA1
(4nh8)

8.6 9.35 TRP162 2.80671 LEU107, PHE138, TYR139, VAL150, and MET98
ASP54, LYS58, ALA55, THR184, VAL186, LEU103,
GLY108, VAL136, GLY135

-

3
PIK3CA
(2rd0)

9.33 7.93 GLU596 2.27362
LYS594, LYS627, MET599, LEU623,PRO595, ILE823,
ILE819

ASN822, LEU997, ASN826, and TYR622 GLN630

4
AKT1
(3o96)

9.53 10.54 SER205 2.92688
TYR272, TRP80, GLN79, LEU210, LEU264, and
VAL270

ASN54, ILE290, THR291, THR211, LEU213,
ALA212

LYS268,
SER205

5
HRAS
(5p21)

7.9 9.14
LYS117,
ASP33

2.52967,
2.155405

LYS147, ALA18, PHE28, ALA146, and LYS117
VAL14, GLY15, VAL29, SER17, GLU31, TYR32,
GLY13, ASP30, LEU120, ASN116, ASP119,
SER145

6
MAPK1
(1tvo)

8.03 8.57 LYS54 2.86936 VAL39, LEU156, and ALA52
GLU71, ILE53, VAL104, GLN105, CYS166, ASP167,
ARG67, TYR36, GLY37, ASN154, SER153, ILE103

-
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(Figure  7A) during interaction with karanjin range between
0.385 Å and 1.567 Å with a mean value of 1.185 Å. The mean
RMSD value of AKT1 protein (Figure  8A) during interaction
with karanjin obtained was 1.491 Å with a minimum value
of 0.419 Å and a maximum value of 2.091. The karanjin-
HSP90AA1 complex was shown to be stable throughout the
100-ns simulation period, with just a minor fluctuation
between 20 and 25 ns that was within acceptable limits.
The karanjin-AKT1 complex was stable throughout the 100-ns
simulation. Karanjin-HSP90AA1 showed lower deviation and
fluctuation than the karanjin-AKT1 complex. Throughout the
100-ns simulation with HSP90AA1 and AKT1, the average RMSD

value for karanjin was 2.544 Å and 5.963 Å respectively. The
RMSD values of karanjin with HSP90AA1 (Figure 7B) and AKT1
(Figure 8B) ranged from 0.52 Å to 5.93 Å and 0.751 Å to 7.951
Å respectively. The RMSD results indicated that karanjin was
more stable with HSP90AA1 than with AKT1.

Figure  7C shows the Rg analysis of the karanjin-HSP90AA1
complex. According to the Rg analysis, the Rg ranged from
16.771 Å to 17.305 Å with a mean value of 17.048 Å. Figure 8C
shows the Rg analysis of the karanjin-AKT1 complex. The mean
Rg value of karanjin-AKT1 obtained was 20.102 Å with the
lowest value of 19.663 Å and the highest value of 20.359 Å.

Figure 6. 3-D and 2-D diagrammatic representations of the molecular docking patterns between karanjin and various receptor proteins, generated using
Discovery Studio (A) Karanjin-SRC (2bdf); (B) Karanjin-HSP90AA1 (4nh8); (C) Karanjin-PIK3CA (2rd0); (D) Karanjin-AKT1 (3o96); (E) Karanjin-HRAS (5p21); (F)
Karanjin-MAPK1 (1tvo).
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Figure 7. Molecular dynamics results of karanjin-HSP90AA1 complex (A)
The RMSD of the docked protein (Å) versus MD simulation time (ns)
determines the stability of the protein structure; (B) RMSD of the docked
ligand (Å) versus MD simulation time (ns) determines the stability of the
ligand; (C) Rg (Å) versus MD simulation time (ns) plot determines the
flexibility of different regions of the protein.; (D) RMSF (Å) versus number
of residues determines the overall compactness of the protein during the
simulation.

This shows that both complexes are stable with very minor
differences in their Rg values over the 100-ns simulation
period.

According to the RMSF analysis of the karanjin-HSP90AA1
complex (Figure 7D), the highest RMSF peak was observed at
4.8 Å with the residue LYS224. All other residues showed lower
fluctuations and were stable. In the karanjin-AKT1 complex
(Figure  8D), the highest RMSF peak was observed at 4.65 Å
of the residue GLN445. In addition to GLN445, ARG446 also
showed a high peak at 3.69 Å. Hence, these two residues are
responsible for the increased fluctuations. All other residues
were found to be stable with fewer fluctuations.

