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Abstract. A gyrogroup is an algebraic structure whose operation is in general

non-associative and shares common properties with groups. In this paper, we

introduce two disjoint families of gyrogroups. One family consists of gyrogroups

whose operations are, in some sense, most far from being associative called

contra-associative gyrogroups. The other family consists of gyrogroups that

are, in some sense, most close to groups called g-extensive gyrogroups. We

then describe their structural properties, which eventually lead to studying

the extension problem for gyrogoups in detail using the notion of associa-

tors. In particular, we refine the hierarchy of gyrogroup structure by showing

that generic gyrogroups are extensions of contra-associative gyrogroups or g-

extensive gyrogroups.
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1. Introduction

A gyrogroup consists of one non-empty set, together with one binary operation,

that satisfies some axioms similar to groups. In general, the operation of a generic

gyrogroup is not associative. However, it satisfies a weaker form of associativity,

the so-called gyroassociative law. Furthermore, the family of gyrogroups properly

includes the family of groups, and so groups and gyrogroups have several common

aspects; see, for instance, [1,3–8,11,16–19]. In [12], the author provides a construc-

tive method to measure the deviation from associativity of gyrogroup operations

by introducing the notion of associator normal subgyrogroups. It turns out that

this notion can be used to examine the algebraic structure of a gyrogroup. This

leads to a deep understanding of the gyrogroup structure, as shown in the present

paper. In this work, we study two disjoint families of gyrogroups. One family

contains gyrogroups whose operations are, in some sense, most far from being as-

sociative called contra-associative gyrogroups (see Section 3). The other family

contains gyrogroups that are, in some sense, most close to groups called g-extensive
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gyrogroups (see Section 4). In particular, we prove some structural properties of gy-

rogroups in these families, which eventually lead to studying the extension problem

for gyrogoups. We also show that a certain gyrogroup of order 8 can be constructed

from the Klein 4-group and the cyclic group of order 2 and that a certain gyrogroup

of order 15 can be constructed from the cyclic groups of order 3 and order 5 as an

application of the obtaining results.

2. Preliminaries

The reader is referred to [9,15] for the basic theory of gyrogroups. Terminology

and basic definitions mentioned in this paper can be found in [12]. For the sake of

completeness, the formal definition of a gyrogroup is presented here. Let G be a

non-empty set, together with a binary operation ⊕ on G. The algebraic structure

(G,⊕) is called a gyrogroup if the following properties are satisfied.

(1) G has a unique two-sided identity e: a⊕ e = a and e⊕ a = a for all a ∈ G.

(2) Each element of G has a unique two-sided inverse: if a ∈ G, then ⊖a is the

unique element of G such that a⊕ (⊖a) = e and (⊖a)⊕ a = e.

(3) G satisfies the left and right gyroassociative laws: for all a, b, c ∈ G,

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c)

and

(a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a](c)),

where gyr[a, b] denotes an automorphism of G called the gyroautomorphism

generated by a and b.

(4) G has the left loop property and the right loop property: for all a, b ∈ G,

gyr[a, b] = gyr[a⊕ b, b] and gyr[a, b] = gyr[a, b⊕ a].

We summarize important results, proved in [12], that will be useful in studying

gyrogroup structures in the sequel. Let G be a gyrogroup. For all a, b, c ∈ G, the

associator of the triple (a, b, c) is defined by the formula

[a, b, c] = ⊖(a⊕ (b⊕ c))⊕ ((a⊕ b)⊕ c). (1)

Henceforward, we simply say the associator of a, b, and c. Let Ga be the normal

closure of the set of all associators in G. In other words, Ga is the smallest normal

subgyrogroup of G containing all the associators in G, called the associator normal

subgyrogroup of G. Therefore, if N is a normal subgyrogroup of G containing all

the associators in G, then Ga ⊆ N by the minimality of Ga. This fact will be

used throughout the paper. The associator normal subgyrogroup, in some sense,

measures the deviation from associativity of gyrogroup operations. Next, we quote
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the following results, which will be used later on when we have examined structures

of gyrogroups, for easy reference. Their proofs are presented in [12].

Proposition 2.1 (Proposition 3.2, [12]). Let G be an arbitrary gyrogroup.

(1) Then, G/Ga is a group.

(2) If H is a subgyrogroup of G, then Ha ⊆ Ga.

Proposition 2.2 (Proposition 3.4, [12]). Let G be a gyrogroup. Then, G is a group

under the same operation (or, alternatively, degenerate) if and only if Ga = {e}.

Proposition 2.3 (Proposition 3.5, [12]). Let N be a normal subgyrogroup of a

gyrogroup G. Then, G/N is a group if and only if Ga ⊆ N .

Proposition 2.4 (Proposition 3.6, [12]). Let G be a gyrogroup. Then, Ga is the

unique normal subgyrogroup of G such that G/Ga is a group and if φ is a homo-

morphism from G to a group, then Ga ⊆ kerφ.

Proposition 2.5 (Proposition 3.7, [12]). Let G and K be gyrogroups. If φ : G ! K

is a surjective homomorphism, then φ(Ga) = Ka.

