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ABSTRACT 

In the present study, fourth-order compact formulation has been improved for Navier-Stokes (N-S) equations, which 

is expressed for two-dimensional, steady, incompressible flow problems. N-S equation system has been expressed 

with Stream Function-Vorticity Approach using Finite Difference Method (FDM) from the numerical methods. In 

order to test the functionality and applicability of the improved numerical formulation, a sample for submerged bluff 

bodies, flow problem around cylinder with square cross-section was chosen as a benchmark problem. As a result of 

applying improved numerical formulation with Gauss-Seidel Relaxation Method was used for this benchmark 

problem. The benchmark problem was also solved with second-order accuracy and obtained numerical results were 

compared with fourth-order accuracy numerical results. With the same Reynolds Number and the same free-stream 

velocity values, fourth-order numerical results are more convergent than second-order numerical results. 

Furthermore, in the flow field for considered benchmark problem, separation bubble length that consisted in the wake 

region is increased proportionally depending on the alteration of the Reynolds Number values.  

Keywords: Stream Function-Vorticity Formulation, Flow Around Bluff Body, Steady State Flow, Incompressible 

Flow. 

 

1. INTRODUCTION 

Miscellaneous more sophisticated solution 

methods have been proposed for encountered 

different engineering problems in different 

disciplines. Such as in fluid mechanics, heat 

transfer, thermodynamics, physics etc. disciplines 

encountered various engineering problems could 

be solved analytical, numerical or empirical 
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solution methods. In these disciplines several more 

engineering problems could not solve via 

analytical solution methods due to the nonlinearity 

of partial differential equation system (PDES) [1-

3]. Just because of this reason, numerical methods 

such as Finite Difference Method (FDM), Finite 

Volume Method (FVM), Finite Element Method 

(FEM), Spectral Methods, Boundary Element 

Method (BEM), Lattice Boltzmann Method 

(LBM) or Particle Methods have been used very 
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commonly to discretize the PDES belong to 

solutions of these engineering problems. These 

numerical methods gives us approximate results 

for the considered engineering problems [2, 3]. 

The main criteria’s of selection the numerical 

methods are stable solution, converged solution 

and high-speed of convergence or less 

computational time. After applying one of these 

numerical methods which mentioned above, to the 

considered problem, discretized equations belong 

to the desired physical variables such as velocity, 

pressure, shear stress, stream function, vorticity, 

etc. can be obtained. These discretized equations 

can be expressed via one of the iterative numerical 

methods such as Newton-Raphson, Gauss-Jacobi 

Elimination, Gauss-Seidel, Gauss-Seidel 

Relaxation, Implicit and Explicit Euler, 

Alternating Direction Implicit Methods (ADIM) 

etc. to obtain the iteration equations of desired 

physical variables. The obtained iteration 

equations have been computed consecutively for 

determined iteration number or times to get 

solution results of desired physical variables in 

solution domain. In the present paper, each 

numerical solution step which mentioned above 

was applied to flow around a stationary square 

obstacle in two-dimensional flow field with 

steady, incompressible and no temperature 

gradient respectively. As it can be remembered, 

this flow problem was selected as a benchmark 

problem. This each numerical solution step was 

applied in developed numerical method with 

fourth-order compact formulation with nine grid 

points. 

In the literature, it is possible to find numerous 

numerical approaches which have been applied to 

the flow problem around circular cylinder, square 

cylinder or any different bluff bodies. The flow 

past around bluff bodies, especially flow around 

circular and square cylinders, have been an 

attraction in all kinds of fluid mechanical 

investigations for many years. Particularly, the 

analysis of external flow around a square cylinder 

and circular cylinder is a reference model for 

miscellaneous engineering problems and 

engineering executions such as designing of a 

submarine, a cooling tower, a heat exchanger, an 

expansion tank, a boiler, a condenser, an 

evaporator, a tall building, a bridge, a chimney, a 

trash rack, etc. [4, 5]. In the literature it can be 

found excellent assessments on these subjects 

were written by Fletcher [6], Williamson [7], 

Zdravkovich [8]. In contrast to the overwhelming 

number of publications on the flow past circular 

cylinders [9], the square counterpart has not been 

investigated to the same extent, although it plays a 

dominant role in many technical applications such 

as building aerodynamics [10, 20]. 

In Fluid Mechanics or Computational Fluid 

Dynamics (CFD) literature can be found numerous 

numerical studies for two-dimensional, steady, 

incompressible engineering flow problem’s 

solutions. FDM, FVM, FEM, BEM, LBM, etc. 

numerical methods have been used in different 

numerical studies to discretize the PDES belong to 

this benchmark problem which is flow around 

square cylinder and for obtaining results have been 

applied iterative numerical methods as mentioned 

above [2, 9, 21, 22, 23]. For instance in Aydın and 

Çuhadaroğlu’s [24] study has been considered the 

same benchmark problem but Explicit Euler 

Numerical Method has been applied. In Explicit 

Euler Method to discretize PDES are used FDM. 

In order to discretize PDES, central finite 

difference derivative formulas are considered due 

to dimension size and forward finite difference 

derivative formulas are considered due to time 

size. Also in Aydın and Çuhadaroğlu’s [24] study, 

time dependent and time independent flow has 

been considered. In addition to this, in many 

various numerical studies are considered different 

engineering problems with the same numerical 

solution method as used in this study. For example 

in Erturk et al.’s [25] study has been considered the 

same numerical method as used in this study but 

this numerical method has been applied to lid 

driven cavity flow problem. As it seen from this 

numerical study the benchmark problem is 

different but applied numerical method same as 

this study.  

Also, numerical studies of flow around different 

bluff bodies such as trapezoidal, triangular etc. can 

be found in the literature. In the case of a sharp-

edged model geometries such as a square cross-

section cylinder or trapezoidal geometry, where 

the separation points are fixed at the leading edges, 

physical flow properties were not changed 

relatively to the Reynolds Number [26]. Davis et 

al.  have been investigated the bounded flow 

around square cylinders numerically for 
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comprehensive range of Reynolds Number with 

different blockage ratios values such as β=1/4 and 

β=1/6 [12]. The blockage ratio, B, is the ratio of 

the cross-stream projection of the square (edge 

length for a symmetric square) to the domain 

width. Benim et al. [27] and Chattopadhay [28] 

studied flow around the triangular prism 

numerically in the laminar regime and turbulent 

regime, respectively. 

This article has been constituted from Inan’s MSc. 

thesis [29].  In this article, to solve the benchmark 

problem as mentioned above, FDM has been 

applied to discretize the PDES belong to the 

solution and from the iterative numerical methods 

Gauss-Seidel Relaxation (Successive Under/Over 

Relaxation) Method has been employed to obtain 

iteration equation belong to the desired physical 

variables such as stream function ψ  and vorticity 

ω. FDM is included finite difference derivative 

formulas, such as backward difference, central 

difference and forward difference derivative 

formulas. For considered benchmark problem, all 

the PDES has been discretized via central finite 

difference derivative formulas. In the present 

paper, a change of parameters has been made 

which replaces the velocity components with a 

stream function and a vorticity. Stream function-

vorticity ψ-ω equations were discretized by using 

Taylor Series Expansion (TSE) via central finite 

difference derivative formulas. In the literature can 

be found many different numerical studies by 

using TSE via FDM. Erturk et al. [26], have been 

used fourth-order compact formulation with five 

grid points discretization via second-order central 

difference formulation to solve two-dimensional, 

steady, incompressible N-S equations. 

Mathematically it is impossible using five grid 

points with second-order accuracy central finite 

difference derivative formulas to obtain fourth-

order compact formulation. In order to obtain 

fourth-order compact formulation it has been used 

nine different grid points. Therefore, this matter is 

a difference from the other numerical studies and 

this matter can be considered the uniqueness of 

this study. Also, cross derivatives are not used in 

fourth-order compact formulation, however, 

Erturk et al. [25], Erturk and Gökçöl [30] and 

Erturk [31] were included cross derivative terms 

while obtaining fourth-order compact formulation. 

This is the second difference and significant matter 

from the other numerical studies. 

The aim of the present study is to solve the steady, 

two-dimensional, incompressible N-S equations 

using fourth-order compact formulation and as a 

result to obtain iteration equations. 

Simultaneously, applying the iteration equations to 

the benchmark flow problem which flow around 

square cylinder for different free-stream velocities 

and different Reynolds Number values in 341×81 

grid structure. Finally, we will compare second-

order and fourth-order compact formulations to 

each other. 

1. NUMERICAL SOLUTION 

METHODOLOGY 

1.1. Governing Equations of Fourth-Order 

Compact Formulation 

In this numerical analysis, the flow is considered 

to be two-dimensional, steady and incompressible 

with constant properties neglect pressure gradients 

and neglect body forces. With regard to these 

assumptions, the conservation of mass and the 

conservation of momentum equation can be 

expressed in nondimensionalized form and in 

Cartesian coordinate system as follows: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                             (1) 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝜇 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)  (2) 

𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)               (3) 

The above equations ((1), (2) and (3)) representing 

the conservation of mass and momentum 

equations can be rewritten in terms of stream 

function-vorticity formulation. The vorticity is 

expressed as: 

𝜔 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
                                         (4) 

The stream function is expressed in such a way that 

the continuity equation is identically satisfied. 