DISCUSSION
A comprehensive assessment of ADME is essential in the initial
stages of pharmaceutical drug discovery. This is a critical step
in modern drug discovery. Early evaluation of these qualities

leads to the elimination of compounds with undesirable
pharmacokinetic ADME properties, which is important
for successful drug discovery.²² The pharmacokinetic
characteristics of karanjin were evaluated to determine its
safety, efficacy, and toxicity. According to the findings (Table 1),
karanjin did not violate any of Lipinski’s rule of five. It has been
noted that orally active drug compounds can violate up to two
of Lipinski’s rules.²³ This indicates the potential of karanjin
as a drug-like molecule. Previous studies have reported
that karanjin can be used as an active drug.²⁴ Identifying
targets, particularly for polygenic diseases, is essential for
drug development. The core phase involves recognising and
validating drug targets of interest for downstream processes.²⁵

Figure 8. Molecular dynamics results of karanjin-AKT1 complex (A) The
RMSD of the docked protein (Å) versus MD simulation time (ns) determines
stability of protein structure; (B) RMSD of the docked ligand (Å) versus
MD simulation time (ns) determines stability of ligand; (C) Rg (Å) versus
MD simulation time (ns) plot determines the flexibility of different regions
of the protein.; (D) RMSF (Å) versus number of residues determines the
overall compactness of the protein during the simulation.
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A total of 263 candidate genes for the karanjin effect on
colorectal cancer were identified using a Venn diagram. A PPI
network of 176 nodes and 542 edges revealed two clusters,
and 24 key targets with AKT1, MAPK1, and SRC identified as the
top three.

The GO project creates ontologies to describe gene product
properties across three distinct domains of molecular
biology.²⁶ The top terms include signal transduction, protein
binding, and the cytosol. Karanjin targets the nucleoplasm,
cytoplasm, and nucleus, with functions like ATP binding
and kinase activity, impacting cell proliferation, apoptosis,
migration, and MAPK cascade pathways. Therefore, karanjin
may exert its anticancer properties via the aforementioned
biological processes. Moreover, KEGG enrichment analysis
revealed 20 significant pathways (p<0.01), with pathways in
cancer and PI3K-Akt being the most enriched. An in vitro study
by Roy et al. in 2021 elucidated that karanjin downregulated
Cluster of differentiation 44 (CD44) signalling pathway
in cervical cancer cell line.¹¹ CD44 is a transmembrane
glycoprotein that is involved in various functions like cell
proliferation, migration, adhesion by controlling cellular
signalling pathway i.e., AKT1, MAPK1, mTOR, JNK etc.11,27,28 A study
conducted by Jinsong Yu and co-workers in 2022 showed that
karanjin exhibited antitumor activity in breast cancer cells by
regulating the PI3K/Akt signalling pathway.²⁹ KEGG enrichment
analysis demonstrated the therapeutic role of karanjin in
colon cancer via its effects on various signalling pathways.

Furthermore, in current drug development, molecular
docking is an advanced computational technique that uses
docking software to examine ligand-receptor interactions
and assesses conformational and electrostatic interactions.⁹
The results indicated that karanjin binds more efficiently
to AKT1 (Figure 6D), potentially inhibiting it more effectively
than other key targets, while the binding energy difference
between the positive control and karanjin was greatest for
the C-H-Ras p21 protein among all screened targets. RAS is
a frequently mutated oncogene in human cancer, leading to
common dysregulation of its pathway, while HRAS functions
as a binary switch that shifts between an inactive GDP-
bound state and an active GTP-bound state. In an active form,
RAS stimulates various downstream signalling pathways, i.e.,
Raf-MEK-ERK pathway³⁰ and the phosphoinositide 3-kinase
(PI3Ks) pathway.³¹ The Ras/Raf/MAPK pathway is involved in
cell cycle regulation, migration, and angiogenesis.³² Karanjin
binds with a docking score of 9.14 kcal/mol in the same
binding region as that of GTP on HRAS on amino acid residues
LYS117 and ASP33 (The Uniprot Consortium 2023) (https://
www.uniprot.org/) (Figure 6E). Thus, GTPase HRAS may be a
potential target of karanjin’s anticancer potential.