Let G be a gyrogroup. The left nucleus of G, denoted by Nℓ(G), is defined as

Nℓ(G) = {a ∈ G : a⊕ (b⊕ c) = (a⊕ b)⊕ c for all b, c ∈ G}. (2)

It is proved in Theorem 3.8 of [10] that Nℓ(G) forms a normal subgroup of G. Also,

the right nucleus of G, denoted by Nr(G), is defined as

Nr(G) = {c ∈ G : a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b ∈ G}. (3)

The right nucleus of a certain gyrogroup is normal (see, for instance, Example 4.20).

It is an open question whether the right nucleus of a gyrogroup is always normal

in that gyrogroup. In certain circumstances, left and right nuclei can be used to

analyze the algebraic structure of a gyrogroup, as we will see later.

3. Contra-associative gyrogroups

In this section, we study a family of gyrogroups that are defined using the notion

of associator normal subgyrogroups. This family of gyrogroups, in some sense,

contains building blocks of generic gyrogroups, as we will see shortly. First, let us

introduce the formal definition of a contra-associative gyrogroup as follows.

Definition 3.1. A gyrogroup G is contra-associative if it is non-trivial and the

associator normal subgyrogroup of G is G itself, that is, if G ̸= {e} and Ga = G.
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By definition, any contra-associative gyrogroup is never a group. More precisely,

if a gyrogroup G is contra-associative, then Ga ̸= {e}, which implies that G is not

a group by Proposition 2.2. In fact, we obtain the following proposition, which

indicates that any contra-associative gyrogroup is most far from being a group.

Proposition 3.2. Let G be a non-trivial gyrogroup. Then, the following statements

are equivalent:

(i) G is contra-associative.

(ii) The associativization of G is trivial.

(iii) Every homomorphism from G to an arbitrary group is trivial.

Proof. The equivalence (i) ⇔ (ii) follows directly by definition. Suppose that G

is contra-associative. Let Γ be a group, and let φ : G ! Γ be a homomorphism.

By Proposition 2.4, Ga ⊆ kerφ. By assumption, Ga = G, which implies that

kerφ = G. Hence, φ is trivial. Suppose conversely that every homomorphism from

G to a group is trivial. Hence, the canonical projection π : G ! G/Ga given by

π(a) = a⊕Ga is trivial. This implies that a⊕Ga = e⊕Ga for all a ∈ G. It follows

that a ∈ Ga for all a ∈ G. This shows that Ga = G, which proves the equivalence

(i) ⇔ (iii). □

In general, subgyrogroups of a contra-associative gyrogroup need not be contra-

associative. In fact, if G is a contra-associative gyrogroup, then any non-trivial

subgroup of G is proper in G but is not contra-associative. Furthermore, every non-

trivial gyrogroup contains at least one non-trivial subgroup, which is a cyclic sub-

gyrogroup generated by a non-identity element (see Theorem 23 of [9]). Proposition

3.3 states that any homomorphic image of a contra-associative gyrogroup is contra-

associative. Consequently, the property of being contra-associative becomes an

invariant property of gyrogroups, as stated in Corollary 3.4. Moreover, Corollary

3.5 shows that the quotient of a contra-associative gyrogroup by any normal sub-

gyrogroup is contra-associative and Corollary 3.6 shows that if an arbitrary direct

product of gyrogroups is contra-associative, then each of its components must be

contra-associative as well.

Proposition 3.3. Let G and K be gyrogroups, and suppose that φ : G ! K is a

surjective homomorphism. If G is contra-associative, then so is K.

Proof. Suppose that G is contra-associative. Then, by definition, Ga = G. By

Proposition 2.5, K = φ(G) = φ(Ga) = Ka. Hence, K is contra-associative. □

Corollary 3.4. Let G and K be gyrogroups. If G ∼= K, then G is contra-associative

if and only if K is contra-associative.
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Corollary 3.5. Let G be a gyrogroup, and let N ⊴ G. If G is contra-associative,

then so is G/N .

Proof. Let πN : G ! G/N be the canonical projection. Then, πN defines a

surjective homomorphism from G to G/N , and so Proposition 3.3 applies. □

Corollary 3.6. Let {Gi : i ∈ I} be an indexed family of gyrogroups with I ̸= ∅. If∏
i∈I

Gi is contra-associative, then Gi is contra-associative for all i ∈ I.

Proof. Set G =
∏
i∈I

Gi. Suppose that G is contra-associative. Let i ∈ I. Define a

map pi by pi(f) = f(i) for all f ∈ G. Then, pi is a surjective homomorphism from

G to Gi. Hence, by Proposition 3.3, Gi is contra-associative. □

Recall that a (finite or infinite) gyrogroup G is said to be simple if G is non-

trivial and the only normal subgyrogroups of G are {e} and G itself (see Definition

14 of [9]). The following proposition states that the family of non-degenerate simple

gyrogroups is included in the family of contra-associative gyrogroups.

Proposition 3.7. If G is a non-degenerate simple gyrogroup, then G is contra-

associative.

Proof. Suppose that G is non-degenerate and simple. Hence, G ̸= {e} and

Ga ̸= {e}. Since Ga ⊴ G, it follows that Ga = G. Thus, G is contra-associative

by definition. □

We complete this section by giving a concrete example of a contra-associative

gyrogroup in the following example.