Then we have, 

𝑢 =
𝜕𝜓

𝜕𝑦
;  𝑣 = −

𝜕𝜓

𝜕𝑥
                            (5) 

Instead of solving (1), (2) and (3) in terms of 

primitive variables, the equations are rewritten in 

terms of stream function and the vorticity defined 

in equation (4) and equation (5). 

1236Sakarya University Journal of Science, 22 (5), 1234-1252, 2018.



Aslan, E. et al. / Numerical Analysis of Flow Around Bluff Bodies with 4th and 2nd order compact formulations 

𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2 = −𝜔                              (6) 

𝑢
𝜕𝜔

𝜕𝑥
+ 𝑣

𝜕𝜔

𝜕𝑦
= 𝜈 (

𝜕2𝜔

𝜕𝑥2 +
𝜕2𝜔

𝜕𝑦2 )                 (7) 

Equations (6) and (7) are known as the Poisson’s 

Equation and the Vorticity Transport Equation, 

respectively. In addition equation (6) is named 

Stream Function Equation and equation (7) is 

entitled Vorticity Equation, respectively. In order 

to provide sustainability between the various 

studies in this area and also to guard against 

undesirable numerical overflows, it is often 

helpful to perform numerical investigations using 

nondimensional parameters. Physical quantities 

are made dimensionless by using representative 

quantities. The nondimensionalized forms of 

equations (6) and (7) are as follows: 

𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2 = −𝜔                              (8) 

𝜕𝜓

𝜕𝑦

𝜕𝜔

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜔

𝜕𝑦
=

1

𝑅𝑒
(

𝜕2𝜔

𝜕𝑥2 +
𝜕2𝜔

𝜕𝑦2 )                (9) 

In order to transform from physical domain to 

computational domain, the grids are mapped onto 

orthogonal grids. Physical domain means that 

distance between sequential grid points are not 

equal (∆𝑥 ≠ ∆𝑦) in other words, 

nonhomogeneous grid structure as shown in Fig. 

1. 𝑎. Also computational domain means that 

distance between sequential grid points are equal 

(∆𝜉 = ∆𝜂) in other words, homogeneous grid 

structure or orthogonal equidistant grid structure 

as shown in Fig. 1. 𝑏. In Fig. 1. 𝑎 and Fig. 1. 𝑏, 

𝐾(𝑥1, 𝑦1), 𝐿(𝑥1, 𝑦2) and 𝑀(𝑥1, 𝑦3) notations 

shows that any grid points in considered grid 

structure. 

 

Figure 1. (a) Physical domain (Nonhomogeneous grid 

structure) 

 

Figure 1. (b) Computational domain (Homogeneous grid 

structure) 

Transform functions as shown below has been 

used to transform the above equations ((8) and (9)) 

in physical domain to computational domain. In 

the present paper, used transform functions are as 

follows [33]: 

𝑥 = 𝜉 −
𝜆

2𝜋
(𝑆𝑖𝑛(2𝜋𝜉))                            (10) 

𝑦 = 𝜂 −
𝜆

2𝜋
(𝑆𝑖𝑛(2𝜋𝜂))                            (11) 

As a result of applying mathematical operations 

and requirements we will obtain the final form of 

the equations take the following form: 

𝐴
𝜕2𝜓

𝜕𝜉2 + 𝐵
𝜕2𝜓

𝜕𝜂2 + 𝐶
𝜕𝜓

𝜕𝜉
+ 𝐷

𝜕𝜓

𝜕𝜂
= −𝜔              (12)                

1

𝑅𝑒
(𝐴

𝜕2𝜔

𝜕𝜉2 + 𝐵
𝜕2𝜔

𝜕𝜂2 + 𝐶
𝜕𝜔

𝜕𝜉
+ 𝐷

𝜕𝜔

𝜕𝜂
) = 𝐸 (

𝜕𝜓

𝜕𝜂

𝜕𝜔

𝜕𝜉
−

𝜕𝜓

𝜕𝜉

𝜕𝜔

𝜕𝜂
)                                                      (13) 

where 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 are the coefficients: 

𝐴 = ((
𝜕𝜉

𝜕𝑥
)

2
+ (

𝜕𝜉

𝜕𝑦
)

2
)   

𝐵 = ((
𝜕𝜂

𝜕𝑥
)

2
+ (

𝜕𝜂

𝜕𝑦
)

2
)  

𝐶 = (
𝜕2𝜉

𝜕𝑥2
+

𝜕2𝜉

𝜕𝑦2
)                                                                  (14) 

𝐷 = (
𝜕2𝜂

𝜕𝑥2 +
𝜕2𝜂

𝜕𝑦2)  

𝐸 =
𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦
  

The nondimensionalized N-S equations have been 

expressed above are nonlinear partial derivative 

differential equations and therefore need to be 

solved in an iterative manner. In the literature it 

can be found very different numerical methods to 

solve the partial differential equations, i.e., FVM, 

FEM, FDM, BEM and LBM. Among these 

methods, FDM is the oldest and is used to 
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discretize the nondimensional N-S equation 

system. In this method, the solution domain are 

divided to grid points (see in Fig. 1. 𝑏) and it is 

aimed to find the dependent variables only at that 

grid points. In FDM with TSE to obtain any order 

partial derivative expression three different 

approaches can be used such as forward finite 

difference, central finite difference and backward 

finite difference. In this study, to obtain finite 

difference equations, TSE with central difference 

approach has been used. The aim of using central 

difference approach is to obtain more accurate 

finite difference derivative formulas. In other 

words to obtain numerical solutions more closely 

to analytical results. Also fourth-order accuracy 

has been considered in central finite difference 

approach. The central finite difference derivative 

formulas with fourth-order accuracy has been 

tabulated in Table 1. The 𝑓 is in Table 1 shows the 

general expression of any variable. In these central 

finite difference derivative formulas has been used 

twenty five different grid points, see in Fig. 2. In 

the present paper, central finite difference 

derivative formulas have been obtained with 

fourth-order accuracy and in the literature it cannot 

be found these formulas with fourth-order 

accuracy, except this paper. 

 

Figure 2. Used 25 different grid points at central finite 

derivative formulas with fourth-order accuracy 

The Stream Function Equation is discretized using 

FDM with TSE and this equation can be expressed 

as follow: 

 

𝐴𝑖,𝑗 (
−𝜓𝑖+2,𝑗+16𝜓𝑖+1,𝑗−30𝜓𝑖,𝑗+16𝜓𝑖−1,𝑗−𝜓𝑖−2,𝑗

12∆ℎ2 )  

+𝐵𝑖,𝑗 (
−𝜓𝑖,𝑗+2+16𝜓𝑖,𝑗+1−30𝜓𝑖,𝑗+16𝜓𝑖,𝑗−1−𝜓𝑖,𝑗−2

12∆ℎ2 )  

+𝐶𝑖,𝑗 (
−𝜓𝑖+2,𝑗+8𝜓𝑖+1,𝑗−8𝜓𝑖−1,𝑗+𝜓𝑖−2,𝑗

12∆ℎ
)                     (15) 

+𝐷𝑖,𝑗 (
−𝜓𝑖,𝑗+2+8𝜓𝑖,𝑗+1−8𝜓𝑖,𝑗−1+𝜓𝑖,𝑗−2

12∆ℎ
) = −𝜔𝑖,𝑗  

where 𝐴𝑖,𝑗, 𝐵𝑖,𝑗, 𝐶𝑖,𝑗, 𝐷𝑖,𝑗 are the coefficients, ∆ℎ is 

difference between two sequential grid points, 𝜓𝑖,𝑗 

is the stream function and 𝜔𝑖,𝑗 is the vorticity. 

Indices of (𝑖, 𝑗) is denoted any grid points in grid 

structure, see in Fig. 2. In equation (15), it is not 

necessary to discretize 𝐴𝑖,𝑗, 𝐵𝑖,𝑗, 𝐶𝑖,𝑗, 𝐷𝑖,𝑗 

coefficients because these coefficients can be 

calculated algebraically. In equation (12), 
𝜕𝜓

𝜕𝜉
, 

𝜕𝜓

𝜕𝜂
 

are first-order and 
𝜕2𝜓

𝜕𝜉2
, 

𝜕2𝜓

𝜕𝜂2
 are second-order 

partial derivative expressions. Equation (15) is 

discretizated form of equation (12). Also, equation 

(12) is general expression of the stream function 

equation with fourth-order accuracy. At this stage, 

in order to obtain vorticity finite difference 

equation with fourth-order accuracy it has been 

applied the similar way and consequently the 

equation has been expressed as follow: 

1

𝑅𝑒
𝐴𝑖,𝑗 [(

−𝜔𝑖+2,𝑗+16𝜔𝑖+1,𝑗−30𝜔𝑖,𝑗+16𝜔𝑖−1,𝑗−𝜔𝑖−2,𝑗

12∆ℎ2 )   

+𝐵𝑖,𝑗 (
−𝜔𝑖,𝑗+2+16𝜔𝑖,𝑗+1−30𝜔𝑖,𝑗+16𝜔𝑖,𝑗−1−𝜔𝑖,𝑗−2

12∆ℎ2 )   