Additionally, Heat shock protein 90-alpha (HSP90AA1) is
a crucial molecular chaperone that has been conserved
throughout evolution. Previous studies have shown that
HSP90AA1 activates several oncogenic proteins in cancer
cells, promoting cell survival, proliferation, and invasiveness.³³
Its expression is elevated in various cancers and is
directly related to therapeutic resistance.³⁴ Moreover,
HSP90AA1 may serve as a potential target for colorectal
cancer treatment, as studies have indicated that it can
promote cancer cell proliferation, metastasis, invasion, and
epithelial-to-mesenchymal transition.³⁵ The ATP-binding site
of HSP90AA1 comprises amino acid residues ASN51 and
PHE138 (The UniProt Consortium 2023) (https://www.uniprot.
org/). In several previous studies, binding with HSP90AA1at
the residues ASN51 and PHE138 showed inhibition of its
activity.36-38 Hence, binding of karanjin with HSP90AA1 at amino
acid residues ASN51 and PHE138 (Figure 6B) may prevent the
binding of ATP and inhibit its activity.

In addition to AKT1, HSP90AA1 and HRAS are another efficiently
interacting signalling pathways of mitogen-activated protein
kinase (MAPK) that respond via a series of phosphorylation
activities by transforming extracellular signals into cellular
responses. Hence, deregulation of these pathways leads
to cell proliferation, epithelial-to-mesenchymal transition
(EMT), migration, or invasion. In colorectal cancer, RAS/BARF
mutation leads to constitutive activation of ERK1/2 signalling
cascade.³⁹ This suggests that MAPK inhibition represents a
potential treatment for colorectal cancer. Karanjin binds to the
ATP-binding pocket of MAPK1 protein (Figure 6F) by forming
hydrogen bonds with amino acid residue LYS54 and by forming
pi alkyl bonds with residues bond with amino acid residue
LYS54 and by forming pi alkyl bond with residue ALA52,
VAL39, and LEU156. The ATP-binding site of MAPK1 comprises
amino acid residues 31-39 and 54 (The UniProt Consortium
2023). According to previous research, the selective and ATP-
competitive well-known inhibitor FR180204 binds to MAPK1
in the same binding pocket and inhibits its activity via ATP
binding.⁴⁰ These findings imply that karanjin can act as a
MAPK-selective inhibitor, which is potentially valuable for drug
development.

Molecular docking effectively predicts binding modes, but it
struggles with accurate binding energy calculations because
of approximations in solvent treatment, macromolecular
flexibility and accurate modelling of metallic interactions.⁴¹
Other factors such as receptor flexibility, multiple binding
pockets, and polar interactions hinder correct pose
prediction, limiting its wider application.⁴² To overcome the
shortcomings of molecular docking, molecular dynamics
simulations can be used to enhance drug discovery by
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optimising protein structures, refining docked complexes, and
including solvent effects.⁴³ In line with the above findings,
various dynamic parameters, including RMSD of the protein,
RMSD of the ligand, RMSF, and Rg were analysed. RMSD
and RMSF are the two most used metrics of structural
fluctuations. RMSD is the average displacement of the atoms
at a given instant in the simulation compared to a reference
structure, which is often the simulation's first frame or
the crystallographic structure. The RMSF is a measure of
specific atoms or groups of atom displacement relative to
the reference structure, averaged over the number of atoms.⁴⁴
Rg is an indicator of protein structural compactness and 3D
structural stability. If a protein folds stably, its Rg value will
most likely remain relatively constant. When a protein unfolds,
its Rg changes over time.⁴⁵ Both the karanjin-HSP90AA1 and
karanjin-AKT1 complexes exhibited stability with minimal
fluctuations in their Rg values over the 100-ns simulation
period. The stability of the karanjin-HSP90AA1 and karanjin-
AKT1 complexes through molecular dynamics simulations
were assessed in this research (Figure  7 and Figure  8).
Upon evaluating various dynamic parameters, including the
RMSD of the protein and ligand, the RMSF and Rg of both
complexes demonstrated consistent stability throughout a
100-ns simulation period.

CONCLUSION
In conclusion, our study combined network pharmacology and
molecular docking to provide a comprehensive understanding
of the mechanisms through which karanjin may be effective
in treating colorectal cancer. Karanjin is vital for colorectal
cancer treatment, targeting multiple pathways and proteins.
It exhibits anti-cancer effects by binding to AKT1, HSP90AA1,
HRAS, and MAPK1, and may disrupt tumour cell proliferation
and apoptosis by modulating the PI3K-Akt and MAPK
signalling pathways, among others. MD simulations further
supported the stable docked structure of karanjin with
HSP90AA1 and AKT1. According to this in silico study, karanjin
can be considered to be of great interest in successful
chemotherapy, which opens a new avenue for in vitro and in
vivo experiments to inhibit colorectal cancer using karanjin as
an anticancer molecule.
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