Example 3.8. Recall that the (complex) Möbius gyrogroup consists of the open

unit disk D = {z ∈ C : |z| < 1} in the complex plane, together withMöbius addition,

denoted by ⊕M , defined by the formula a⊕M b =
a+ b

1 + ab
for all a, b ∈ D. It is proved

in [2] that every element of the Möbius gyrogroup can be expressed as an associator.

This implies that the associator normal subgyrogroup of the Möbius gyrogroup is

the Möbius gyrogroup itself, and so the Möbius gyrogroup is contra-associative.

4. G-extensive gyrogroups and their extensions

In this section, we are going to study the extension problem of gyrogroups by

exploring another family of gyrogroups that, in some sense, are most close to groups.

We may generalize the definition of an extension of a group by a group to the case

of gyrogroups in the same way as follows. A gyrogroup G is an extension of a
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gyrogroup X by a gyrogroup Y if there exists a normal subgyrogroup N of G such

that N ∼= Y and G/N ∼= X. The presence of associator normal subgyrogroups

shows that every gyrogroup is an extension of a group by a gyrogroup; that is, the

following is a short exact sequence:

{e} −! Ga ι
−! G

π
−! G/Ga −! {e}, (4)

where ι is the inclusion map and π is the canonical projection. Moreover, the

presence of left nuclei shows that every gyrogroup is an extension of a gyrogroup

by a group; that is, the following is a short exact sequence:

{e} −! Nℓ(G)
ι

−! G
π

−! G/Nℓ(G) −! {e}. (5)

The following proposition indicates that any contra-associative extension arises

from a contra-associative gyrogroup.

Proposition 4.1. Let G be a gyrogroup that is an extension of a gyrogroup X by

a gyrogroup Y . If G is contra-associative, then so is X.

Proof. By definition, there is a normal subgyrogroup N of G such that G/N ∼= X.

Suppose that G is contra-associative. By Corollary 3.5, G/N is contra-associative.

By Corollary 3.4, X is contra-associative. □

Motivated by the notion of normal series in group theory, we define a series of

subgyrogroups related to associator normal subgyrogroups as follows. Let G be a

gyrogroup. Define the following subgyrogroups inductively:

Ga,0 = G, Ga,1 = Ga, and Ga,n = (Ga,n−1)
a
for all integers n ≥ 2. (6)

Then, the following proposition is obtained. Furthermore, part 3 of this proposition

shows that series (6) is meaningless in the case of contra-associative gyrogroups.

Proposition 4.2. Let G be a gyrogroup. Then, the following statements are true

for all positive integers n:

(1) Ga,n ⊴Ga,n−1.

(2) Ga,n−1/Ga,n is a group.

(3) If G is contra-associative, then Ga,n = G.

Proof. Let n ∈ N. By definition, Ga,n = (Ga,n−1)
a
⊴ Ga,n−1, which proves part

1. By part 1 of Proposition 2.1, Ga,n−1/Ga,n = Ga,n−1/(Ga,n−1)
a
is a group. This

proves part 2. Suppose that G is contra-associative. Then, Ga,1 = Ga = G. By

induction, Ga,n = G for all positive integers n. □

Proposition 4.2 motivates the following definition, which allows us to define a

new family of gyrogroups that has strong connections with groups.
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Definition 4.3. Let G be a gyrogroup. A finite sequence of subgyrogroups of G,

{e} = N0 ⊆ N1 ⊆ · · · ⊆ Nk−1 ⊆ Nk = G

is called a g-extensive series if Ni−1⊴Ni and Ni/Ni−1 is a group for i = 1, 2, . . . , k.

In this case, the quotient Ni/Ni−1 is called a g-extensive factor. A gyrogroup is

g-extensive if it has a g-extensive series.

The next theorem gives a characterization of g-extensive gyrogroups in terms of

series (6) and leads to the formation of Definition 4.5.

Theorem 4.4. Let G be an arbitrary gyrogroup. Then, G is g-extensive if and only

if Ga,k = {e} for some non-negative integer k.

Proof. Suppose that G is g-extensive. Then, there is a g-extensive series, namely

{e} = N0 ⊆ N1 ⊆ · · · ⊆ Nk−1 ⊆ Nk = G.

We first show thatGa,i ⊆ Nk−i impliesGa,i+1 ⊆ Nk−i−1. Suppose thatG
a,i ⊆ Nk−i.

By part 2 of Proposition 2.1, Ga,i+1 = (Ga,i)
a ⊆ N a

k−i. By definition, Nk−i−1⊴Nk−i

and Nk−i/Nk−i−1 is a group. By Proposition 2.3, N a
k−i ⊆ Nk−i−1. This implies

that Ga,i+1 ⊆ Nk−i−1. Since Ga,0 = G ⊆ Nk−0, it follows that Ga,1 ⊆ Nk−1.

Repeating the process, we obtain that Ga,k ⊆ N0. Since N0 = {e}, it follows that
Ga,k = {e}.

To prove the converse, suppose that Ga,k = {e} for some non-negative integer

k. For each integer i ∈ {0, 1, . . . , k}, define Ni = Ga,k−i. According to parts 1

and 2 of Proposition 4.2, we obtain that Ni−1 ⊴Ni and Ni/Ni−1 is a group for all

i ∈ {1, 2, . . . , k}. It follows that {e} = N0 ⊆ N1 ⊆ · · · ⊆ Nk−1 ⊆ Nk = G defines a

g-extensive series for G, and so G is g-extensive. This completes the proof. □

Definition 4.5. If G is a g-extensive gyrogroup, then the smallest non-negative

integer k for which Ga,k = {e} is called the g-extensive length of G.