+𝐶𝑖,𝑗 (
−𝜔𝑖+2,𝑗+8𝜔𝑖+1,𝑗−8𝜔𝑖−1,𝑗+𝜔𝑖−2,𝑗

12∆ℎ
)  

+𝐷𝑖,𝑗 (
−𝜔𝑖,𝑗+2+8𝜔𝑖,𝑗+1−8𝜔𝑖,𝑗−1+𝜔𝑖,𝑗−2

12∆ℎ
)]                 (16) 

= 𝐸𝑖,𝑗 [(
−𝜓𝑖,𝑗+2+8𝜓𝑖,𝑗+1−8𝜓𝑖,𝑗−1+𝜓𝑖,𝑗−2

12∆ℎ
)  

× (
−𝜔𝑖+2,𝑗+8𝜔𝑖+1,𝑗−8𝜔𝑖−1,𝑗+𝜔𝑖−2,𝑗

12∆ℎ
)  

− (
−𝜓𝑖+2,𝑗+8𝜓𝑖+1,𝑗−8𝜓𝑖−1,𝑗+𝜓𝑖−2,𝑗

12∆ℎ
)  

× (
−𝜔𝑖,𝑗+2+8𝜔𝑖,𝑗+1−8𝜔𝑖,𝑗−1+𝜔𝑖,𝑗−2

12∆ℎ
)]  

In general expression of the stream function and 

the vorticity has been used nine different grid 

points, see in Fig. 3. These grid points were 

illustrated in Fig. 3. 

In equation (13), 
𝜕𝜔

𝜕𝜉
, 

𝜕𝜔

𝜕𝜂
, 

𝜕𝜓

𝜕𝜉
, 

𝜕𝜓

𝜕𝜂
 are first-order and 

𝜕2𝜔

𝜕𝜉2 , 
𝜕2𝜔

𝜕𝜂2  are second-order partial derivative 

expressions. Equation (16) is discretizated form of 

equation (13). Also, equation (13) is general 
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expression of the vorticity equation with fourth-

order accuracy. 

 

Figure 3. Used 9 different grid points at stream function and vorticity general expressions with fourth-order accuracy 

Table 1. Central finite difference derivative formulas with fourth-order accuracy in Cartesian coordinate system

𝜕𝑓

𝜕𝑥
=

−𝑓𝑖+2,𝑗 + 8𝑓𝑖+1,𝑗 − 8𝑓𝑖−1,𝑗 + 𝑓𝑖−2,𝑗

12∆𝑥
+ 𝜗(∆𝑥4) 

𝜕𝑓

𝜕𝑦
=

−𝑓𝑖,𝑗+2 + 8𝑓𝑖,𝑗+1 − 8𝑓𝑖,𝑗−1 + 𝑓𝑖,𝑗−2

12∆𝑦
+ 𝜗(∆𝑦4) 

𝜕2𝑓

𝜕𝑥2
=

−𝑓𝑖+2,𝑗 + 16𝑓𝑖+1,𝑗 − 30𝑓𝑖,𝑗 + 16𝑓𝑖−1,𝑗 − 𝑓𝑖−2,𝑗

12∆𝑥2
+ 𝜗(∆𝑥4) 

𝜕2𝑓

𝜕𝑦2
=

−𝑓𝑖,𝑗+2 + 16𝑓𝑖,𝑗+1 − 30𝑓𝑖,𝑗 + 16𝑓𝑖,𝑗−1 − 𝑓𝑖,𝑗−2

12∆𝑦2
+ 𝜗(∆𝑦4) 

𝜕2𝑓

𝜕𝑥𝜕𝑦
= (

𝑓𝑖+2,𝑗+2 − 8𝑓𝑖+1,𝑗+2 + 8𝑓𝑖−1,𝑗+2 − 𝑓𝑖−2,𝑗+2 − 8𝑓𝑖+2,𝑗+1 + 64𝑓𝑖+1,𝑗+1 − 64𝑓𝑖−1,𝑗+1 + 8𝑓𝑖−2,𝑗+1

144∆𝑥∆𝑦
 

+
8𝑓𝑖+2,𝑗−1 − 64𝑓𝑖+1,𝑗−1 + 64𝑓𝑖−1,𝑗−1 − 8𝑓𝑖−2,𝑗−1 − 𝑓𝑖+2,𝑗−2 + 8𝑓𝑖+1,𝑗−2 − 8𝑓𝑖−1,𝑗−2 + 𝑓𝑖−2,𝑗−2

144∆𝑥∆𝑦
) + 𝜗(∆𝑥4, ∆𝑦4) 

𝜕3𝑓

𝜕𝑥2𝜕𝑦
= (

𝑓𝑖+2,𝑗+2 − 16𝑓𝑖+1,𝑗+2 + 30𝑓𝑖,𝑗+2 − 16𝑓𝑖−1,𝑗+2 + 𝑓𝑖−2,𝑗+2 − 8𝑓𝑖+2,𝑗+1 + 128𝑓𝑖+1,𝑗+1 − 240𝑓𝑖,𝑗+1 + 128𝑓𝑖−1,𝑗+1 − 8𝑓𝑖−2,𝑗+1

144∆𝑥2∆𝑦
 

+
8𝑓𝑖+2,𝑗−1 − 128𝑓𝑖+1,𝑗−1 + 240𝑓𝑖,𝑗−1 − 128𝑓𝑖−1,𝑗−1 + 8𝑓𝑖−2,𝑗−1 − 𝑓𝑖+2,𝑗−2 + 16𝑓𝑖+1,𝑗−2 − 30𝑓𝑖,𝑗−2 + 16𝑓𝑖−1,𝑗−2 − 𝑓𝑖−2,𝑗−2

144∆𝑥2∆𝑦
) + 𝜗(∆𝑥4, ∆𝑦4) 

𝜕3𝑓

𝜕𝑥𝜕𝑦2 = (
𝑓𝑖+2,𝑗+2 − 16𝑓𝑖+2,𝑗+1 + 30𝑓𝑖+2,𝑗 − 16𝑓𝑖+2,𝑗−1 + 𝑓𝑖+2,𝑗−2 − 8𝑓𝑖+1,𝑗+2 + 128𝑓𝑖+1,𝑗+1 − 240𝑓𝑖+1,𝑗 + 128𝑓𝑖+1,𝑗−1 − 8𝑓𝑖+1,𝑗−2

144∆𝑥∆𝑦2  

+
8𝑓𝑖−1,𝑗+2 − 128𝑓𝑖−1,𝑗+1 + 240𝑓𝑖−1,𝑗 − 128𝑓𝑖−1,𝑗−1 + 8𝑓𝑖−1,𝑗−2 − 𝑓𝑖−2,𝑗+2 + 16𝑓𝑖−2,𝑗+1 − 30𝑓𝑖−2,𝑗 + 16𝑓𝑖−2,𝑗−1 − 𝑓𝑖−2,𝑗−2

144∆𝑥∆𝑦2
) + 𝜗(∆𝑥4, ∆𝑦4) 

𝜕4𝑓

𝜕𝑥2𝜕𝑦2 = (
𝑓𝑖+2,𝑗+2 − 16𝑓𝑖+1,𝑗+2 + 30𝑓𝑖,𝑗+2 − 16𝑓𝑖−1,𝑗+2 + 𝑓𝑖−2,𝑗+2 − 16𝑓𝑖+2,𝑗+1 + 256𝑓𝑖+1,𝑗+1 − 480𝑓𝑖,𝑗+1 + 256𝑓𝑖−1,𝑗+1 − 16𝑓𝑖−2,𝑗+1

144∆𝑥2∆𝑦2  

+
30𝑓𝑖+2,𝑗 − 480𝑓𝑖+1,𝑗 + 900𝑓𝑖,𝑗 − 480𝑓𝑖−1,𝑗 + 30𝑓𝑖−2,𝑗 − 16𝑓𝑖+2,𝑗−1 + 256𝑓𝑖+1,𝑗−1 − 480𝑓𝑖,𝑗−1 + 256𝑓𝑖−1,𝑗−1 − 16𝑓𝑖−2,𝑗−1

144∆𝑥2∆𝑦2
 

+
𝑓𝑖+2,𝑗−2 − 16𝑓𝑖+1,𝑗−2 + 30𝑓𝑖,𝑗−2 − 16𝑓𝑖−1,𝑗−2 + 𝑓𝑖−2,𝑗−2

144∆𝑥2∆𝑦2
) + 𝜗(∆𝑥4, ∆𝑦4) 
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1.2. Iteration Equations with Gauss-Seidel 

Relaxation Method of 

Nondimensionalized N-S Equation 

System 

We will numerically solve both the N-S equations 

(8) and (9) and the introduced fourth-order 

compact formulation of the N-S equations (12) and 

(13). Both of these equation sets are nonlinear and 

therefore, they need to be solved in an iterative 

manner. In order to have an iterative numerical 

algorithm, we aimed to obtain an iteration equation 

of stream function, in the first solution stage. 