The family of g-extensive gyrogroups properly includes the family of groups. In

fact, we obtain the following proposition, which gives a characteristic property of

g-extensive gyrogroups of length at most 2. This property resembles the property

of nilpotent groups of class at most 2.

Proposition 4.6. Let G be a gyrogroup.

(1) Then, G is g-extensive of length 0 if and only if G is trivial.

(2) Then, G is g-extensive of length 1 if and only if G is a non-trivial group.

(3) There is a normal subgroup of G containing all the associators of G if and

only if G is g-extensive of length at most 2.
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Proof. By definition, G is g-extensive of length 0 if and only if G = Ga,0 = {e}.
This proves part 1. Suppose that G is g-extensive of length 1. By definition,

Ga = Ga,1 = {e}, and so G is a group by Proposition 2.2. Furthermore, G is not

trivial since Ga,0 ̸= {e}. To prove the converse, suppose that G is a non-trivial

group. Hence, Ga,0 ̸= {e} and Ga,1 = {e}. This shows that G is g-extensive and

that the g-extensive length of G is 1, which proves part 2.

Suppose that Ξ is a normal subgroup of G such that [a, b, c] ∈ Ξ for all a, b, c ∈ G.

In the case when G is a group, G is g-extensive of length at most 1. Therefore,

we may assume that G is not a group. Hence, Ga,0 ̸= {e} and Ga,1 ̸= {e}. Since

Ξ ⊴G, we obtain that Ga ⊆ Ξ by the minimality of Ga. Hence, [a, b, c] = e for all

a, b, c ∈ Ga. This implies that Ga,2 = (Ga)
a
= {e}, and so G is g-extensive of length

2. Suppose conversely that G is g-extensive of length at most 2. Hence, Ga,2 = {e}.
This implies that (Ga,1)a = {e}, and so Ga = Ga,1 is a group. Thus, Ga is a normal

subgroup of G containing all the associators of G. This proves part 3. □

The main result of this section is exhibited in the following theorem, which shows

some close relationships between contra-associative and g-extensive gyrogroups. In

particular, part 1 of this theorem implies that if G is a g-extensive gyrogroup,

then there is at least one non-trivial homomorphism from G to a non-trivial group,

namely the canonical projection π : G ! G/Ga. This fact gives us a better under-

standing of the structure of a g-extensive gyrogroup.

Theorem 4.7. Let G be a gyrogroup.

(1) If G is contra-associative, then G is not g-extensive.

(2) If G is not g-extensive, then Ga,k is contra-associative for some non-negative

integer k or the sequence G ⊃ Ga,1 ⊃ Ga,2 ⊃ · · · ⊃ Ga,k ⊃ · · · ⊃ {e} is an

infinite ascending chain of subgyrogroups of G, where all containments are

proper.

(3) If G is finite but is not g-extensive, then the sequence

G = Ga,0 ⊃ Ga,1 ⊃ Ga,2 ⊃ · · · ⊃ Ga,k ⊃ {e}

is a finite ascending chain of subgyrogroups of G, where k is the smallest

non-negative integer such that Ga,k is contra-associative and all contain-

ments are proper.

(4) If G is non-trivial, finite, and g-extensive, then the sequence

G = Ga,0 ⊃ Ga,1 ⊃ · · · ⊃ Ga,k−1 ⊃ Ga,k = {e}

is a finite ascending chain of subgyrogroups of G, where k is the g-extensive

length of G, Ga,k−1 is a group, and all containments are proper.
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Proof. Suppose that G is contra-associative. By definition, G ̸= {e}. By part 3

of Proposition 4.2, Ga,n = G for all positive integers n. Hence, Ga,n ̸= {e} for all

positive integers n. By Theorem 4.4, G is not g-extensive. This proves part 1.

To prove part 2, suppose that G is not g-extensive. Hence, G ̸= {e}. Assume

further that Ga,k is not contra-associative for all integers k ≥ 0. By Theorem 4.4,

Ga,k ̸= {e} for all integers k ≥ 0. Note that Ga ⊊ G since G = Ga,0 is not contra-

associative. Let i ∈ N. Since Ga,i is not contra-associative and Ga,i+1 = (Ga,i)
a
, it

follows that Ga,i+1 ⊊ Ga,i. Thus, G ⊃ Ga,1 ⊃ Ga,2 ⊃ · · · ⊃ Ga,k ⊃ · · · ⊃ {e} is an

infinite ascending chain and all containments are proper. This proves part 2.

Suppose that G is finite but is not g-extensive. By part 2, Ga,i is contra-

associative for some non-negative integer i. Using the Well-Ordering Principle, we

can let k be the smallest non-negative integer such that Ga,k is contra-associative.

If k = 0, we obtain the chain G ⊋ {e}. Assume that k ̸= 0. It can be proved by

induction that Ga,k+i = Ga,k for all i ∈ N. Furthermore, Ga,k ̸= {e}. Let j be

an integer with 0 ≤ j < k. By the minimality of k, Ga,j is not contra-associative.