Gauss-Seidel Relaxation Method, with required 

mathematical operations and arrangements has 

been applied to obtain an iteration equation of the 

stream function. In addition the aim of applying 

Gauss-Seidel Relaxation Method is to solve the 

PDES in a short computation time via a computer 

programming code and to accelerate the 

convergence speed [1, 3, 29, 33]. To prevent the 

solution from the divergency, in other words to 

obtain much closer to analytical solution values it 

has been considered Gauss-Seidel Relaxation 

iterative numerical method. For this benchmark 

problem, as a result of applying iterative numerical 

method with required mathematical operations and 

arrangements it has been obtained an iteration 

equation of stream function with fourth-order 

accuracy as follow: 

𝜓𝑖,𝑗 = 𝑤 (
1

5(𝐴𝑖,𝑗+𝐵𝑖,𝑗)
) [− (

∆ℎ𝐶𝑖,𝑗+𝐴𝑖,𝑗

6
) (𝜓𝑖+2,𝑗)    

+ (
4(∆ℎ𝐶𝑖,𝑗+2𝐴𝑖,𝑗)

3
) (𝜓𝑖+1,𝑗) + (

4(−𝛥ℎ𝐶𝑖,𝑗+2𝐴𝑖,𝑗)

3
) (𝜓𝑖−1,𝑗)  

+ (
𝛥ℎ𝐶𝑖,𝑗−𝐴𝑖,𝑗

6
) (𝜓𝑖−2,𝑗) − (

𝛥ℎ𝐷𝑖,𝑗+𝐵𝑖,𝑗

6
) (𝜓𝑖,𝑗+2)          (17)                    

+ (
4(∆ℎ𝐷𝑖,𝑗+2𝐵𝑖,𝑗)

3
) (𝜓𝑖,𝑗+1) + (

4(−𝛥ℎ𝐷𝑖,𝑗+2𝐵𝑖,𝑗)

3
) (𝜓𝑖,𝑗−1)  

+ (
Δℎ𝐷𝑖,𝑗−𝐵𝑖,𝑗

6
) (𝜓𝑖,𝑗−2) + (2∆ℎ2)(𝜔𝑖,𝑗)]  

+ (1 − 𝑤)𝜓𝑖,𝑗 

where 𝑤 is the relaxation parameter. Relaxation 

parameter refers to convergence speed in 

Successive Under Relaxation Method. Also, 

relaxation parameter changes from 0.0 to 1.0 for 

under relaxation.  

In the second solution stage, for obtaining an 

iteration equation of the vorticity, it can be 

followed the same way with the stream function. 

 

𝜔𝑖,𝑗 = 𝑤 (
1

15(𝐴𝑖,𝑗+𝐵𝑖,𝑗)
) [− (

∆ℎ𝐶𝑖,𝑗+𝐴𝑖,𝑗

2
) (𝜔𝑖+2,𝑗)  

+(4∆ℎ𝐶𝑖,𝑗 + 8𝐴𝑖,𝑗)(𝜔𝑖+1,𝑗) + (−4∆ℎ𝐶𝑖,𝑗 +

8𝐴𝑖,𝑗)(𝜔𝑖−1,𝑗)    

+ (
∆ℎ𝐶𝑖,𝑗−𝐴𝑖,𝑗

2
) (𝜔𝑖−2,𝑗) − (

∆ℎ𝐷𝑖,𝑗+𝐵𝑖,𝑗

2
) (𝜔𝑖,𝑗+2)                             

+(4∆ℎ𝐷𝑖,𝑗 + 8𝐵𝑖,𝑗)(𝜔𝑖,𝑗+1) + (−4∆ℎ𝐷𝑖,𝑗 +

8𝐵𝑖,𝑗)(𝜔𝑖,𝑗−1) + (
∆ℎ𝐷𝑖,𝑗−𝐵𝑖,𝑗

2
) (𝜔𝑖,𝑗−2)  

−
𝑅𝑒

24
𝐸𝑖,𝑗(−𝜓𝑖,𝑗+2 + 𝜓𝑖,𝑗−2)(−𝜔𝑖+2,𝑗 + 𝜔𝑖−2,𝑗)  

−
𝑅𝑒

3
𝐸𝑖,𝑗(−𝜓𝑖,𝑗+2 + 𝜓𝑖,𝑗−2)(𝜔𝑖+1,𝑗 − 𝜔𝑖−1,𝑗)  

−
𝑅𝑒

3
𝐸𝑖,𝑗(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗−1)(−𝜔𝑖+2,𝑗 + 𝜔𝑖−2,𝑗)  

−
8𝑅𝑒

3
𝐸𝑖,𝑗(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗−1)(𝜔𝑖+1,𝑗 − 𝜔𝑖−1,𝑗)     (18) 

+
𝑅𝑒

24
𝐸𝑖,𝑗(−𝜓𝑖+2,𝑗 + 𝜓𝑖−2,𝑗)(−𝜔𝑖,𝑗+2 + 𝜔𝑖,𝑗−2)  

+
𝑅𝑒

3
𝐸𝑖,𝑗(−𝜓𝑖+2,𝑗 + 𝜓𝑖−2,𝑗)(𝜔𝑖,𝑗+1 − 𝜔𝑖,𝑗−1)  

+
𝑅𝑒

3
𝐸𝑖,𝑗(𝜓𝑖+1,𝑗 − 𝜓𝑖−1,𝑗)(−𝜔𝑖,𝑗+2 + 𝜔𝑖,𝑗−2)  

+
8𝑅𝑒

3
𝐸𝑖,𝑗(𝜓𝑖+1,𝑗 − 𝜓𝑖−1,𝑗)(𝜔𝑖,𝑗+1 − 𝜔𝑖,𝑗−1)] +

     (1 − 𝑤)𝜔𝑖,𝑗   

Consequently, to compute stream function and 

vorticity values with fourth-order accuracy in any 

grid points and with iterative manner, can be used 

iteration equation (17) and (18), respectively. 

1.3. Comparison Between Second-Order 

Accurate and Fourth-Order Accurate 

Compact Formulation 

Nondimensionalized N-S equation system 

(equation (8) and (9)) has been solved numerically 

via fourth-order accurate compact formulation. 

While obtaining iteration equation with fourth-

order accuracy, it has been used 9 different grid 

points as mentioned before. In addition to solve 

nondimensionalized N-S equation system, second-

order accurate compact formulation with Gauss-

Seidel Relaxation Method are used. The stream 

function and the vorticity equation is shown in 

equation (19) and (20), respectively. 
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𝜓𝑖,𝑗 = 𝑤 (
1

2(𝐴𝑖,𝑗+𝐵𝑖,𝑗)
) [(𝐴𝑖,𝑗 +

∆ℎ

2
𝐶𝑖,𝑗) 𝜓𝑖+1,𝑗  

+ (𝐴𝑖,𝑗 −
∆ℎ

2
𝐶𝑖,𝑗) 𝜓𝑖−1,𝑗 + (𝐵𝑖,𝑗 +

∆ℎ

2
𝐷𝑖,𝑗) 𝜓𝑖,𝑗+1       (19) 

+ (𝐵𝑖,𝑗 −
∆ℎ

2
𝐷𝑖,𝑗) 𝜓𝑖,𝑗−1 + ∆ℎ2(𝜔𝑖,𝑗)] + (1 − 𝑤)𝜓𝑖,𝑗 

𝜔𝑖,𝑗 = 𝑤 (
1

2(𝐴𝑖,𝑗+𝐵𝑖,𝑗)
) [(𝐴𝑖,𝑗 +

∆ℎ

2
𝐶𝑖,𝑗) 𝜔𝑖+1,𝑗  

+ (𝐴𝑖,𝑗 −
∆ℎ

2
𝐶𝑖,𝑗) 𝜔𝑖−1,𝑗 + (𝐵𝑖,𝑗 +

∆ℎ

2
𝐷𝑖,𝑗) 𝜔𝑖,𝑗+1  

+ (𝐵𝑖,𝑗 −
∆ℎ

2
𝐷𝑖,𝑗) 𝜔𝑖,𝑗−1                                             (20)                    

−
𝑅𝑒

4
𝐸𝑖,𝑗(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗−1)(𝜔𝑖+1,𝑗 − 𝜔𝑖−1,𝑗)  

+
𝑅𝑒

4
𝐸𝑖,𝑗(𝜓𝑖+1,𝑗 − 𝜓𝑖−1,𝑗)(𝜔𝑖,𝑗+1 − 𝜔𝑖,𝑗−1)] 

+(1 − 𝑤)𝜔𝑖,𝑗 

In order to compute stream function values with 

second-order accuracy in any grid points it can be 

used iteration equation (19). In a similar fashion to 

compute vorticity values with fourth-order 

accuracy in any grid points it can be used iteration 

equation (20). Equation (19) and (20) have been 

used 5 different grid points such as (𝑖 + 1, 𝑗), 

(𝑖, 𝑗), (𝑖 − 1, 𝑗), (𝑖, 𝑗 + 1) and (𝑖, 𝑗 − 1), see in 

Fig. 3.  In second-order compact formulation has 

been considered less grid points than fourth-order 

compact formulation. 

We generate the in-house FDM code. In this in-

house FDM code, fourth and second-order 

compact formulation are used to compute stream 

function and vorticity values. It is observed that 

computing time of second-order compact 

formulation less than computing time of fourth-

order compact formulation. 

3. PROBLEM DEFINITION 

In the present paper, the obtained second-order and 

fourth-order compact formulations with Gauss-

Seidel Relaxation Method have been applied to 

flow around a square cylinder as selected a 

benchmark problem. Numerical values in two-

dimensional flow field have been obtained in 

341 × 81 grid points. Square cylinder has been 

positioned in free-stream area and between top and 

bottom free boundaries. This square cylinder has 

been considered as an immersed body. Flow 

around a square cylinder has been illustrated in 

Fig. 4. Around the square cylinder existing 

Newtonian fluid which is shear stress ratio 

changes linearly with rate of strain. 

3.1. Boundary Conditions in Flow Around 

       Square Cylinder Problem  

In this benchmark problem, left and right 

boundaries are input and output boundaries, 

respectively. These boundaries are free 

boundaries. In other words, these boundaries are 

not a wall. In a similar fashion, top and bottom 

boundaries are free boundaries. Considered 

velocity components in 𝑥-direction 𝑢 values, in 𝑦-

direction 𝑣 values and distance between square 

cylinder and free boundaries has been illustrated in 

Fig. 4. In free-stream area, considered velocity 

boundaries have been tabulated in Table 2. 

 

Figure 4. Schematic view of flow around square cylinder 

problem and computational domain and boundary 

conditions 

Table 2. Considered boundary conditions in free-stream 

area. 

Bottom and top, free 

boundaries 
: 𝑢 = 𝑈∞;  𝑣 = 0 

Left, free boundary : 𝑢 = 𝑈∞;  𝑣 = 0 

Right, free boundary : 𝑢 =
𝜓𝑖,𝑗 − 𝜓𝑖,𝑗−1

Δ𝑦
; 𝑣 = 0 

Square cylinder, no-slip 

boundary condition 
: 𝑢 = 0;  𝑣 = 0 

In two-dimensional flow area, square cylinder are 

considered as stationary wall. Due to this reason, 

no-slip boundary conditions are used at the edges 

on square cylinder. For the no-slip boundary 

conditions, velocity components in 𝑥-direction 𝑢 

values and in 𝑦-direction 𝑣 values are equal to zero 

therefore stream function values are also equal to 

zero. However vorticity values are nonzero. In the 

literature it can be found different methods to 

compute vorticity values such as Stortkuhl 

Method, Thom’s Method, etc. In this study, in 

order to compute vorticity values in grid structure 
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it has been used Thom’s Method. The no-slip 

boundary conditions at square cylinders are 

converted for stream function and vorticity 

approaches. The diverted no-slip boundary 

conditions have been demonstrated in Fig. 5. 

 

Figure 5. Equations of stream function and vorticity values 

on boundaries of square cylinder 

For solving this benchmark problem, 341 × 81 

grid size is used.  In these grid points it has been 

computed stream function and vorticity values. 

Constituted homogenous grid structure with 

341 × 81 grid size is showed in Fig. 6. 

 

Figure 6. Homogeneous grid structure with 341 × 81 grid 

size using in flow around square cylinder problem. 

In numerical study, five different Reynolds 

numbers are used which are 𝑅𝑒 = 100, 𝑅𝑒 = 300, 

𝑅𝑒 = 1000, 𝑅𝑒 = 10000 and 𝑅𝑒 = 20000. 

Reynolds number is based on free-stream velocity 

𝑈∞, height of square 𝐷 and kinematic viscosity 𝜈 . 

For acquiring each Reynolds numbers, fifteen 

different free-stream velocities are taken which are 

𝑈∞ = 0.02, 𝑈∞ = 0.04, 𝑈∞ = 0.046, 𝑈∞ =

0.07, 𝑈∞ = 0.09, 𝑈∞ = 0.093, 𝑈∞ = 0.7, 𝑈∞ =

0.9, 𝑈∞ = 0.93, 𝑈∞ = 1.0, 𝑈∞ = 2.0, 𝑈∞ =

2.29, 𝑈∞ = 7.0, 𝑈∞ = 9.0 and 𝑈∞ = 9.3. 

Therefore, seventy five different cases are 

constituted. Additionally, the relaxation parameter 

and grid stretching parameter are kept as 0.01 and 

0.05, respectively. 

4. RESULTS AND DISCUSSIONS 

In order to compute whole stream function and 

vorticity values in 341 × 81 grid structure, it has 

been used stream function and vorticity iteration 

equations with fourth-order and second-order 

accuracy. A computer programming code has been 

constituted via the language of technical 

computing programming MATLAB R2010a [34]. 

The programming code has been run for five 

different Reynolds numbers and fifteen different 

free-stream velocities, therefore seventy five 

Reynolds number and free-stream velocity pairs 

are considered for each order accuracies which are 

fourth-order and second-order accuracy. 

For fourth-order accuracy iterative numerical 

solution, thirty different Reynolds number and 

free-stream velocity pairs could not be solved, see 

in Table 3. Thirty eight Reynolds number and free-

stream velocity pairs could be produced undefined 

values of stream function and vorticity parameters, 

for second-order accuracy iterative numerical 

solution, see in Table 4. In fourth-order accuracy 

iterative numerical solution, more Reynolds 

number and free-stream velocity pairs are solved 

than second-order accuracy iterative numerical 

solution, because of increasing of accuracy. Our 

problem is solved as a steady-state, however at 

high Reynolds numbers, the problem physics goes 

to unsteady. Therefore, at high Reynolds numbers, 

solvable free-stream velocity interval is small. 

4.1. Preliminary Validation 

For the comparison of our in-house FDM code, 

FVM based commercial multi-purpose CFD code 

Ansys Fluent [35] is used. In comparison study, 

the same benchmark problem which is flow 

around square cylinder is used at 𝑅𝑒 = 40 with the 

same free-stream velocity 𝑈∞ = 1.0. Problem is 

assumed incompressible, two-dimensional and 

steady-state. The same grid size (341 × 81) is 

applied for the comparisons. Two comparison 

studies are used for preliminary validation. First 

comparison is made between in-house finite 

difference code with fourth-order compact 

formulation and FVM-based commercial CFD 

code Ansys-Fluent [35]. Second comparison is 

made at in-house Finite difference code between 

2nd and 4th order compact formulations. 

Fig. 7 shows the predicted streamlines for the first 

comparison which is between and FVM based 

commercial CFD code Ansys-Fluent [35] (Fig. 

7. 𝑎) and in-house FDM code with fourth-order 

compact formulation (Fig. 7. 𝑏).  In Fig. 7, the 
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nondimensional stream function has the value 

“−1” on the lower symmetry and the value “1” on 

the upper symmetry, where the step size between 

streamlines is 0.004. After the square cylinder, 

recirculation zone is consist for both numerical 

simulations. One can see in Fig. 7, recirculation 

zone length is same for both numerical 

calculations, and circulation length is 

approximately one edge length of square 𝐷. 
Therefore, our in-house FDM code with fourth-

order compact formulation is validated. 

 

The predicted streamlines from in-house FDM 

code second-order compact formulation (Fig. 8. 𝑎) 

and fourth-order compact formulation (Fig. 8. 𝑏) is 

shown at Fig. 8. Both numerical simulations are 

similar to each other. It means, in this Reynolds 

number, second and fourth-order compact 

formulations produce the same result. Therefore, 

second-order compact formulation of FDM is 

validated too. 

4.1. Main Benchmark Problem 

Table 3 and 4 shows the numerical values stream 

function and vorticity with regard to different 

Reynolds number and different free-stream 

velocities for fourth-order and second-order 

compact formulations, respectively. As mentioned 

before, seventy five Reynolds number and free-

stream velocity pairs are taken into account. Forty 

five different Reynolds number and free-stream 

velocity pairs could be solved for fourth-order 

accuracy iterative numerical solution (Table 3). 

However, number of solvable Reynolds number 

and free-stream velocity pairs is thirty seven for 

second-order accuracy iterative numerical solution 

(Table 4). For both iterative numerical solution, 

solvable free-stream velocity values interval is 

large at low Reynolds numbers. With increasing 

Reynolds number, only small free-stream velocity 

values could be solved. It means, solvable free-

stream velocity values interval is small at high 

Reynolds numbers. We assumed that our problem 

is steady-state, but, the problem physics go 

unsteady at high Reynolds number, thus, solvable 

free-stream velocity interval is small. Maximum 

and minimum stream function values are occurred 

positive and negative to half of free-stream 

velocity values, respectively. The difference 

maximum between minimum stream function 

values gives us a free-stream velocity values, 

because of mass conservation. Therefore, with 

increasing free-stream velocity values, difference 

maximum between minimum stream function 

values increase regardless to Reynolds number. 

Also, vorticity values are produced in-house FDM 

code. If absolute value is taken from minimum 

vorticity values, minimum vorticity value is equal 

to maximum vorticity value, like stream function 

values for both iterative numerical formulation. 

With increasing Reynolds number or free-stream 

velocity values, interval of vorticity which is 

difference between maximum and minimum 

vorticity, increases. One can see in Table 3 and 4, 

at the same Reynolds number and free-stream 

velocity values, fourth-order numerical 

formulations produce higher vorticity intervals 

than second-order numerical formulation. 