Hence, Ga,j+1 = (Ga,j)
a ⊊ Ga,j , which completes the proof of part 3.

Suppose that G is non-trivial, finite, and g-extensive. Let k the g-extensive

length of G. Since G ̸= {e}, we have k > 0. By definition, Ga,k = {e}. This implies

by Proposition 2.2 that Ga,k−1 is a group since (Ga,k−1)
a
= Ga,k = {e}. Let j be

an integer with 0 ≤ j < k. By the minimality of k, Ga,j ̸= {e}. We claim that

Ga,j+1 ⊊ Ga,j . Assume to the contrary that Ga,j+1 = Ga,j . Then,

Ga,j+2 = (Ga,j+1)
a
= (Ga,j)

a
= Ga,j+1 = Ga,j .

Continuing in this fashion, we obtain that Ga,k = Ga,j , and so Ga,k ̸= {e}, a

contradiction. This proves part 4. □

Next, we prove that every subgyrogroup of a g-extensive gyrogroup is g-extensive

(see Proposition 4.9) and that any homomorphic image of a g-extensive gyrogroup

is g-extensive (see Proposition 4.11). In order to proceed, we need the following

lemma.

Lemma 4.8. Let G and K be gyrogroups, and let H be a subgyrogroup of G.

(1) Then, Ha,i ⊆ Ga,i for all non-negative integers i.

(2) If φ : G ! K is a surjective homomorphism, then φ(Ga,i) = Ka,i for all

non-negative integers i.

Proof. We prove part 1 by induction on i. Clearly, Ha,0 = H ⊆ G = Ga,0. Assume

that Ha,i ⊆ Ga,i. By part 2 of Proposition 2.1, Ha,i+1 = (Ha,i)
a ⊆ (Ga,i)

a
= Ga,i+1,

which completes the induction. To prove part 2, suppose that φ : G ! K is a
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surjective homomorphism. We proceed by induction on i. Since φ is surjective, it

follows that φ(Ga,0) = φ(G) = K = Ka,0. Assume that φ(Ga,i) = Ka,i. Then,

the restriction of φ to Ga,i is a surjective homomorphism from Ga,i to Ka,i. By

Proposition 2.5, φ(Ga,i+1) = φ((Ga,i)
a
) = (Ka,i)

a
= Ka,i+1, which completes the

induction. □

Proposition 4.9. Let G be a gyrogroup, and let H be a subgyrogroup of G. If G

is g-extensive, then so is H.

Proof. By Theorem 4.4, Ga,k = {e} for some non-negative integer k. By part 1

of Lemma 4.8, Ha,k ⊆ Ga,k, and so Ha,k = {e}. Thus, by the same theorem, H is

g-extensive. □

In light of the proof of Proposition 4.9, we immediately obtain the following

corollary.

Corollary 4.10. Let G be a gyrogroup, and let H be a subgyrogroup of G. If G is

g-extensive of length n, then the g-extensive length of H does not exceed n.

Proposition 4.11. Let G and K be gyrogroups, and let φ : G ! K be a surjective

homomorphism. If G is g-extensive, then so is K.

Proof. Suppose that G is g-extensive. By Theorem 4.4, Ga,k = {e} for some

integer k ≥ 0. By part 2 of Lemma 4.8, Ka,k = φ(Ga,k) = φ({e}) = {e}. It follows
that K is g-extensive. □

As a consequence of Proposition 4.11, the property of being g-extensive becomes

an invariant property of gyrogroups. This fact is proved in the following corollary.

Corollary 4.12. Let G and K be gyrogroups. If G ∼= K, then G is g-extensive if

and only if K is g-extensive.

The next proposition shows that the quotient of a g-extensive gyrogroup by any

normal subgyrogroup is again g-extensive and vice versa.

Proposition 4.13. Let G be a gyrogroup, and let N ⊴G. Then, G is g-extensive

if and only if N and G/N are g-extensive.

Proof. Suppose that G is g-extensive, and let πN : G ! G/N be the canonical

projection. By Proposition 4.9, N is g-extensive. Note that G/N = πN (G). Hence,

by Proposition 4.11, G/N is g-extensive. To prove the converse, suppose that N

and G/N are g-extensive. Let m and n be the g-extensive lengths of N and G/N ,

respectively. By definition, N a,m = {e} and (G/N)
a,n

= {e ⊕ N}. By part 2 of
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Lemma 4.8, πN (Ga,n) = (G/N)
a,n

= {e ⊕ N}. Hence, a ⊕ N = e ⊕ N for all

a ∈ Ga,n. Then, a ∈ N for all a ∈ Ga,n, which implies that Ga,n ⊆ N . By part

2 of Proposition 2.1, Ga,n+1 = (Ga,n)
a ⊆ N a = N a,1. Continuing in this fashion,

we obtain that Ga,n+m ⊆ N a,m. Since N a,m = {e}, it follows that Ga,n+m = {e}.
Thus, G is g-extensive, and the g-extensive length of G is less than or equal to

m+ n. □

In light of the proof of Proposition 4.13, we immediately obtain the following

corollary.

Corollary 4.14. Let G be a gyrogroup, and let N⊴G. If N is g-extensive of length

m and G/N is g-extensive of length n, then the g-extensive length of G does not

exceed m+ n.