Stream function contour graphics regarding 

different Reynolds numbers and 0.02 free-stream 

velocity value are presented in Table 5 for fourth-

order numerical formulation and in Table 6 for 

second-order numerical formulation. All the 

figures in Table 5 and 6, nondimensional stream 

function has the value “−1” on the lower 

symmetry and the value “1” on the upper 

symmetry, where the step size between 

streamlines is 0.01, for better visualization and 

  

(a) (b) 

Figure 7. Streamlines at 𝑅𝑒 = 40 

(a) for FVM based commercial CFD code Ansys-Fluent 

(b) for in-house FDM code with fourth-order compact 

formulation 

  

(a) (b) 

Figure 8. Streamlines at 𝑅𝑒 = 40 

(a) for Finite Difference in-house code with second-order 

compact formulation 

(b) for Finite Difference in-house code with fourth-order 

compact formulation 
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comparison. The recirculation is observed after 

square cylinder especially at high Reynolds 

numbers because of negative velocity values. One 

can see in Table 5 and Table 6, recirculation zone 

length after square cylinder increases with 

increasing Reynolds number. Free-stream values 

are not a function of recirculation zone length, in 

other words, at the same Reynolds number, 

recirculation zone length does not change with 

free-stream velocities. The von Karman vortex 

streets after square cylinder are not observed 

because of using of steady state assumption, again. 

If the unsteady assumption is used in-house FDM 

code, von Karman vortex streets after square 

cylinder can be observed.  For all solvable 

Reynolds number and free-stream pairs, second-

order numerical formulation is produced a little bit 

higher recirculation zone length than fourth-order 

numerical formulation at corresponding Reynolds 

number. Therefore, fourth-order numerical 

formulations gives more realistic and accurate 

results than second-order numerical formulation. 

 

5. CONCLUSIONS 

The second-order and fourth-order compact 

formulation with Gauss-Seidel Relaxation Method 

have been applied to flow around a square 

cylinder, with two-dimensional and steady state 

assumptions. In numerical simulation, in-house 

FMD code is generated using MATLAB R2010a 

programing language [34].  (341×81) grid size is 

used for numerical calculations. Seventy five 

Reynolds number and velocity pairs are calculated 

for five different Reynolds number and fifteen 

different free-stream velocities. According to these 

numerical calculations, the following major 

conclusions are deduced; 

• Nine different grid points are taken into 

account to obtain fourth-order compact 

formulation, because contributions of cross 

derivative terms, go to zero.  

• Various Reynolds number and free-stream 

velocities are solved in fourth-order 

numerical formulation. 

• With increasing Reynolds number, 

converged free-stream velocity values are 

decreased. At high Reynolds Numbers, 

small free-stream values can be solved 

with fourth and second-order numerical 

formulations. 

• Stream function that corresponds to free-

stream centerline is considered as zero. 

Because of conservation of mass, if free-

stream velocity increases, the stream 

function interval increases. 

• The absolute values of minimum and 

maximum vorticities are equal, like stream 

function. With increasing Reynolds 

number, interval of vorticity increases. 

Fourth-order numerical formulation 

produces higher vorticity intervals than 

second-order numerical formulation. 

• Length of recirculation zone increases with 

increasing Reynolds number values. 

Recirculation zone length does not 

depended on free-stream velocities. 

• Von Karman streets are not observed 

because of the steady state assumption. 

This phenomena is unphysical in many 

cases. 

• Second-order numerical formulation 

produced a little bit higher recirculation 

zone length than fourth-order numerical 

formulation at corresponding Reynolds 

numbers. 

• Second-order numerical formulation gives 

less realistic and accurate results than 

fourth-order numerical formulation. 
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Table 3. Fourth-Order Numerical Values of Stream Function and Vorticity regarding Different Reynolds Numbers and Different Free Stream Velocity Values 

Free-

stream 

Velocity 

Values 
(𝑈∞ [𝑚/𝑠]) 

Reynolds Number (𝑅𝑒) Values  

100 300 1000 10000 20000 

0.02 
𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −1.1303; 𝜔𝑚𝑎𝑥. = 1.1303 

𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −1.2173; 𝜔𝑚𝑎𝑥. = 1.2173 

𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −1.5292; 𝜔𝑚𝑎𝑥. = 1.5292 

𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −2.61; 𝜔𝑚𝑎𝑥. = 2.61 

𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −2.5579; 𝜔𝑚𝑎𝑥. = 2.5579 

0.04 
𝜓𝑚𝑖𝑛. = −0.02; 𝜓𝑚𝑎𝑥. = 0.02 

𝜔𝑚𝑖𝑛. = −2.3465; 𝜔𝑚𝑎𝑥. = 2.3465 

𝜓𝑚𝑖𝑛. = −0.02; 𝜓𝑚𝑎𝑥. = 0.02 

𝜔𝑚𝑖𝑛. = −2.7059; 𝜔𝑚𝑎𝑥. = 2.7059 

𝜓𝑚𝑖𝑛. = −0.02; 𝜓𝑚𝑎𝑥. = 0.02 

𝜔𝑚𝑖𝑛. = −3.7724; 𝜔𝑚𝑎𝑥. = 3.7724 

𝜓𝑚𝑖𝑛. = −0.02; 𝜓𝑚𝑎𝑥. = 0.02 

𝜔𝑚𝑖𝑛. = −5.1157; 𝜔𝑚𝑎𝑥. = 5.1157 

𝜓𝑚𝑖𝑛. = −0.02; 𝜓𝑚𝑎𝑥. = 0.02 

𝜔𝑚𝑖𝑛. = −4.7026; 𝜔𝑚𝑎𝑥. = 4.7026 

0.046 
𝜓𝑚𝑖𝑛. = −0.023; 𝜓𝑚𝑎𝑥. = 0.023 

𝜔𝑚𝑖𝑛. = −2.7286; 𝜔𝑚𝑎𝑥. = 2.7286 

𝜓𝑚𝑖𝑛. = −0.023; 𝜓𝑚𝑎𝑥. = 0.023 

𝜔𝑚𝑖𝑛. = −3.2052; 𝜔𝑚𝑎𝑥. = 3.2052 

𝜓𝑚𝑖𝑛. = −0.023; 𝜓𝑚𝑎𝑥. = 0.023 

𝜔𝑚𝑖𝑛. = −4.5284; 𝜔𝑚𝑎𝑥. = 4.5284 

𝜓𝑚𝑖𝑛. = −0.023; 𝜓𝑚𝑎𝑥. = 0.023 

𝜔𝑚𝑖𝑛. = −5.81; 𝜔𝑚𝑎𝑥. = 5.81 

𝜓𝑚𝑖𝑛. = −0.023; 𝜓𝑚𝑎𝑥. = 0.023 

𝜔𝑚𝑖𝑛. = −5.2628; 𝜔𝑚𝑎𝑥. = 5.2628 

0.07 
𝜓𝑚𝑖𝑛. = −0.035; 𝜓𝑚𝑎𝑥. = 0.035 

𝜔𝑚𝑖𝑛. = −4.3390; 𝜔𝑚𝑎𝑥. = 4.3390 

𝜓𝑚𝑖𝑛. = −0.035; 𝜓𝑚𝑎𝑥. = 0.035 

𝜔𝑚𝑖𝑛. = −5.4255; 𝜔𝑚𝑎𝑥. = 5.4255 

𝜓𝑚𝑖𝑛. = −0.035; 𝜓𝑚𝑎𝑥. = 0.035 

𝜔𝑚𝑖𝑛. = −7.7619; 𝜔𝑚𝑎𝑥. = 7.7619 

𝜓𝑚𝑖𝑛. = −0.035; 𝜓𝑚𝑎𝑥. = 0.035 

𝜔𝑚𝑖𝑛. = −8.1148; 𝜔𝑚𝑎𝑥. = 8.1148 
 

0.09 
𝜓𝑚𝑖𝑛. = −0.045; 𝜓𝑚𝑎𝑥. = 0.045 

𝜔𝑚𝑖𝑛. = −5.7820; 𝜔𝑚𝑎𝑥. = 5.7820 

𝜓𝑚𝑖𝑛. = −0.045; 𝜓𝑚𝑎𝑥. = 0.045 

𝜔𝑚𝑖𝑛. = −7.5119; 𝜔𝑚𝑎𝑥. = 7.5119 

𝜓𝑚𝑖𝑛. = −0.045; 𝜓𝑚𝑎𝑥. = 0.045 

𝜔𝑚𝑖𝑛. = −10.5943; 𝜔𝑚𝑎𝑥. = 10.5943 

𝜓𝑚𝑖𝑛. = −0.045; 𝜓𝑚𝑎𝑥. = 0.045 

𝜔𝑚𝑖𝑛. = −10.3435; 𝜔𝑚𝑎𝑥. = 10.3435 
 

0.093 
𝜓𝑚𝑖𝑛. = −0.0465; 𝜓𝑚𝑎𝑥. = 0.0465 

𝜔𝑚𝑖𝑛. = −6.0063; 𝜔𝑚𝑎𝑥. = 6.0063 

𝜓𝑚𝑖𝑛. = −0.0465; 𝜓𝑚𝑎𝑥. = 0.0465 

𝜔𝑚𝑖𝑛. = −7.8406; 𝜔𝑚𝑎𝑥. = 7.8406 

𝜓𝑚𝑖𝑛. = −0.0465; 𝜓𝑚𝑎𝑥. = 0.0465 

𝜔𝑚𝑖𝑛. = −11.0240; 𝜔𝑚𝑎𝑥. = 11.0240 

𝜓𝑚𝑖𝑛. = −0.0465; 𝜓𝑚𝑎𝑥. = 0.0465 

𝜔𝑚𝑖𝑛. = −10.6165; 𝜔𝑚𝑎𝑥. = 10.6165 
 

0.7 
𝜓𝑚𝑖𝑛. = −0.35; 𝜓𝑚𝑎𝑥. = 0.35 

𝜔𝑚𝑖𝑛. = −77.6189; 𝜔𝑚𝑎𝑥. = 77.6189 

𝜓𝑚𝑖𝑛. = −0.35; 𝜓𝑚𝑎𝑥. = 0.35 

𝜔𝑚𝑖𝑛. = −91.4968; 𝜔𝑚𝑎𝑥. = 91.4968 

𝜓𝑚𝑖𝑛. = −0.35; 𝜓𝑚𝑎𝑥. = 0.35 

𝜔𝑚𝑖𝑛. = −84.1183; 𝜔𝑚𝑎𝑥. = 84.1183 
  

0.9 
𝜓𝑚𝑖𝑛. = −0.45; 𝜓𝑚𝑎𝑥. = 0.45 

𝜔𝑚𝑖𝑛. = −105.9428; 𝜔𝑚𝑎𝑥. = 105.9428 

𝜓𝑚𝑖𝑛. = −0.45; 𝜓𝑚𝑎𝑥. = 0.45 

𝜔𝑚𝑖𝑛. = −117.6699; 𝜔𝑚𝑎𝑥. = 117.6699 

𝜓𝑚𝑖𝑛. = −0.45; 𝜓𝑚𝑎𝑥. = 0.45 

𝜔𝑚𝑖𝑛. = −103.4349; 𝜔𝑚𝑎𝑥. = 103.4349 
  

0.93 
𝜓𝑚𝑖𝑛. = −0.465; 𝜓𝑚𝑎𝑥. = 0.465 

𝜔𝑚𝑖𝑛. = −110.2397; 𝜔𝑚𝑎𝑥. = 110.2397 

𝜓𝑚𝑖𝑛. = −0.465; 𝜓𝑚𝑎𝑥. = 0.465 

𝜔𝑚𝑖𝑛. = −121.4838; 𝜔𝑚𝑎𝑥. = 121.4838 

𝜓𝑚𝑖𝑛. = −0.465; 𝜓𝑚𝑎𝑥. = 0.465 

𝜔𝑚𝑖𝑛. = −106.1645; 𝜔𝑚𝑎𝑥. = 106.1645 
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Table 3. Fourth-Order Numerical Values of Stream Function and Vorticity regarding Different Reynolds Numbers and Different Free Stream Velocity Values (Contd) 

 

Free-

stream 

Velocity 

Values 
(𝑈∞ [𝑚/𝑠]) 

Reynolds Number (𝑅𝑒) Values  

100 300 1000 10000 20000 

1.0 
𝜓𝑚𝑖𝑛. = −0.5; 𝜓𝑚𝑎𝑥. = 0.5 

𝜔𝑚𝑖𝑛. = −120.2892; 𝜔𝑚𝑎𝑥. = 120.2892 

𝜓𝑚𝑖𝑛. = −0.5; 𝜓𝑚𝑎𝑥. = 0.5 

𝜔𝑚𝑖𝑛. = −188.5509; 𝜔𝑚𝑎𝑥. = 188.5509 
   

2.0 
𝜓𝑚𝑖𝑛. = −1.0; 𝜓𝑚𝑎𝑥. = 1.0 

𝜔𝑚𝑖𝑛. = −261.002; 𝜔𝑚𝑎𝑥. = 261.002 

𝜓𝑚𝑖𝑛. = −1.0; 𝜓𝑚𝑎𝑥. = 1.0 

𝜔𝑚𝑖𝑛. = −245.4223; 𝜔𝑚𝑎𝑥. = 245.4223 
   

2.29 
𝜓𝑚𝑖𝑛. = −1.145; 𝜓𝑚𝑎𝑥. = 1.145 

𝜔𝑚𝑖𝑛. = −299.7956; 𝜔𝑚𝑎𝑥. = 299.7956 

𝜓𝑚𝑖𝑛. = −1.145; 𝜓𝑚𝑎𝑥. = 1.145 

𝜔𝑚𝑖𝑛. = −275.9508; 𝜔𝑚𝑎𝑥. = 275.9508 
   

7.0 
𝜓𝑚𝑖𝑛. = −3.5; 𝜓𝑚𝑎𝑥. = 3.5 

𝜔𝑚𝑖𝑛. = −841.1827; 𝜔𝑚𝑎𝑥. = 841.1827 
    

9.0 
𝜓𝑚𝑖𝑛. = −4.5; 𝜓𝑚𝑎𝑥. = 4.5 

𝜔𝑚𝑖𝑛. = −1.0343 × 103; 𝜔𝑚𝑎𝑥. = 1.0343 × 103 
    

9.3 
𝜓𝑚𝑖𝑛. = −4.65; 𝜓𝑚𝑎𝑥. = 4.65 

𝜔𝑚𝑖𝑛. = −1.0616 × 103; 𝜔𝑚𝑎𝑥. = 1.0616 × 103 
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Table 4. Second-Order Numerical Values of Stream Function and Vorticity regarding Different Reynolds Numbers and Different Free-stream Velocity Values 

Free-

stream 

Velocity 

Values 
(𝑈∞ [𝑚/𝑠]) 

Reynolds Number (𝑅𝑒) Values  

100 300 1000 10000 20000 

0.02 
𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −1.3421; 𝜔𝑚𝑎𝑥. = 1.3421 

𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −1.4406; 𝜔𝑚𝑎𝑥. = 1.4406 

𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −1.8048; 𝜔𝑚𝑎𝑥. = 1.8048 

𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −3.5311; 𝜔𝑚𝑎𝑥. = 3.5311 

𝜓𝑚𝑖𝑛. = −0.01; 𝜓𝑚𝑎𝑥. = 0.01 

𝜔𝑚𝑖𝑛. = −4.0418; 𝜔𝑚𝑎𝑥. = 4.0418 

0.04 
𝜓𝑚𝑖𝑛. = −0.02; 𝜓𝑚𝑎𝑥. = 0.02 

𝜔𝑚𝑖𝑛. = −2.7807; 𝜔𝑚𝑎𝑥. = 2.7807 

𝜓𝑚𝑖𝑛. = −0.02; 𝜓𝑚𝑎𝑥. = 0.02 

𝜔𝑚𝑖𝑛. = −3.1958; 𝜔𝑚𝑎𝑥. = 3.1958 

𝜓𝑚𝑖𝑛. = −0.02; 𝜓𝑚𝑎𝑥. = 0.02 

𝜔𝑚𝑖𝑛. = −4.4579; 𝜔𝑚𝑎𝑥. = 4.4579 

𝜓𝑚𝑖𝑛. = −0.02; 𝜓𝑚𝑎𝑥. = 0.02 

𝜔𝑚𝑖𝑛. = −8.0836; 𝜔𝑚𝑎𝑥. = 8.0836 
 

0.046 
𝜓𝑚𝑖𝑛. = −0.023; 𝜓𝑚𝑎𝑥. = 0.023 

𝜔𝑚𝑖𝑛. = −3.2321; 𝜔𝑚𝑎𝑥. = 3.2321 

𝜓𝑚𝑖𝑛. = −0.023; 𝜓𝑚𝑎𝑥. = 0.023 

𝜔𝑚𝑖𝑛. = −3.7847; 𝜔𝑚𝑎𝑥. = 3.7847 

𝜓𝑚𝑖𝑛. = −0.023; 𝜓𝑚𝑎𝑥. = 0.023 

𝜔𝑚𝑖𝑛. = −5.3606; 𝜔𝑚𝑎𝑥. = 5.3606 

𝜓𝑚𝑖𝑛. = −0.023; 𝜓𝑚𝑎𝑥. = 0.023 

𝜔𝑚𝑖𝑛. = −9.4972; 𝜔𝑚𝑎𝑥. = 9.4972 
 

0.07 
𝜓𝑚𝑖𝑛. = −0.035; 𝜓𝑚𝑎𝑥. = 0.035 

𝜔𝑚𝑖𝑛. = −5.1321; 𝜔𝑚𝑎𝑥. = 5.1321 

𝜓𝑚𝑖𝑛. = −0.035; 𝜓𝑚𝑎𝑥. = 0.035 

𝜔𝑚𝑖𝑛. = −6.4033; 𝜔𝑚𝑎𝑥. = 6.4033 

𝜓𝑚𝑖𝑛. = −0.035; 𝜓𝑚𝑎𝑥. = 0.035 

𝜔𝑚𝑖𝑛. = −9.3076; 𝜔𝑚𝑎𝑥. = 9.3076 

𝜓𝑚𝑖𝑛. = −0.035; 𝜓𝑚𝑎𝑥. = 0.035 

𝜔𝑚𝑖𝑛. = −15.2009; 𝜔𝑚𝑎𝑥. = 15.2009 
 

0.09 
𝜓𝑚𝑖𝑛. = −0.045; 𝜓𝑚𝑎𝑥. = 0.045 

𝜔𝑚𝑖𝑛. = −6.8335; 𝜔𝑚𝑎𝑥. = 6.8335 

𝜓𝑚𝑖𝑛. = −0.045; 𝜓𝑚𝑎𝑥. = 0.045 

𝜔𝑚𝑖𝑛. = −8.8644; 𝜔𝑚𝑎𝑥. = 8.8644 

𝜓𝑚𝑖𝑛. = −0.045; 𝜓𝑚𝑎𝑥. = 0.045 

𝜔𝑚𝑖𝑛. = −12.9033; 𝜔𝑚𝑎𝑥. = 12.9033 
  

0.093 
𝜓𝑚𝑖𝑛. = −0.0465; 𝜓𝑚𝑎𝑥. = 0.0465 

𝜔𝑚𝑖𝑛. = −7.0980; 𝜔𝑚𝑎𝑥. = 7.0980 

𝜓𝑚𝑖𝑛. = −0.0465; 𝜓𝑚𝑎𝑥. = 0.0465 

𝜔𝑚𝑖𝑛. = −9.2523; 𝜔𝑚𝑎𝑥. = 9.2523 

𝜓𝑚𝑖𝑛. = −0.0465; 𝜓𝑚𝑎𝑥. = 0.0465 

𝜔𝑚𝑖𝑛. = −13.4613; 𝜔𝑚𝑎𝑥. = 13.4613 
  

0.7 
𝜓𝑚𝑖𝑛. = −0.35; 𝜓𝑚𝑎𝑥. = 0.35 

𝜔𝑚𝑖𝑛. = −93.0756; 𝜔𝑚𝑎𝑥. = 93.0756 

𝜓𝑚𝑖𝑛. = −0.35; 𝜓𝑚𝑎𝑥. = 0.35 

𝜔𝑚𝑖𝑛. = −124.9483; 𝜔𝑚𝑎𝑥. = 124.9483 

𝜓𝑚𝑖𝑛. = −0.35; 𝜓𝑚𝑎𝑥. = 0.35 

𝜔𝑚𝑖𝑛. = −152.0087; 𝜔𝑚𝑎𝑥. = 152.0087 
  

0.9 
𝜓𝑚𝑖𝑛. = −0.45; 𝜓𝑚𝑎𝑥. = 0.45 

𝜔𝑚𝑖𝑛. = −129.0331; 𝜔𝑚𝑎𝑥. = 129.0331 

𝜓𝑚𝑖𝑛. = −0.45; 𝜓𝑚𝑎𝑥. = 0.45 

𝜔𝑚𝑖𝑛. = −169.4076; 𝜔𝑚𝑎𝑥. = 169.4076 
   

0.93 
𝜓𝑚𝑖𝑛. = −0.465; 𝜓𝑚𝑎𝑥. = 0.465 

𝜔𝑚𝑖𝑛. = −134.6129; 𝜔𝑚𝑎𝑥. = 134.6129 

𝜓𝑚𝑖𝑛. = −0.465; 𝜓𝑚𝑎𝑥. = 0.465 

𝜔𝑚𝑖𝑛. = −176.1969; 𝜔𝑚𝑎𝑥. = 176.1969 
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Table 4. Second-Order Numerical Values of Stream Function and Vorticity regarding Different Reynolds Numbers and Different Free-stream Velocity Values (Contd) 

Free-

stream 

Velocity 

Values 
(𝑈∞ [𝑚/𝑠]) 

Reynolds Number (𝑅𝑒) Values  

100 300 1000 10000 20000 

1.0 
𝜓𝑚𝑖𝑛. = −0.5; 𝜓𝑚𝑎𝑥. = 0.5 

𝜔𝑚𝑖𝑛. = −147.7959; 𝜔𝑚𝑎𝑥. = 147.7959 

𝜓𝑚𝑖𝑛. = −0.5; 𝜓𝑚𝑎𝑥. = 0.5 

𝜔𝑚𝑖𝑛. = −192.1368; 𝜔𝑚𝑎𝑥. = 192.1368 
   

2.0 
𝜓𝑚𝑖𝑛. = −1.0; 𝜓𝑚𝑎𝑥. = 1.0 

𝜔𝑚𝑖𝑛. = −353.1051; 𝜔𝑚𝑎𝑥. = 353.1051 

𝜓𝑚𝑖𝑛. = −1.0; 𝜓𝑚𝑎𝑥. = 1.0 

𝜔𝑚𝑖𝑛. = −427.4245; 𝜔𝑚𝑎𝑥. = 427.4245 
   

2.29 
𝜓𝑚𝑖𝑛. = −1.145; 𝜓𝑚𝑎𝑥. = 1.145 

𝜔𝑚𝑖𝑛. = −416.5730; 𝜔𝑚𝑎𝑥. = 416.5730 

𝜓𝑚𝑖𝑛. = −1.145; 𝜓𝑚𝑎𝑥. = 1.145 

𝜔𝑚𝑖𝑛. = −496.4174; 𝜔𝑚𝑎𝑥. = 496.4174 
   

7.0 
𝜓𝑚𝑖𝑛. = −3.5; 𝜓𝑚𝑎𝑥. = 3.5 

𝜔𝑚𝑖𝑛. = −1.5201 × 103; 𝜔𝑚𝑎𝑥. = 1.5201 × 103 
    

9.0      

9.3      
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Table 5. Stream Function Contour Graphics regarding Different Reynolds Numbers and 0.02 Free-stream Velocity Value as a result of Implementing Fourth-Order Numerical Formulation 

Free-stream 

Velocity 

Values 

(𝑈∞ [𝑚/𝑠]) 

Reynolds Number (𝑅𝑒) Values  

100 300 1000 10000 20000 

0.02 

     

 

 

Table 6. Stream Function Contour Graphics regarding Different Reynolds Numbers and 0.02 Free-stream Velocity Value as a result of Implementing Second-Order Numerical Formulation 

Free-stream 

Velocity 

Value 

(𝑈∞  [𝑚/𝑠]) 

Reynolds Number (𝑅𝑒) Values  

100 300 1000 10000 20000 

0.02 
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Nomenclature 

𝐴, 𝐵, 𝐶, 𝐷, 𝐸 : Coefficients of used in 

discretized finite difference 

equations and iteration 

equations for stream function 

and vorticity 

𝐷 : Any size of square cylinder, 

[𝑚] 
𝑓 : In equations general 

expression of any variable 

𝐻 : Semi-height of computational 

domain  (𝐻 = 2𝐷), [𝑚]  

𝐾(𝑥1, 𝑦1), 

𝐿(𝑥1, 𝑦2), 

𝑀(𝑥1, 𝑦3) 

: Any grid points in physical or 

computational domain 

𝑅𝑒 
 

Reynolds Number (=
𝜌𝑢𝐷 𝜇⁄ ), [−] 

𝑢, 𝑣 

 

Velocity components in 𝑥- 

and 𝑦- Cartesian coordinates, 

respectively 

𝑈  Velocity, [𝑚. 𝑠−1]  

𝑥, 𝑦 
 

Two-dimensional Cartesian 

coordinate directions in 

physical domain 

𝑋 : Distance  [𝑚]  

𝑤 : Relaxation parameter  

   

Greek symbols 

𝛽 : Blockage ratio 

∆ℎ : Distance between two 

sequential grid points in both 

of 𝑥, 𝑦 or 𝜉, 𝜂 2 − 𝐷 Cartesian 

coordinates 

∆𝑥 : Distance between two 

sequential grid points in 𝑥-

Cartesian coordinate direction 

for physical domain 

∆𝑦 : Distance between two 

sequential grid points in 𝑦-

Cartesian coordinate direction 

for physical domain 

∆𝜉 : Distance between two 

sequential grid points in 𝜉-

Cartesian coordinate direction 

for computational domain 

∆𝜂 : Distance between two 

sequential grid points in 𝜂-

Cartesian coordinate direction 

for computational domain 

𝜉, 𝜂 : Two-dimensional Cartesian 

coordinate directions in 

computational domain 

𝜆 : Grid stretching parameter 

𝜈 : Kinematic viscosity, 

[𝑚2. 𝑠−1] 

𝜓 : Stream function 

𝜓 − 𝜔 : Stream function – vorticity 

𝜔 : Vorticity 

   

Sub- and superscripts 

𝑖, 𝑗 : Two-dimensional Cartesian 

coordinate directions in 

computational domain for 𝜉 

and 𝜂, respectively 

𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 : Flow direction 

𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 : Reverse flow direction 

∞ : Free-stream condition 

   

Acronyms 

𝐴𝐷𝐼𝑀 : Alternating Direction Implicit 

Method 

𝐵𝐸𝑀 : Boundary Element Method 

𝐶𝐹𝐷 : Computational Fluid 

Dynamics 

𝐹𝐷𝑀 : Finite Difference Method 

𝐹𝐸𝑀 : Finite Element Method 

𝐹𝑉𝑀 : Finite Volume Method 

𝐿𝐵𝑀 : Lattice Boltzmann Method 

𝑁-𝑆 : Navier-Stokes 

𝑃𝐷𝐸𝑆 : Partial Differential Equation 

System 

𝑇𝑆𝐸 : Taylor Series Expansion 
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