To prove that a direct product of any finite number of g-extensive gyrogroups is

g-extensive, we need the following lemma.

Lemma 4.15. Let {Gi : i ∈ I} be an indexed family of gyrogroups with I ̸= ∅.
Then, (∏

i∈I

Gi

)a,n

⊆
∏
i∈I

Ga,n
i .

for all non-negative integers n.

Proof. The proof can be done by induction on n, using Proposition 3.9 of [12]. □

Proposition 4.16. Let G1, G2, . . . , Gk be gyrogroups. Then, G1 × G2 × · · · × Gk

is g-extensive if and only if G1, G2, . . . , Gk are all g-extensive.

Proof. Set G = G1 × G2 × · · · × Gk and suppose that G is g-extensive. For each

i = 1, 2, . . . , k, let pi be the projection from G to Gi defined by the formula

pi(a1, a2, . . . , ak) = ai.

Then, pi is a surjective homomorphism from G to Gi. By Proposition 4.11, Gi is

g-extensive. Suppose conversely that G1, G2, . . . , Gk are all g-extensive. Let mi be

the g-extensive length ofGi for all i ∈ {1, 2, . . . , k}. Setm = max {m1,m2, . . . ,mk}.
Then, Gi

a,m = {e} for all i ∈ {1, 2, . . . , k}. By Lemma 4.15,

Ga,m ⊆ Ga,m
1 ×Ga,m

2 × · · · ×Ga,m
k = {(e, e, . . . , e)}.

Hence, Ga,m = {(e, e, . . . , e)}. By Theorem 4.4, G is g-extensive. □

In light of the proof of Proposition 4.16, we immediately obtain the following

corollary.



12 TEERAPONG SUKSUMRAN

Corollary 4.17. If G1, G2, . . . , Gk are g-extensive gyrogroups, then the g-extensive

length of the direct product G1×G2×· · ·×Gk does not exceed the maximum of the

g-extensive lengths of G1, G2, . . . , Gk.

The following theorem shows that any g-extensive gyrogroup arises from a group.

For this reason, g-extensive gyrogroups and groups share some common properties,

as we will see shortly.

Theorem 4.18. If G is a gyrogroup that is an extension of a group by a group,

then G is g-extensive. Conversely, if G is a g-extensive gyrogroup, then G can be

obtained by a finite number of extensions of a group by a g-extensive gyrogroup.

Proof. Let G be a gyrogroup. Suppose that G is an extension of X by Y , where

X and Y are groups. Then, there exists a normal subgyrogroup N of G such that

N ∼= Y and G/N ∼= X. Since Y is a group, N is a group as well. Since G/N ∼= X, it

follows that G/N is a group, and so Ga ⊆ N by Proposition 2.3. This implies that

Ga forms a normal subgroup of G, and so G is g-extensive by part 3 of Proposition

4.6.

Suppose conversely that G is g-extensive. By definition, G has a g-extensive

series {e} = N0 ⊆ N1 ⊆ · · · ⊆ Nk−1 ⊆ Nk = G, where Ni−1 ⊴ Ni and Ni/Ni−1

is a group for all i ∈ {1, 2, . . . , k}. Since N1
∼= N1/{e}, we obtain that N1 is a

group. Since N2/N1 is a group, we obtain that N2 is an extension of a group by

a group. Hence, N2 is g-extensive. Since N2 ⊴ N3 and N3/N2 is a group, N3 is

an extension of a group by a g-extensive gyrogroup. By Proposition 4.13, N3 is

g-extensive. Continuing in this fashion, we see that Nk−1 is g-extensive and that

G is an extension of G/Nk−1 by Nk−1. □

gyrogroups

g-extensive

gyrogroups

groups

contra-associative

gyrogroups

non-degenerate

simple gyrogroups

Figure 1. Relationships between some classes of gyrogroups.
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In Figure 1, we summarize relationships between some classes of gyrogroups. In

view of Theorems 4.7 and 4.18, we propose the following problems:

(1) (Existence Problem) Classify all contra-associative gyrogroups.

(2) (Extension Problem I) Find all ways of putting groups together to form

other gyrogroups.

(3) (Extension Problem II) Find all ways of putting groups and contra-associative

gyrogroups together to form other gyrogroups.

We end this section with a few concrete examples.

Example 4.19. Since the left nucleus of the gyrogroup G8 (see Example 1 of

[9]) is {0, 3}, which is the set of associators in G8, it follows that Ga
8 = {0, 3}.

Furthermore, Ga,2
8 = {0} since Ga

8 is a group. Therefore, G8 ⊃ {0, 3} ⊃ {0} is a

g-extensive series. A direct computation shows that the left cosets of Nℓ(G8) are

precisely

0⊕Nℓ(G8) = {0, 3},

1⊕Nℓ(G8) = {1, 2},

4⊕Nℓ(G8) = {4, 6},

5⊕Nℓ(G8) = {5, 7}.

Note that G8/G
a
8 is a group whose operation is given by Table 1. Furthermore,

the canonical projection π : G8 ! G8/G
a
8 is a non-trivial homomorphism from a

non-degenerate gyrogroup to a non-trivial group. It is easy to see that G8/G
a
8 is

isomorphic to the Klein 4-group, and so G8 is an extension of the Klein 4-group by

the cyclic group of order two.

⊕ 0 1 4 5

0 0 1 4 5

1 1 0 5 4

4 4 5 0 1

5 5 4 1 0

Table 1. Cayley table for G8/G
a
8. Here, a denotes the left coset

a⊕Ga
8.

Example 4.20. Recall that the right nucleus of the gyrogroup G15 (see Example

8 of [9]) is Nr(G15) = {0, 4, 9, 12, 13}. A direct computation shows the left cosets
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of Nr(G15) are precisely

0⊕Nr(G15) = {0, 4, 9, 12, 13},

1⊕Nr(G15) = {1, 5, 6, 7, 10},

2⊕Nr(G15) = {2, 3, 8, 11, 14}.

Furthermore, the operation defined on G15/Nr(G15) by

(a⊕Nr(G15))⊕ (b⊕Nr(G15)) = (a⊕ b)⊕Nr(G15)

is well defined (see Table 2). This implies that Nr(G15) is normal in G15. Since the

associators in G15 are precisely 0, 4, 9, 12, and 13, Ga
15 = {0, 4, 9, 12, 13}. Moreover,

Ga,2
15 = {0} since Ga

15 forms a group. Therefore, the series

G15 ⊃ {0, 4, 9, 12, 13} ⊃ {0}

defines a g-extensive series for G15. Note that G15/Nr(G15) is a group since

Nr(G15) = Ga
15. Therefore, the canonical projection π : G15 ! G15/G

a
15 is a

non-trivial homomorphism from a non-degenerate gyrogroup to a non-trivial group.

Note that G15/Nr(G15) is isomorphic to the cyclic group of order three and that

Nr(G15) is isomorphic to the cyclic group of order five. Hence, G15 is an extension

of the cyclic group of order three by the cyclic group of order five.

⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Table 2. Cayley table for G15/Nr(G15). Here, a denotes the left

coset a⊕Nr(G15).

5. Gyrogroup properties

In this section, we formally define invariant properties of gyrogroups. By a

gyrogroup property P (or, equivalently, an invariant property of gyrogroups) we mean

a map from the collection of all gyrogroups to the two-element set, {true, false},
with the property that any two isomorphic gyrogroups get mapped to the same

element. We say that a gyrogroup G has property P if and only if P(G) is true.

A finite-gyrogroup property and group property are defined in the same way as a

gyrogroup property. We can think of a gyrogroup property as an invariant property

of gyrogroups: P is defined for all gyrogroups, and if G ∼= K, then G has property
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P if and only if K has property P. Now, we define several types of gyrogroup

properties.

Definition 5.1. Let P be a gyrogroup property.

(1) P is S-closed if a gyrogroup G has property P implies every subgyrogroup

of G has property P.

(2) P is Q-closed if a gyrogroup G has property P implies G/N has property P

for all normal subgyrogroups N of G.

(3) P is FD-closed ifG1, G2, . . . , Gn are gyrogroups that have property P implies

G1 ×G2 × · · · ×Gn has property P.

(4) P is AD-closed if {Gi : i ∈ I}, I ̸= ∅, is an indexed family of gyrogroups

having property P implies
∏
i∈I

Gi has property P.

Parts 1–3 of Definition 5.1 are also defined for a finite-gyrogroup property with

appropriate modifications. In view of Corollary 3.4, the property of being contra-

associative is a gyrogroup property. In view of Corollary 4.12, the property of

being g-extensive is a gyrogroup property. Note that the property of being contra-

associative is Q-closed (see Corollary 3.5), but is not S-closed (see the remark after

Proposition 3.2). Note also that the property of being g-extensive is S-closed (see

Proposition 4.9), Q-closed (see Proposition 4.13) and FD-closed (see Proposition

4.16).

It frequently happens that we can understand the structure of a gyrogroup from

an understanding of its normal subgyrogroups and its quotient gyrogroups. Thus,

we make the following definition.

Definition 5.2. Let P be a gyrogroup property. We say that P is NQ-inductive

if for any normal subgyrogroup N of a gyrogroup G, N and G/N have property P

implies G has property P.

In view of Proposition 4.13, the property of being g-extensive is NQ-inductive.

Moreover, Definition 5.2 is defined for a finite-gyrogroup property with appropriate

modifications. The next proposition shows that g-extensive gyrogroups and groups

share NQ-inductive properties.

Proposition 5.3. Let P be a gyrogroup (respectively, finite-gyrogroup) property.

If P is NQ-inductive and if every (respectively, finite) group has property P, then

every (respectively, finite) g-extensive gyrogroup has property P.

Proof. We proceed by induction on the g-extensive length. In the case when G is

g-extensive of length 0, G is the trivial gyrogroup {e}, which is a group, and so G
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has property P by assumption. Assume inductively that if P is NQ-inductive and

if every group has property P, then every g-extensive gyrogroup of length n has

property P. Suppose that P is NQ-inductive and every group has property P. Let

G be a g-extensive gyrogroup of length n+1. Then, we have the g-extensive series:

G = Ga,0 ⊃ Ga,1 ⊃ · · · ⊃ Ga,n ⊃ Ga,n+1 = {e}. (⋆)

As in the proof of part 4 of Theorem 4.7, all containments in series (⋆) are proper.

Note that Ga,1 is g-extensive of length n. By the inductive hypothesis, Ga,1 has

property P. Since Ga,1 ⊴ G and G/Ga,1 = G/Ga is a group, G/Ga,1 has property

P. Since P is NQ-inductive, G has property P, which completes the induction. The

proof in the case of a finite-gyrogroup property can be done in a similar fashion. □

Next, we mention a few gyrogroup properties. Recall that a finite gyrogroup G

is said to have the Lagrange property if H is a subgyrogroup of G implies the order

of H divides the order of G (see Definition 5.1 of [13]). By Proposition 41 of [9],

the Lagrange property is a finite-gyrogroup property. By Corollary 5.3 of [13],

the Lagrange property is NQ-inductive. According to Lagrange’s Theorem, every

finite group has the Lagrange property. Thus, we obtain the following theorem

immediately:

Theorem 5.4. Every finite g-extensive gyrogroup has the Lagrange property.

Proof. This is an application of Proposition 5.3. □

Recall that a finite gyrogroup G is said to have the weak Cauchy property if p is

a prime dividing the order of G implies G has an element of order p (see Definition

6.3 of [13]). Furthermore, a finite gyrogroup G is said to have the strong Cauchy

property if every subgyrogroup of G has the weak Cauchy property (see Definition

6.4 of [13]). By Corollary 6.6 of [13], the weak Cauchy property and the strong

Cauchy property are finite-gyrogroup properties. By Corollary 6.8 of [13], the weak

(respectively, strong) Cauchy property is NQ-inductive. According to Cauchy’s

Theorem in group theory, every finite group has the weak (respectively, strong)

Cauchy property. Therefore, we obtain the following theorem immediately:

Theorem 5.5. Every finite g-extensive gyrogroup has the weak (respectively, strong)

Cauchy property.

Proof. This is an application of Proposition 5.3. □

By Theorem 5.5, the weak Cauchy property and the strong Cauchy property are

equivalent on the family of finite g-extensive gyrogroups. Furthermore, any finite
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gyrogroup not satisfying the weak Cauchy property cannot be g-extensive and fi-

nally leads to a contra-associative gyrogroup by part 3 of Theorem 4.7. We close

this section with another gyrogroup property. Recall that a (finite or infinite) gy-

rogroup G is said to have the left-coset decomposable property ifH is a subgyrogroup

of G implies the set of left cosets of H, G/H = {a⊕H : a ∈ G}, is a disjoint par-

tition of G. As is well known, every group (not necessarily finite) has the left-coset

decomposable property. Next, we show that the left-coset decomposable property

is a gyrogroup property.

Proposition 5.6. Let G and K be gyrogroups. If G ∼= K, then G has the left-coset

decomposable property if and only if K has the left-coset decomposable property.

Proof. Let ϕ : K ! G be an isomorphism. Suppose that G possesses the left-

coset decomposable property. Let H be a subgyrogroup of K. Clearly, x⊕H ̸= ∅
for all x ∈ K and

⋃
x∈K

x ⊕ H = K. Suppose that (x ⊕ H) ∩ (y ⊕ H) ̸= ∅. Let

z ∈ (x ⊕H) ∩ (y ⊕H). Then, z = x ⊕ h1 = y ⊕ h2 for some elements h1, h2 ∈ H.

As ϕ is a homomorphism, ϕ(H) is a subgyrogroup of G, and so G/ϕ(H) is a

disjoint partition of G. Since ϕ(z) = ϕ(x) ⊕ ϕ(h1) = ϕ(y) ⊕ ϕ(h2), it follows that

(ϕ(x)⊕ϕ(H))∩(ϕ(y)⊕ϕ(H)) ̸= ∅. Hence, ϕ(x)⊕ϕ(H) = ϕ(y)⊕ϕ(H). This implies

that ϕ(x ⊕H) = ϕ(y ⊕H), which in turn implies that x ⊕H = y ⊕H since ϕ is

injective. This proves that K/H is a disjoint partition of K. Since H is arbitrary,

K has the left-coset decomposable property. Since ϕ−1 is an isomorphism from G

to K, the converse also holds. □

Unfortunately, the left-coset decomposable property is not, in general, NQ-

inductive. In fact, the gyrogroup K16 (see page 41 of [14]), which has order 16, does

not have the left-coset decomposable property (for instance, 4 ⊕ {0, 8} = {4, 15}
and 14 ⊕ {0, 8} = {4, 14}), whereas the left nucleus Nℓ(K16) = {0, 1, 2, 3} and the

quotient K16/Nℓ(K16) do have the left-coset decomposable property because they

form groups. Note also that K16 is g-extensive of length 2 by Proposition 4.6 for

the associators of K16 are precisely 0 and 1. In particular, this situation indicates

that g-extensive gyrogroups enjoy some (but not all) of the properties of groups.
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[16] A. A. Ungar, From Möbius to gyrogroups, Amer. Math. Monthly, 115(2) (2008),

138-144.

[17] A. A. Ungar, Barycentric Calculus in Euclidean and Hyperbolic Geometry: A

Comparative Introduction, World Scientific Publishing Co. Pte. Ltd., Hacken-

sack, NJ, 2010.

[18] J. Wattanapan, W. Atiponrat and T. Suksumran, Extension of the Švarc-
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